EP0143398B1 - Container, in particular for radioactive substances - Google Patents

Container, in particular for radioactive substances Download PDF

Info

Publication number
EP0143398B1
EP0143398B1 EP84113774A EP84113774A EP0143398B1 EP 0143398 B1 EP0143398 B1 EP 0143398B1 EP 84113774 A EP84113774 A EP 84113774A EP 84113774 A EP84113774 A EP 84113774A EP 0143398 B1 EP0143398 B1 EP 0143398B1
Authority
EP
European Patent Office
Prior art keywords
container
inner container
outer container
pipe
connecting lines
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP84113774A
Other languages
German (de)
French (fr)
Other versions
EP0143398A2 (en
EP0143398A3 (en
Inventor
Wolfgang Dr. Dipl.-Ing. Stoll
Ralf Dr. Dipl.-Chem. Güldner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alkem GmbH
Original Assignee
Alkem GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alkem GmbH filed Critical Alkem GmbH
Publication of EP0143398A2 publication Critical patent/EP0143398A2/en
Publication of EP0143398A3 publication Critical patent/EP0143398A3/en
Application granted granted Critical
Publication of EP0143398B1 publication Critical patent/EP0143398B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F5/00Transportable or portable shielded containers
    • G21F5/005Containers for solid radioactive wastes, e.g. for ultimate disposal

Definitions

  • the invention relates to a container, in particular for radioactive substances such as radioactive liquids, with an inner container for holding these substances and an outer container in which the inner container and heat insulating material are located between the inner and outer containers.
  • the heat insulating material of this container between the inner and outer containers consists, for. B. from phenolic foam. It is intended to prevent heat from entering the inner container from the outside in the event of a fire, where it suddenly leads to overpressure in the inner container, which can ultimately result in this inner container bursting and the radioactive substances escaping. This heat insulating material between the inner and outer container also prevents the decay heat of the radioactive substances from escaping to the outside. Therefore, the capacity of this container is very limited, because if the decay heat is released too much, heat accumulation could occur, which would lead to an inadmissible excess pressure in the inner container.
  • the invention has for its object to remedy this and to achieve that the capacity of the container for (radioactive) substances is limited as little or not at all.
  • a container of the type mentioned at the outset is characterized in that a cooling tube containing a circulable coolant is assigned to the inner container within the outer container, that a heat dissipation pipe which also contains the circulable coolant is arranged on the outer container and that the cooling pipe and the heat dissipation pipe are arranged above Communicate connecting lines at both pipe ends.
  • the heat of decay of the radioactive substances in the inner container of the container can be transported to the outside and released through the heat insulating material due to the natural circulation of the circulating coolant. Nevertheless, the heat insulating material protects the inner container from sudden temperature increases in the event of a fire.
  • a passage with a pressure relief valve or a rupture disk is provided on the cooling tube, on the heat dissipation tube and / or on the connecting lines in the wall thereof.
  • this coolant can escape from the cooling pipe, the heat dissipation pipe and the connecting lines by actuating the pressure relief valve or by bursting the rupture disc due to the temporarily excessive outside temperature, so that it cannot contribute to heat transfer from the outside to the inner container:
  • the cooling tube, the heat dissipation tube and / or the connecting lines have a passage in the wall which is sealed with a solder, the melting temperature of which is lower than the melting temperature of the material of the cooling tube, the heat dissipation tube or the connecting lines. If the outside temperature rises in the event of a fire, this solder melts and bursts, so that in particular a liquid coolant flows out of the cooling tube, the heat dissipation tube and the connecting lines and can no longer transport heat from the outside to the inner container.
  • the capacity of the container according to the invention for radioactive substances is practically only determined by the volume of the inner container, which can be chosen to be of any size, it is advantageous if a body made of a material that absorbs neutrons is arranged in the interior of the inner container. This prevents the occurrence of a critical configuration of fissile radioactive substances in the inner container.
  • the container according to FIG. 1 has an inner container 2 made of steel and an outer container 6 also made of steel.
  • the inner container 2 is sealed gas and liquid-tight on all sides and stands on the inside of the base of the outer container 6 via support bodies 31.
  • the outer container 6 is also gas and liquid-tight on all sides and closed at the top with a lid 7 which is screwed to the outer container 6 with screws 8.
  • heat insulating material 9 in the outer container 6, which can consist of glass wool or phenolic resin foam.
  • the support body 31 advantageously consist of a heat poorly conductive heat insulating material such. B. ceramics.
  • a helical cooling tube 10 made of copper is welded to the outside of the inner container 2. Furthermore, a heat-dissipating tube 11 made of copper, which is also of a helical design, is welded to the inside of the outer container 6. This heat dissipation tube can also be arranged on the outside of the outer container or embedded in the outer container.
  • the top of the cool Pipe 10 is connected to the upper end of the heat dissipation tube 11 with a connecting line 12 and the lower end of the cooling tube 10 to the lower end of the heat dissipation tube 11 with a connecting line 13, so that the cooling tube 10 and the heat dissipation tube 11 communicate with one another at both tube ends.
  • the connecting lines 12 and 13 can also be tubes made of copper, but to facilitate assembly of the container, these connecting lines 12 and 13 can also consist of plastic hoses.
  • the cooling tube 10, the heat dissipation tube 11 and the connecting lines 12 and 13 are with a circulating coolant, for. B. filled with a gaseous fluorinated hydrocarbon, with helium or with liquid water.
  • the connecting line 13 designed as a tube has a rupture disk 15a in a passage 14 in the wall, which is shown in FIG. 2.
  • a bushing 14 is provided in the connecting line 13 in the form of a tube, which, as shown in FIGS. 1 and 3, is sealed with a solder 15b made of a lead-tin alloy. While the bushing 14 with the rupture disc 15a in FIG.
  • the bushing 14 sealed with the solder 15b in FIGS. 1 and 3 opens through a bushing 21 in the side wall of the outer container 6 and onto the outside of the outer container 6
  • the bushing 21 in the outer container 6 is closed in a gas-tight and liquid-tight manner with the heat-dissipation pipe 11 welded to the outer container 6 there.
  • the cover 7 has a loading and unloading cover 16 above the loading and unloading pipe 4 and the ventilation pipe 5, which is screwed onto the cover 7 with screws 17. Furthermore, a steel tube 18, which is closed at both ends and is filled with boron carbide, which absorbs neutrons and prevents a critical configuration of fissile radioactive substances, is attached to the top 3 in the interior of the inner container 2. Finally, the cover 7 is also provided with a bushing 19, which in turn is closed with a rupture disk 20.
  • the loading lid 16 is unscrewed from the lid 7 of the outer container 6. Then the loading and unloading pipe 4 and the ventilation pipe 5 are connected to a loading station. As soon as the inner container 2 is filled with the plutonium nitrate solution, the loading and unloading pipe 4 and the ventilation pipe 5 are uncoupled from the unloading station and sealed with the caps 41 and 51 in a gas and liquid-tight manner. Finally, the loading lid 16 is screwed back onto the lid 7 of the outer container 6.
  • the decay heat developed in the plutonium nitrate solution sets in motion a natural circulation of the coolant in the cooling system formed by the cooling pipe 10, the heat dissipation pipe 11 and the connecting lines 12 and 13, so that this decay heat is transported to the outer container 6 and radiated away from it or removed by convection .
  • the temperature on the outside of the outer container 6 increases suddenly.
  • the heat insulating material 9 prevents heat from reaching the inner container 2 immediately from the outside and additionally heating the plutonium nitrate solution in this inner container 2.
  • the coolant is heated in the heat dissipation pipe 11.
  • the rupture disk 15a according to FIG. 2 bursts, while in the case of a liquid coolant the solder 15b according to FIGS. 1 and 3 melts due to the increased outside temperature.
  • this coolant enters the interior of the outer container 6 and can escape to the outside through the bushing 19 if the rupture disk 20 bursts if the overpressure is too high, while in the case of the liquid coolant it immediately passes through the bushings 14 and 21 to the Outside of the outer container 6 flows. In both cases, heat can then no longer reach the inner container 2 via the cooling system formed by the cooling pipe 10, the heat dissipation pipe 11 and the connecting lines 12 and 13.
  • either the inner container 2 of the container can be discharged or that from the cooling tube 10, the heat dissipation tube 11 and the Connecting lines 12 and 13, existing cooling system can be put back into operation by filling in coolant and closing the bushings 14.
  • the cooling effect of the cooling system consisting of the cooling tube 10, the heat dissipation tube 11 and the connecting lines 12 and 13 can be increased even more if a cooling unit is connected to the connecting lines 12 and 13 or to the heat dissipation tube 11 at connecting pieces (not shown).
  • the inner container 2 for shielding radioactive radiation can be surrounded by a radiation shield, which is also located in the outer container 6, but which is not shown in the drawing for the sake of clarity.
  • the inner container can also be provided with a pressure relief valve opening into the outer container, which is preferably arranged in a passage in the wall on the upper part of the inner container.
  • a pressure relief valve should also be understood to mean a capillary passage through the wall of the inner container, which is soldered with a solder, e.g. B. is closed from a lead-tin alloy. At too high temperature and too high pressure melts and / or bursts z. B. the solder in the capillary feedthrough. Should the overpressure in the inner container become impermissibly high, for example due to the formation of radiolysis gas, this overpressure can be reduced by the pressure relief valve and a bursting of the inner container can be avoided.
  • absorbent bodies for absorbing and / or absorbing substances which have escaped from the inner container into the outer container in the outer container outside the inner container.
  • These absorbents are intended to contain radioactive aerosol or radioactive liquid, which may come from the inner container e.g. B. emerge through its pressure relief valve, absorb or absorb and neutralize if necessary.
  • Such absorbent can, for. B. consist of silica gel, expanded mica or diatomaceous earth, which z. B. contains calcium hydroxide, cyanide or alkaline cement finely divided as a means for neutralizing nitric acid, in which plutonium is dissolved and which can be in the inner container.
  • the absorbent bodies are designed in such a way that, if necessary, they can absorb, absorb or neutralize the entire amount of substance that is accommodated in the inner container in a manner that is critical to the situation.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Packages (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Description

Die Erfindung betrifft einen Behälter, insbesondere für radioaktive Substanzen wie radioaktive Flüssigkeiten, mit einem Innenbehälter zur Aufnahme dieser Substanzen und einem Außenbehälter, in dem sich der Innenbehälter und Wärmeisolierstoff zwischen Innen- und Außenbehälter befinden.The invention relates to a container, in particular for radioactive substances such as radioactive liquids, with an inner container for holding these substances and an outer container in which the inner container and heat insulating material are located between the inner and outer containers.

Ein derartiger Behälter ist bereits in Gebrauch. Der Wärmeisolierstoff dieses Behälters zwischen dem Innen- und dem Außenbehälter besteht z. B. aus Phenolharzschaum. Er soll verhindern, daß im Falle eines Brandes Wärme von außen in den Innenbehälter gelangt und dort sprunghaft zu einem Überdruck im Innenbehälter führt, der schließlich ein Bersten dieses Innenbehälters und Austreten der radioaktiven Substanzen zur Folge haben kann. Dieser Wärmeisolierstoff zwischen Innen- und Außenbehälter verhindert aber auch einen Austritt von Zerfallwärme der radioaktiven Substanzen nach außen. Deshalb ist das Fassungsvermögen dieses Behälters nur sehr begrenzt, da bei einer zu großen Abgabe von Zerfallswärme ein Wärmestau auftreten könnte, der zu einem unzulässigen Überdruck im Innenbehälter führen würde.Such a container is already in use. The heat insulating material of this container between the inner and outer containers consists, for. B. from phenolic foam. It is intended to prevent heat from entering the inner container from the outside in the event of a fire, where it suddenly leads to overpressure in the inner container, which can ultimately result in this inner container bursting and the radioactive substances escaping. This heat insulating material between the inner and outer container also prevents the decay heat of the radioactive substances from escaping to the outside. Therefore, the capacity of this container is very limited, because if the decay heat is released too much, heat accumulation could occur, which would lead to an inadmissible excess pressure in the inner container.

Der Erfindung liegt die Aufgabe zugrunde, hier Abhilfe zu schaffen und zu erreichen, daß das Fassungsvermögen des Behälters für (radioaktive) Substanzen möglichst wenig oder gar nicht begrenzt ist.The invention has for its object to remedy this and to achieve that the capacity of the container for (radioactive) substances is limited as little or not at all.

Zur Lösung dieser Aufgabe ist ein Behälter der eingangs erwähnten Art erfindungsgemäß dadurch gekennzeichnet, daß innerhalb des Außenbehälters dem Innenbehälter ein ein zirkulierfähiges Kühlmittel enthaltendes Kühlrohr zugeordnet ist, daß am Außenbehälter ein das zirkulierfähige Kühlmittel ebenfalls enthaltendes Wärmeabfuhrrohr angeordnet ist und daß das Kühlrohr und das Wärmeabfuhrrohr über Verbindungsleitungen an beiden Rohrenden miteinander kommunizieren.To achieve this object, a container of the type mentioned at the outset is characterized in that a cooling tube containing a circulable coolant is assigned to the inner container within the outer container, that a heat dissipation pipe which also contains the circulable coolant is arranged on the outer container and that the cooling pipe and the heat dissipation pipe are arranged above Communicate connecting lines at both pipe ends.

Auf diese Weise kann die Zerfallswärme der radioaktiven Substanzen im Innenbehälter des Behälters durch Naturumlauf des zirkulierfähigen Kühlmittels durch den Wärmeisolierstoff hindurch nach außen transportiert und abgegeben werden. Trotzdem schützt der Wärmeisolierstoff den Innenbehälter vor sprunghaften Temperaturerhöhungen im Brandfall.In this way, the heat of decay of the radioactive substances in the inner container of the container can be transported to the outside and released through the heat insulating material due to the natural circulation of the circulating coolant. Nevertheless, the heat insulating material protects the inner container from sudden temperature increases in the event of a fire.

Von Vorteil ist es, wenn am Kühlrohr, am Wärmeabfuhrrohr und/oder an den Verbindungsleitungen in deren Wand eine Durchführung mit einem Überdruckventil oder einer Berstscheibe vorgesehen ist. Insbesondere im Falle eines gasförmigen Kühlmittels kann dieses Kühlmittel wegen der kurzfristig überhöhten Außentemperatur aus dem Kühlrohr, dem Wärmeabfuhrrohr und den Verbindungsleitungen durch Betätigen des Überdruckventils oder Sprengen der Berstscheibe entweichen, so daß es nicht zum Wärmetransport von außen zum Innenbehälter beitragen kann:It is advantageous if a passage with a pressure relief valve or a rupture disk is provided on the cooling tube, on the heat dissipation tube and / or on the connecting lines in the wall thereof. Particularly in the case of a gaseous coolant, this coolant can escape from the cooling pipe, the heat dissipation pipe and the connecting lines by actuating the pressure relief valve or by bursting the rupture disc due to the temporarily excessive outside temperature, so that it cannot contribute to heat transfer from the outside to the inner container:

Es kann auch günstig sein, wenn das Kühlrohr, das Wärmbeabfuhrrohr und/oder die Verbindungsleitungen in der Wand eine Durchführung aufweisen, die mit einem Lot verschlossen ist, dessen Schmelztemperatur niedriger als die Schmelztemperatur des Werkstoffes des Kühlrohres, des Wärmeabfuhrrohres bzw. der Verbindungsleitungen ist. Bei erhöhter Außentemperatur im Brandfall schmilzt und birst dieses Lot, so daß insbesondere ein flüssiges Kühlmittel aus dem Kühlrohr, dem Wärmeabfuhrrohr und den Verbindungsleitungen abfließen und nicht mehr Wärme von außen zum Innenbehälter transportieren kann.It can also be favorable if the cooling tube, the heat dissipation tube and / or the connecting lines have a passage in the wall which is sealed with a solder, the melting temperature of which is lower than the melting temperature of the material of the cooling tube, the heat dissipation tube or the connecting lines. If the outside temperature rises in the event of a fire, this solder melts and bursts, so that in particular a liquid coolant flows out of the cooling tube, the heat dissipation tube and the connecting lines and can no longer transport heat from the outside to the inner container.

Da das Fassungsvermögen des erfindungsgemäßen Behälters für radioaktive Substanzen praktisch nur durch das Volumen des Innebehälters bestimmt ist, welches beliebig groß gewählt werden kann, ist es von Vorteil, wenn im Innenraum des Innenbehälters ein Körper aus einem Werkstoff angeordnet ist, der Neutronen verstärkt absorbiert. Dadurch wird das Zustandekommen einer kritischen Konfiguration von spaltbaren radioaktiven Substanzen im Innenbehälter verhindert.Since the capacity of the container according to the invention for radioactive substances is practically only determined by the volume of the inner container, which can be chosen to be of any size, it is advantageous if a body made of a material that absorbs neutrons is arranged in the interior of the inner container. This prevents the occurrence of a critical configuration of fissile radioactive substances in the inner container.

Die Erfindung und ihre Vorteile seien anhand der Zeichnung an einem Ausführungsbeispiel näher erläutert :

  • Figur 1 zeigt einen Längsschnitt durch einen Transport- oder Lagerbehälter gemäß der Erfindung,
  • Figur 2 und Figur 3 zeigen vergrößert einen Ausschnitt aus Ausführungsformen des Transport- oder Lagerbehälters.
The invention and its advantages are explained in more detail with reference to the drawing using an exemplary embodiment:
  • FIG. 1 shows a longitudinal section through a transport or storage container according to the invention,
  • Figure 2 and Figure 3 show an enlarged section of embodiments of the transport or storage container.

Der Behälter nach Figur 1 weist einen Innenbehälter 2 aus Stahl und einen Außenbehälter 6 ebenfalls aus Stahl auf. Der Innenbehälter 2 ist allseitig gas- und flüssigkeitsdicht verschlossen und steht über Stützkörper 31 innen auf dem Boden des Außenbehälters 6 auf. An seiner Oberseite 3 sind ein Be- und Entladerohr 4 mit Verschlußkappe 41 und ein Be- und Entlüftungsrohr 5 mit Verschlußkappe 51 durch die Wand des Innenbehälters 2 hindurchgeführt. Der Außenbehälter 6 ist ebenfalls allseitig gas- und flüssigkeitsdicht und oben mit einem Deckel 7 verschlossen, der mit Schrauben 8 am Außenbehälter 6 festgeschraubt ist. Zwischen dem Innenbehälter 2 einerseits und dem Außenbehälter 6 und seinem Deckel 7 andererseits befindet sich im Außenbehälter 6 Wärmeisolierstoff 9, der aus Glaswolle oder Phenolharzschaum bestehen kann. Auch die Stützkörper 31 bestehen günstigerweise aus einem Wärme schlecht leitendem Wärmeisolierstoff wie z. B. Keramik.The container according to FIG. 1 has an inner container 2 made of steel and an outer container 6 also made of steel. The inner container 2 is sealed gas and liquid-tight on all sides and stands on the inside of the base of the outer container 6 via support bodies 31. On its upper side 3, a loading and unloading tube 4 with a closure cap 41 and a ventilation tube 5 with a closure cap 51 are passed through the wall of the inner container 2. The outer container 6 is also gas and liquid-tight on all sides and closed at the top with a lid 7 which is screwed to the outer container 6 with screws 8. Between the inner container 2, on the one hand, and the outer container 6 and its cover 7, on the other hand, there is heat insulating material 9 in the outer container 6, which can consist of glass wool or phenolic resin foam. The support body 31 advantageously consist of a heat poorly conductive heat insulating material such. B. ceramics.

Auf der Außenseite des Innenbehälters 2 ist ein schraubenförmiges Kühlrohr 10 aus Kupfer festgeschweißt. Ferner ist innen am Außenbehälter 6 ein ebenfalls schraubenförmig ausgeführtes Wärmeabfuhrrohr 11 aus Kupfer angeschweißt. Dieses Wärmeabfuhrrohr kann auch außen am Außenbehälter angeordnet oder in dem Außenbehälter eingelassen sein. Das Oberende des Kühlrohres 10 ist mit dem Oberende des Wärmeabfuhrrohres 11 mit einer Verbindungsleitung 12 und das Unterende des Kühlrohres 10 mit dem Unterende des Wärmeabfuhrrohres 11 mit einer Verbindungsleitung 13 verbunden, so daß das Kühlrohr 10 und das Wärmeabfuhrrohr 11 an beiden Rohrenden miteinander kommunizieren. Die Verbindungsleitungen 12 und 13 können ebenfalls Rohre aus Kupfer sein, zur Erleichterung der Montage des Behälters können diese Verbindungsleitungen 12 und 13 aber auch aus Kunststoffschläuchen bestehen.A helical cooling tube 10 made of copper is welded to the outside of the inner container 2. Furthermore, a heat-dissipating tube 11 made of copper, which is also of a helical design, is welded to the inside of the outer container 6. This heat dissipation tube can also be arranged on the outside of the outer container or embedded in the outer container. The top of the cool Pipe 10 is connected to the upper end of the heat dissipation tube 11 with a connecting line 12 and the lower end of the cooling tube 10 to the lower end of the heat dissipation tube 11 with a connecting line 13, so that the cooling tube 10 and the heat dissipation tube 11 communicate with one another at both tube ends. The connecting lines 12 and 13 can also be tubes made of copper, but to facilitate assembly of the container, these connecting lines 12 and 13 can also consist of plastic hoses.

Das Kühlrohr 10, das Wärmeabfuhrrohr 11 sowie die Verbindungsleitungen 12 und 13 sind mit einem zirkulierfähigen Kühlmittel, z. B. mit einem gasförmigen fluorierten Kohlenwasserstoff, mit Helium oder mit flüssigem Wasser gefüllt. Die als Rohr ausgeführte Verbindungsleitung 13 weist im Falle des gasförmigen Kühlmittels in einer Durchführung 14 in der Wand eine Berstscheibe 15a auf, die in Figur 2 dargestellt ist. Im Falle des flüssigen Kühlmittels ist in der als Rohr ausgeführten Verbindungsleitung 13 in der Wand eine Durchführung 14 vorgesehen, die, wie Figur 1 und 3 zeigen, mit einem Lot 15b aus einer Blei-Zinn-Legierung verschlossen ist. Während die Durchführung 14 mit der Berstscheibe 15a in Figur 2 in den Innenraum des Außenbehälters 6 mündet, mündet die mit dem Lot 15b verschlossene Durchführung 14 in Figur 1 und 3 durch eine Durchführung 21 in der Seitenwand des Außenbehälters 6 hindurch auf die Außenseite des Außenbehälters 6. Im übrigen ist die Durchführung 21 im Außenbehälter 6 mit dem dort innen am Außenbehälter 6 festgeschweißten Wärmeabfuhrrohr 11 gas- und flüssigkeitsdicht verschlossen.The cooling tube 10, the heat dissipation tube 11 and the connecting lines 12 and 13 are with a circulating coolant, for. B. filled with a gaseous fluorinated hydrocarbon, with helium or with liquid water. In the case of the gaseous coolant, the connecting line 13 designed as a tube has a rupture disk 15a in a passage 14 in the wall, which is shown in FIG. 2. In the case of the liquid coolant, a bushing 14 is provided in the connecting line 13 in the form of a tube, which, as shown in FIGS. 1 and 3, is sealed with a solder 15b made of a lead-tin alloy. While the bushing 14 with the rupture disc 15a in FIG. 2 opens into the interior of the outer container 6, the bushing 14 sealed with the solder 15b in FIGS. 1 and 3 opens through a bushing 21 in the side wall of the outer container 6 and onto the outside of the outer container 6 In addition, the bushing 21 in the outer container 6 is closed in a gas-tight and liquid-tight manner with the heat-dissipation pipe 11 welded to the outer container 6 there.

Der Deckel 7 weist über dem Be- und Entladerohr 4 und dem Be- und Entlüftungsrohr 5 einen Be- und Entladedeckel 16 auf, der mit Schrauben 17 am Deckel 7 festgeschraubt ist. Ferner ist im Innenraum des Innenberhälters 2 an der Oberseite 3 ein an beiden Enden verschlossenes Stahlrohr 18 angebracht, das mit Borkarbid gefüllt ist, welches Neutronen absorbiert und eine kritische Konfiguration von spaltbaren radioaktiven Substanzen verhindert. Schließlich ist der Deckel 7 noch mit einer Durchführung 19 versehen, die ihrerseits mit einer Berstscheibe 20 verschlossen ist.The cover 7 has a loading and unloading cover 16 above the loading and unloading pipe 4 and the ventilation pipe 5, which is screwed onto the cover 7 with screws 17. Furthermore, a steel tube 18, which is closed at both ends and is filled with boron carbide, which absorbs neutrons and prevents a critical configuration of fissile radioactive substances, is attached to the top 3 in the interior of the inner container 2. Finally, the cover 7 is also provided with a bushing 19, which in turn is closed with a rupture disk 20.

Zum Beladen des Innenbehälters 2 mit einer flüssigen, salpetersauren Plutioniumnitrat-Lösung wird der Beladedeckel 16 vom Deckel 7 des Außenbehälters 6 abgeschraubt. Sodann werden das Be- und Entladerohr 4 sowie das Be- und Entlüftungsrohr 5 an eine Beladestation angeschlossen. Sobald der Innenbehälter 2 mit der Plutoniumnitrat-Lösung gefüllt ist, werden das Be- und Entladerohr 4 und das Beund Entlüftungsrohr 5 wieder von der Entladestation abgekoppelt und mit den Verschlußkappen 41 bzw. 51 gasund flüssigkeitsdicht verschlossen. Schließlich wird der Beladedeckel 16 wieder am Deckel 7 des Außenbehälters 6 festgeschraubt. Die in der Plutoniumnitrat-Lösung entwickelte Zerfallswärme setzt einen Naturumlauf des Kühlmittels im durch das Kühlrohr 10, das Wärmeabfuhrrohr 11 und die Verbindungsleitungen 12 und 13 gebildeten Kühlsystem in Gang, so daß diese Zerfallswärme zum Außenbehälter 6 transportiert und von diesem abgestrahlt oder durch Konvektion abtransportiert wird.To load the inner container 2 with a liquid, nitric acid plutium nitrate solution, the loading lid 16 is unscrewed from the lid 7 of the outer container 6. Then the loading and unloading pipe 4 and the ventilation pipe 5 are connected to a loading station. As soon as the inner container 2 is filled with the plutonium nitrate solution, the loading and unloading pipe 4 and the ventilation pipe 5 are uncoupled from the unloading station and sealed with the caps 41 and 51 in a gas and liquid-tight manner. Finally, the loading lid 16 is screwed back onto the lid 7 of the outer container 6. The decay heat developed in the plutonium nitrate solution sets in motion a natural circulation of the coolant in the cooling system formed by the cooling pipe 10, the heat dissipation pipe 11 and the connecting lines 12 and 13, so that this decay heat is transported to the outer container 6 and radiated away from it or removed by convection .

Im Brandfall erhöht sich die Temperatur auf der Außenseite des Außenbehälters 6 sprunghaft. Dabei verhindert der Wärmeinsolierstoff 9, daß Wärme sofort von außen zum Innenbehälter 2 gelangt und die Plutoniumnitrat-Lösung in diesem Innenbehälter 2 zusätzlich erhitzt. Außerdem wird das Kühlmittel im Wärmeabfuhrrohr 11 aufgeheizt. Im Fall eines gasförmigen Kühlmittels platzt die Berstscheibe 15a nach Figur 2, während im Falle eines flüssigen Kühlmittels das Lot 15b nach Figur 1 und 3 durch die erhöhte Außentemperatur schmilzt. Im Falle eines gasförmigen Kühlmittels gelangt dieses Kühlmittel in den Innenraum des Außenbehälters 6 und kann bei zu hohem Überdruck nach Platzen der Berstscheibe 20 durch die Durchführung 19 hindurch nach außen entweichen, während im Falle des flüssigen Kühlmittels dieses sofort durch die Durchführungen 14 und 21 auf die Außenseite des Außenbehälters 6 fließt. In beiden Fällen kann dann keine Wärme mehr von außen über das durch das Kühlrohr 10, das Wärmeabfuhrrohr 11 und die Verbindungsleitungen 12 und 13 gebildete Kühlsystem zum Innenbehälter 2 gelangen.In the event of a fire, the temperature on the outside of the outer container 6 increases suddenly. The heat insulating material 9 prevents heat from reaching the inner container 2 immediately from the outside and additionally heating the plutonium nitrate solution in this inner container 2. In addition, the coolant is heated in the heat dissipation pipe 11. In the case of a gaseous coolant, the rupture disk 15a according to FIG. 2 bursts, while in the case of a liquid coolant the solder 15b according to FIGS. 1 and 3 melts due to the increased outside temperature. In the case of a gaseous coolant, this coolant enters the interior of the outer container 6 and can escape to the outside through the bushing 19 if the rupture disk 20 bursts if the overpressure is too high, while in the case of the liquid coolant it immediately passes through the bushings 14 and 21 to the Outside of the outer container 6 flows. In both cases, heat can then no longer reach the inner container 2 via the cooling system formed by the cooling pipe 10, the heat dissipation pipe 11 and the connecting lines 12 and 13.

Nach Beeindigung der Brandeinwirkung, die ja nach verhältnismäßig kurzer Zeit herbeigeführt wird, so daß ein zu großer Stau von Zerfallswärme im Innenbehälter 2 nicht zu erwarten ist, kann entweder der Innenbehälter 2 des Behälters entladen oder das aus dem Kühlrohr 10, dem Wärmeabfuhrrohr 11 und den Verbindungsleitungen 12 und 13, bestehende Kühlsystem durch Einfüllen von Kühlmittel und Verschließen der Durchführungen 14 wieder in Funktion gesetzt werden.After the exposure to fire, which is brought about after a relatively short time, so that excessive accumulation of decay heat in the inner container 2 is not to be expected, either the inner container 2 of the container can be discharged or that from the cooling tube 10, the heat dissipation tube 11 and the Connecting lines 12 and 13, existing cooling system can be put back into operation by filling in coolant and closing the bushings 14.

Die Kühlwirkung des aus dem Kühlrohr 10, dem Wärmeabfuhrrohr 11 und den Verbindungsleitungen 12 und 13 bestehenden Kühlsystems kann noch erhöht werden, wenn an den Verbindungsleitungen 12 und 13 oder am Wärmeabfuhrrohr 11 an nicht dargestellten Anschlußstutzen ein Kühlaggregat angeschlossen wird.The cooling effect of the cooling system consisting of the cooling tube 10, the heat dissipation tube 11 and the connecting lines 12 and 13 can be increased even more if a cooling unit is connected to the connecting lines 12 and 13 or to the heat dissipation tube 11 at connecting pieces (not shown).

Ferner kann der Innenbehälter 2 zum Abschirmen radioaktiver Strahlung von einem Strahlenschild umgeben sein, der sich ebenfalls im Außenbehälter 6 befindet, der aber der besseren Übersichtlichkeit halber in der Zeichnung nicht dargestellt ist.Furthermore, the inner container 2 for shielding radioactive radiation can be surrounded by a radiation shield, which is also located in the outer container 6, but which is not shown in the drawing for the sake of clarity.

Vorteilhafterweise kann auch der Innenbehälter mit einem in den Außenbehälter mündenden Überdruckventil versehen sein, das in einer Durchführung in der Wand vorzugsweise am oberen Teil des Innenbehälters angeordnet ist. Unter einem solchen Überdruckventil soll auch eine Kapillardurchführung durch die Wand des Innenbehälters zu verstehen sein, die mit einem Lot, z. B. aus einer Blei-Zinn-Legierung verschlossen ist. Bei zu hoher Temperatur und zu hohem Überdruck schmilzt und/oder birst z. B. das Lot in der Kapillardurchführung. Sollte der Überdruck im Innenbehälter beispielsweise durch Bildung von Radiolysegas doch unzulässig hoch werden, kann dieser Überdruck durch das Überdruckventil abgebaut und ein Bersten des Innenbehälters vermieden werden.Advantageously, the inner container can also be provided with a pressure relief valve opening into the outer container, which is preferably arranged in a passage in the wall on the upper part of the inner container. Such a pressure relief valve should also be understood to mean a capillary passage through the wall of the inner container, which is soldered with a solder, e.g. B. is closed from a lead-tin alloy. At too high temperature and too high pressure melts and / or bursts z. B. the solder in the capillary feedthrough. Should the overpressure in the inner container become impermissibly high, for example due to the formation of radiolysis gas, this overpressure can be reduced by the pressure relief valve and a bursting of the inner container can be avoided.

Ferner kann es günstig sein, wenn sich im Außenbehälter außerhalb des Innenbehälters Aufsaugkörper zum Aufsaugen und/oder Absorbieren von Substanzen befinden, die aus dem Innenbehälter in den Außenbehälter ausgetreten sind. Diese Aufsaugkörper sollen radioaktives Aerosol bzw. radioaktive Flüssigkeit, die eventuell aus dem Innenbehälter z. B. durch dessen Überdruckventil austreten, absorbieren bzw. aufsaugen und gegebenenfalls neutralisieren. Solche Aufsaugkörper können z. B. aus Silicagel, Blähglimmer oder Kieselgur bestehen, welches z. B. Calziumhydroxid, Cyanid oder alkalischen Zement feinverteilt als Mittel zum Neutralisieren von Salpetersäure enthält, in der Plutonium gelöst ist und die sich im Innenbehälter befinden kann. Von Vorteil kann es sein, wenn die Aufsaugkörper derart ausgelegt sind, daß sie notfalls die gesamte Menge der im Innenbehälter Platz findenden Substanz kritikalitätssicher absorbieren, aufsaugen bzw. neutralisieren können.Furthermore, it can be advantageous if there are absorbent bodies for absorbing and / or absorbing substances which have escaped from the inner container into the outer container in the outer container outside the inner container. These absorbents are intended to contain radioactive aerosol or radioactive liquid, which may come from the inner container e.g. B. emerge through its pressure relief valve, absorb or absorb and neutralize if necessary. Such absorbent can, for. B. consist of silica gel, expanded mica or diatomaceous earth, which z. B. contains calcium hydroxide, cyanide or alkaline cement finely divided as a means for neutralizing nitric acid, in which plutonium is dissolved and which can be in the inner container. It can be advantageous if the absorbent bodies are designed in such a way that, if necessary, they can absorb, absorb or neutralize the entire amount of substance that is accommodated in the inner container in a manner that is critical to the situation.

Claims (9)

1. A container, particularly but not exclusively for radioactive substances such as radioactive liquids, comprising an inner container for the reception of the substances and an outer container which contains the inner container and heat insulation between the inner and outer containers, characterised in that inside the outer container (6), the inner container (2) is allotted a cooling pipe (10) which contains a circulatable coolant ; that the outer container (6) is provided with a heat discharge pipe (11) which likewise contains the circulatable coolant ; and that the cooling pipe (10) and the heat discharge pipe (11) communicate with one another through connecting lines (12, 13) at both ends of the pipes.
2. A container as claimed in claim 1, characterised in that the cooling pipe (10) is arranged on the outside of the inner container (2).
3. A container as claimed in claim 1, characterised in that the walls of the cooling pipe, the heat discharge pipe and/or the connecting pipelines (12, 13) is or are provided with a duct (14) containing a pressure-relief valve or a bursting disc (15a).
4. A container as claimed in claim 1, characterised in that the walls of the cooling pipe, the heat discharge pipe (11) and/or the connecting lines is or are provided with a duct (14) which is sealed by solder (15b) whose melting point is lower than the melting point of the material of the cooling pipe, the heat discharge pipe (11) and the connecting lines.
5. A container as claimed in claim 1, characterised in that at the connecting lines (12, 13), or the heat discharge pipe (11), a connecting piece for a cooling assembly is provided.
6. A container as claimed in claim 3 or 4, characterised in that the duct (14) containing the pressure-relief valve, or the bursting disc, or the solder (15b), leads to the exterior of the outer container (6).
7. A container as claimed in claim 1, characterised in that in the interior of the inner container (2), a body (18) which is made of a material which strongly absorbs neutrons, is provided.
8. A container as claimed in claim 1, characterised in that the inner container is provided with a pressure-relief valve which opens into the outer container.
9. A container as claimed in claim 1, characterised in that outside the inner container, the outer container contains an absorbent body for sucking-up and/or absorption of substances which have escaped from the inner container into the outer container.
EP84113774A 1983-11-29 1984-11-14 Container, in particular for radioactive substances Expired EP0143398B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3343166 1983-11-29
DE19833343166 DE3343166A1 (en) 1983-11-29 1983-11-29 CONTAINERS IN PARTICULAR FOR RADIOACTIVE SUBSTANCES

Publications (3)

Publication Number Publication Date
EP0143398A2 EP0143398A2 (en) 1985-06-05
EP0143398A3 EP0143398A3 (en) 1985-07-17
EP0143398B1 true EP0143398B1 (en) 1987-09-09

Family

ID=6215571

Family Applications (1)

Application Number Title Priority Date Filing Date
EP84113774A Expired EP0143398B1 (en) 1983-11-29 1984-11-14 Container, in particular for radioactive substances

Country Status (6)

Country Link
US (1) US4672213A (en)
EP (1) EP0143398B1 (en)
JP (1) JPS61147199A (en)
BR (1) BR8406038A (en)
CA (1) CA1232088A (en)
DE (2) DE3343166A1 (en)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4880989A (en) * 1983-03-21 1989-11-14 Mallinckrodt, Inc. Shielding container for radioaerosol delivery apparatus
DE3638702A1 (en) * 1986-11-13 1988-05-26 Alkem Gmbh CONTAINER IN PARTICULAR FOR A RADIOACTIVE SUBSTANCE
US4747512A (en) * 1987-06-19 1988-05-31 Lo Kin K Transportation packaging for liquids
DE9005277U1 (en) * 1990-05-09 1991-02-14 Edelhoff Polytechnik Gmbh & Co, 58640 Iserlohn Reception facility for preferably hazardous substances
FR2724756B1 (en) * 1994-09-16 1996-12-27 Robatel Slpi DEVICE FOR COOLING CONTAINMENT ENCLOSURES, ESPECIALLY IRRADIATED NUCLEAR FUEL STORAGE SILOS
GB9815421D0 (en) * 1998-07-16 1998-09-16 British Nuclear Fuels Plc Fuel containment apparatus
FR2791805B1 (en) * 1999-03-30 2001-08-03 Commissariat Energie Atomique EXTREMELY LONG-TERM STORAGE FACILITY OF HEAT PRODUCTS SUCH AS NUCLEAR WASTE
SE521224C2 (en) * 2001-01-29 2003-10-14 Hans Georgii Device for storing heat-producing hazardous materials, in particular nuclear fuel, and for such a device intended
FR2835090B1 (en) * 2002-01-23 2005-08-05 Commissariat Energie Atomique INSTALLATION OF VERY LONG-TERM STORAGE OF PRODUCTS EMITTING A HIGH THERMAL FLOW
US6587536B1 (en) * 2002-03-18 2003-07-01 Holtec International, Inc. Method and apparatus for maximizing radiation shielding during cask transfer procedures
WO2008079439A2 (en) 2006-07-10 2008-07-03 Holtec International, Inc. Apparatus, system and method for facilitating transfer of high level radioactive waste to and/or from a pool
WO2008097381A2 (en) * 2006-10-11 2008-08-14 Holtec International, Inc. Apparatus and method for transporting and/or storing radioactive materials
JP4966214B2 (en) * 2008-01-21 2012-07-04 東京電力株式会社 Spent fuel heat recovery system
FR2944378B1 (en) * 2009-04-14 2011-06-10 Tn Int PACKAGING DEVICE FOR STORING AND / OR STORING A RADIOACTIVE LIQUID MEDIUM
US8995604B2 (en) 2009-11-05 2015-03-31 Holtec International, Inc. System, method and apparatus for providing additional radiation shielding to high level radioactive materials
EP2899725B1 (en) * 2014-01-27 2018-04-25 Urenco Limited Controlling the temperature of uranium material in a uranium enrichment facility
US11443862B2 (en) 2020-04-01 2022-09-13 Holtec International Storage system for radioactive nuclear waste with pressure surge protection

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2968734A (en) * 1956-01-06 1961-01-17 Martin Co Device for the exposure of fluid to radiation
US3046403A (en) * 1959-04-17 1962-07-24 Babcock & Wilcox Co Device for the storage of a heat evolving material
US3113215A (en) * 1961-02-27 1963-12-03 Stanray Corp Cask construction for radioactive material
US3391280A (en) * 1964-11-06 1968-07-02 Nat Lead Co Fire protection shield for radioactive shipping container
DE1501340B2 (en) * 1965-04-13 1971-04-29 Allmanna Svenska Elektriska AB, Vasteras (Schweden) SECURITY CONTAINER FOR NUCLEAR REACTORS
US3466444A (en) * 1965-08-24 1969-09-09 Edward Lead Co Differentially vented carrying cask for radioactive materials
US3666616A (en) * 1970-01-07 1972-05-30 Babcock & Wilcox Co Vapor suppressing means for a nuclear reactor
FR2208165B1 (en) * 1972-11-28 1975-09-12 Robatel Slpi
US3851179A (en) * 1974-02-05 1974-11-26 Atomic Energy Commission Shipping cask neutron and heat shield
US4167968A (en) * 1977-12-30 1979-09-18 Babcock-Brown Boveri Reaktor Gmbh Pressure vessel
JPS57104895A (en) * 1980-10-31 1982-06-30 Nuclear Power Co Ltd Nuclear fuel element storage container and storing device
GB2087294B (en) * 1980-10-31 1983-03-30 Nuclear Power Co Ltd Fuel element storage container

Also Published As

Publication number Publication date
EP0143398A2 (en) 1985-06-05
DE3343166A1 (en) 1985-06-05
JPS61147199A (en) 1986-07-04
EP0143398A3 (en) 1985-07-17
DE3466117D1 (en) 1987-10-15
CA1232088A (en) 1988-01-26
BR8406038A (en) 1985-08-27
US4672213A (en) 1987-06-09

Similar Documents

Publication Publication Date Title
EP0143398B1 (en) Container, in particular for radioactive substances
EP0034150B1 (en) Container for carrying radioactive materials
DE3301735C2 (en) Transitional storage facility for highly radioactive waste
DE1514957C3 (en) Arrangement for the transport of a radioactive and / or fissile material
DE2915376C2 (en) Container combination for the transport and storage of spent fuel elements from nuclear reactors
DE1227160B (en) Nuclear reactor plant
CH664037A5 (en) SYSTEM WITH A NUCLEAR HEATING REACTOR.
DE2241303B2 (en) Arrangement for pressure-reducing decontamination spray for a nuclear reactor plant
CH643391A5 (en) DEVICE FOR STORING WARM RELEASING RADIOACTIVE MATERIALS.
DE3015494A1 (en) FASTENING OF ELECTRICITY AND MEASURING CABLES FOR NUCLEAR REACTORS
DE2220486B2 (en) Pressurized water reactor
EP0269885B1 (en) Container, especially for radioactive matter
DE1573145A1 (en) Protection device against low temperatures
DE2013985A1 (en) Security system for nuclear reactors
DE2753034C2 (en) Equipment for the storage of spent nuclear reactor fuel elements and methods for the operation of this equipment
DE2040223A1 (en) Container for transporting radioactive materials
EP0028222B1 (en) Process for transporting and storing radioactive materials
CH370491A (en) Thermal insulation for the moderator boiler and the components of liquid-moderated nuclear reactors passed through it
DE2459697A1 (en) CONTAINER FOR TRANSPORTING RADIATED MATERIALS
DE2837631A1 (en) Transport container for radioactive waste esp. fuel elements - has projecting flanges at top and bottom to give extra protection
DE68914561T2 (en) Method for suppressing tritium diffusion and the associated device.
DE6925243U (en) CORE FUEL ELEMENT
DE3028040C2 (en) Arrangement for the storage of radioactive waste liquids
DE3046083C2 (en) Storage and transport container arrangement for one or more glass molds with melted radioactive waste
EP3533758B1 (en) Recombiner

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Designated state(s): BE DE FR GB

AK Designated contracting states

Designated state(s): BE DE FR GB

17P Request for examination filed

Effective date: 19850807

17Q First examination report despatched

Effective date: 19861203

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE DE FR GB

REF Corresponds to:

Ref document number: 3466117

Country of ref document: DE

Date of ref document: 19871015

ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19891031

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19891117

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19891124

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19900126

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19901114

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19901130

BERE Be: lapsed

Owner name: ALKEM G.M.B.H.

Effective date: 19901130

GBPC Gb: european patent ceased through non-payment of renewal fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19910731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19910801

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST