EP0141205A2 - Hydroxyethylazolyl-oxim-Derivate - Google Patents

Hydroxyethylazolyl-oxim-Derivate Download PDF

Info

Publication number
EP0141205A2
EP0141205A2 EP84111054A EP84111054A EP0141205A2 EP 0141205 A2 EP0141205 A2 EP 0141205A2 EP 84111054 A EP84111054 A EP 84111054A EP 84111054 A EP84111054 A EP 84111054A EP 0141205 A2 EP0141205 A2 EP 0141205A2
Authority
EP
European Patent Office
Prior art keywords
formula
carbon atoms
alkyl
optionally
optionally substituted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP84111054A
Other languages
English (en)
French (fr)
Other versions
EP0141205B1 (de
EP0141205A3 (en
Inventor
Wolfgang Dr. Krämer
Karl Heinz Prof. Dr. Büchel
Graham Dr. Holmwood
Paul Dr. Reinecke
Wilhelm Dr. Brandes
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bayer AG
Original Assignee
Bayer AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayer AG filed Critical Bayer AG
Publication of EP0141205A2 publication Critical patent/EP0141205A2/de
Publication of EP0141205A3 publication Critical patent/EP0141205A3/de
Application granted granted Critical
Publication of EP0141205B1 publication Critical patent/EP0141205B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D231/00Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings
    • C07D231/02Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings not condensed with other rings
    • C07D231/10Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members
    • C07D231/12Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to ring carbon atoms
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N43/00Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
    • A01N43/48Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with two nitrogen atoms as the only ring hetero atoms
    • A01N43/501,3-Diazoles; Hydrogenated 1,3-diazoles
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N43/00Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
    • A01N43/64Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with three nitrogen atoms as the only ring hetero atoms
    • A01N43/647Triazoles; Hydrogenated triazoles
    • A01N43/6531,2,4-Triazoles; Hydrogenated 1,2,4-triazoles
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/42Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by hydrolysis
    • C07C45/43Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by hydrolysis of >CX2 groups, X being halogen
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/51Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by pyrolysis, rearrangement or decomposition
    • C07C45/511Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by pyrolysis, rearrangement or decomposition involving transformation of singly bound oxygen functional groups to >C = O groups
    • C07C45/515Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by pyrolysis, rearrangement or decomposition involving transformation of singly bound oxygen functional groups to >C = O groups the singly bound functional group being an acetalised, ketalised hemi-acetalised, or hemi-ketalised hydroxyl group
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/61Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups
    • C07C45/63Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups by introduction of halogen; by substitution of halogen atoms by other halogen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C49/00Ketones; Ketenes; Dimeric ketenes; Ketonic chelates
    • C07C49/20Unsaturated compounds containing keto groups bound to acyclic carbon atoms
    • C07C49/255Unsaturated compounds containing keto groups bound to acyclic carbon atoms containing ether groups, groups, groups, or groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D233/00Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings
    • C07D233/54Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members
    • C07D233/56Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, attached to ring carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D249/00Heterocyclic compounds containing five-membered rings having three nitrogen atoms as the only ring hetero atoms
    • C07D249/02Heterocyclic compounds containing five-membered rings having three nitrogen atoms as the only ring hetero atoms not condensed with other rings
    • C07D249/081,2,4-Triazoles; Hydrogenated 1,2,4-triazoles

Definitions

  • the present invention relates to new hydroxyethyl azolyl oxime derivatives, several processes for their preparation and their use as fungicides.
  • the compounds of formula (I) can exist in two geometric isomers (syn and anti form); they are predominantly obtained as mixtures of different compositions of both forms.
  • the compounds of the general formula (I) according to the invention surprisingly show a better fungicidal activity than the hydroxyethylazole derivatives known from the prior art.
  • the active compounds according to the invention thus represent an enrichment of the technology.
  • Preferred compounds according to the invention are also addition products of acids and those hydroxyethylazolyloxime derivatives of the formula (1) in which the substituents Ar, R 1 , R2 and X have the meanings which have already been mentioned preferably for these substituents.
  • the acids which can be added preferably include hydrohalic acids, such as, for example, hydrochloric acid and hydrobromic acid, in particular hydrochloric acid, furthermore phosphoric acid, nitric acid, mono- and bifunctional carboxylic acids and hydroxycarboxylic acids, such as, for example, acetic acid, maleic acid, succinic acid, fumaric acid, tartaric acid, Citric acid, salicylic acid, sorbic acid and lactic acid, and also sulfonic acids, such as p-toluenesulfonic acid and 1,5-naphthalenedisulfonic acid.
  • preferred compounds according to the invention are addition products from salts of metals of the II. To IV. Main group and of I. and II. And IV. To VIII. Subgroup and those hydroxyethylazolyl-oxime derivatives of the formula (1) in which the substituents Ar , R 1 , R 2 and X have the meanings which have preferably already been mentioned for these substituents.
  • salts of copper, zinc, manganese, magnesium, tin, iron and nickel are particularly preferred.
  • Anions of these salts are those which are derived from acids which lead to physiologically tolerable addition products.
  • Particularly preferred such acids in this connection are the hydrohalic acids, e.g. hydrochloric acid and hydrobromic acid, nitric acid and sulfuric acid.
  • Formula (11) provides a general definition of the hydroxyethyl azolyl keto derivatives to be used as starting materials for carrying out process (a) according to the invention.
  • Ar, R 1 , R 2 and X preferably have the meanings which have already been mentioned for these substituents in connection with the description of the substances of the formula (I) according to the invention.
  • oxiranes of form (VII) are partially described (see e.g. EP 00 78 549); or they are the subject of a separate patent application that has not yet been published (see German patent application P 32 42 252 of November 15, 1982 [LeA 22 0133); or they can be obtained in a generally known manner by epoxidizing the corresponding ketones in a conventional manner.
  • Formula (III) provides a general definition of the hydroxylamine derivatives to be used as starting materials for carrying out process (a) according to the invention.
  • R 2 preferably represents the meanings which have already been mentioned for these substituents in connection with the description of the substances of the formula (I) according to the invention.
  • the hydroxylamine derivatives of the formula (III) are generally known compounds of organic chemistry.
  • hydroxyethyl azolyl oxime derivatives of the formula (Ia) to be used as starting materials when carrying out process (b) according to the invention are compounds according to the invention.
  • Formula (IV) provides a general definition of the halides to be used as starting materials for carrying out process (b) according to the invention.
  • R 3 is preferably the meanings which have already been in connection with the description of the substances of the formula (I) for R 2 of the invention, other than hydrogen, preferably mentioned.
  • the halides of the formula (IV) are generally known compounds of organic chemistry.
  • Formula (V) provides a general definition of the oxiranes to be used as starting materials when carrying out process (c) according to the invention.
  • Ar, R 1 and R 2 preferably represent the meanings which have already been mentioned for these substituents in connection with the description of the substances of the formula (I) according to the invention.
  • keto-oxime derivatives of the formula (VIII) are obtained by corresponding ketones of the formula (XI), in which Ar and R 1 have the meaning given above, in a customary manner with a nitrosating agent, such as, for example, nitrous acid and its esters, and optionally the resulting keto-oximes of the formula (XII), in which Ar and R 1 have the meaning given above, with halides of the formula (IV) in accordance with the conditions of process (b).
  • Formula (VI) provides a general definition of the azoles to be used as starting materials for carrying out process (c) according to the invention.
  • X preferably represents the meanings which have already been mentioned in the definition of the invention for these substituents.
  • M preferably represents hydrogen, sodium or potassium.
  • the azoles of the formula (VI) are generally known compounds of organic chemistry.
  • Suitable diluents for process (a) according to the invention are preferably alcohols and water, or mixtures of the two.
  • reaction temperatures can be varied within a wide range in process (a). Generally one works between 20 ° C and 120 ° C, preferably between 50 ° C and 100 ° C.
  • the hydroxylamine derivatives of the formula (III) are used in the form of their salts, in particular as hydrochlorides, optionally in the presence of an acid binder, such as sodium acetate.
  • Inert organic solvents are suitable as diluents for the reaction according to the invention in process (b).
  • ethers such as tetrahydrofuran and dioxane
  • aromatic hydrocarbons such as toluene and benzene
  • chlorinated hydrocarbons such as chloroform, methylene chloride or carbon tetrachloride
  • hexamethylphosphoric acid triamide acid amides such as dimethylformamide and sulfoxides such as dimethyl sulfoxide.
  • the reaction according to process (b) according to the invention is optionally carried out in the presence of a strong base.
  • a strong base preferably include alkali metal amides, hydrides, hydroxides and carbonates, such as, for example, sodium amide, carbonate, hydroxide or hydride and potassium amide, carbonate, hydroxide or hydride, and also quaternary ammonium hydroxides and phosphonium hydroxides, such as, for example, tetramethylammonium hydroxide, benzyltrimethylammonium hydroxide or Dibenzyl-dimethyl-ammonium hydroxide and tetraphenylphosphonium hydroxide or methyltriphenylphosphonium hydroxide.
  • reaction temperatures can be varied within a wide range in process (b). Generally one works between 20 ° C and 150 ° C, preferably at room temperature. In individual cases it is advantageous to work at the boiling point of the solvent, for example between 60 ° C and 100 ° C.
  • the reaction according to the invention is carried out in a two-phase system, such as, for example, aqueous sodium hydroxide solution or potassium hydroxide solution / toluene or methylene chloride, with the addition of 0.01 to 1 mol of a phase transfer catalyst, such as ammonium or phosphonium compounds, carried out, the alcoholates being formed in the organic phase or at the interface and being reacted with the halides in the organic phase.
  • a phase transfer catalyst such as ammonium or phosphonium compounds
  • Suitable diluents for process (c) according to the invention are organic solvents which are inert under the reaction conditions. These preferably include alcohols, e.g. Ethanol, methoxyethanoL or propanoL; Ketones, e.g. 2-butanone; Nitrites, e.g. Acetonitrile; Esters, e.g. Ethyl acetate; Ethers such as Dioxane; aromatic hydrocarbons, e.g. Benzene and toluene; or amides, e.g. Dimethylformamide.
  • alcohols e.g. Ethanol, methoxyethanoL or propanoL
  • Ketones e.g. 2-butanone
  • Nitrites e.g. Acetonitrile
  • Esters e.g. Ethyl acetate
  • Ethers such as Dioxane
  • aromatic hydrocarbons e.g. Benzene and tol
  • Suitable bases for the reaction according to the invention according to process (c) are all inorganic and organic bases which can usually be used. These preferably include alkali carbonates, e.g. Sodium and potassium carbonate; Alkali hydroxides, e.g. Sodium hydroxide; Alkali alcoholates, e.g. Sodium and potassium methylate and ethylate; Alkali hydrides, e.g. Sodium hydride; as well as lower tertiary alkylamines, cycloalkylamines and aralkylamines, such as in particular triethylamine.
  • alkali carbonates e.g. Sodium and potassium carbonate
  • Alkali hydroxides e.g. Sodium hydroxide
  • Alkali alcoholates e.g. Sodium and potassium methylate and ethylate
  • Alkali hydrides e.g. Sodium hydride
  • reaction temperatures can be varied within a substantial range when carrying out process (c) according to the invention. In general, temperatures between 0 ° C and 200 ° C, preferably between 60 ° C and 150 ° C.
  • the acid addition salts of the compounds of formula (I) can be easily prepared by conventional salt formation methods, e.g. by dissolving a compound of general formula (I) in an inert solvent and adding the acid, e.g. Hydrochloric acid can be obtained and in a known manner, e.g. by filtration, isolated and, if necessary, cleaned by washing with an inert organic solvent.
  • the metal salt complexes of compounds of the general formula (I) can be obtained in a simple manner by customary processes, for example by dissolving the metal salt in alcohol, for example ethanol and adding it to compounds of the general formula (I).
  • the active compounds according to the invention have a strong microbicidal action and can be used practically to combat unwanted microorganisms.
  • the active ingredients are suitable for use as pesticides.
  • Fungicidal agents in crop protection are used to control Plasmodiophoromycetes, Oomycetes, Chytridiomycetes, Zygomycetes, Ascomycetes, Basidiomycetes and Deuteromycetes.
  • the compounds show a good activity, in particular against Puccinia species and Cochliobolus species in wheat crops, and also against Venturia species, such as e.g. against Venturia inaequalis, the causative agent of apple scab. It should also be mentioned that it has a good effect against mildew and Septoria nodorum on cereals and against Pyricularia oryzae on rice. In the agar plate test, the active compounds according to the invention show a wide range of action.
  • the active ingredients can be converted into the customary formulations, such as solutions, emulsions, wettable powders, suspensions, powders, dusts, foams, pastes, soluble powders, granules, aerosols, suspension emulsion concentrates, seed powders, active ingredient-impregnated natural and synthetic substances, very fine encapsulations in polymeric substances and in coating compositions for seeds, also in formulations with fuel sets, such as smoking cartridges, cans, spirals and the like. as well as ULV cold and warm fog formulations.
  • formulations are prepared in a known manner, for example by mixing the active ingredients with extenders, i.e. liquid solvents, pressurized liquefied gases and / or solid carriers, if appropriate using surface-active agents, i.e. emulsifiers and / or dispersants and / or foam-generating agents . If water is used as an extender, organic solvents can, for example, also be used as auxiliary solvents.
  • extenders i.e. liquid solvents, pressurized liquefied gases and / or solid carriers, if appropriate using surface-active agents, i.e. emulsifiers and / or dispersants and / or foam-generating agents .
  • surface-active agents i.e. emulsifiers and / or dispersants and / or foam-generating agents.
  • organic solvents can, for example, also be used as auxiliary solvents.
  • aromatics such as xylene, toluene, or alkyl naphthalenes
  • chlorinated aromatics or chlorinated aliphatic hydrocarbons such as chlorobenzenes, chlorethylenes or methylene chloride
  • aliphatic hydrocarbons such as cyclohexane or paraffins, for example petroleum fractions
  • alcohols such as butanol or Glycol and its ethers and esters
  • ketones such as acetone.
  • Liquefied gaseous extenders or carriers mean liquids which are gaseous at normal temperature and under normal pressure, for example aerosol propellants, such as halogenated hydrocarbons and butane, propane, nitrogen and carbon dioxide;
  • Solid carrier materials come into question: for example natural rock powders such as kaolins, alumina, talc, chalk, quartz, attapulgite, montmorillonite or diatomaceous earth and synthetic rock powders such as highly disperse silica, aluminum oxide and silicates;
  • Possible solid carriers for granules are: broken and fractionated natural rocks such as calcite, marble, pumice, sepialite, dolomite and synthetic granules made from inorganic and organic flours as well as granules made from organic
  • Adhesives such as carboxymethyl cellulose, natural and synthetic polymers in the form of powders, granules or latices, such as gum arabic, polyvinyl alcohol, polyvinyl acetate, and also natural phospholipids, such as cephalins and lecithins, and synthetic phospholipids can be used in the formulations.
  • Other additives can be mineral and vegetable oils.
  • Dyes such as inorganic pigments, for example iron oxide, titanium oxide, ferrocyan blue and organic dyes such as alizarin, azo and metal phthalocyanine dyes and trace nutrients such as salts of iron, manganese, boron, copper, cobalt, molybdenum and zinc can be used.
  • the formulations generally contain between 0.1 and 95 percent by weight of active compound, preferably between 0.5 and 90%.
  • the active compounds according to the invention can be present in the formulations or in the various use forms in a mixture with other known active compounds, such as fungicides, bactericides, insecticides, acaricides, nematicides, herbicides, bird repellants, growth agents, plant nutrients and agents which improve soil structure.
  • active compounds such as fungicides, bactericides, insecticides, acaricides, nematicides, herbicides, bird repellants, growth agents, plant nutrients and agents which improve soil structure.
  • the active compounds can be used as such, in the form of their formulations or in the use forms prepared therefrom by further dilution, such as ready-to-use solutions, emulsions, suspensions, powders, pastes and granules. They are used in the usual way, e.g. by pouring, dipping, spraying, spraying, atomizing, evaporating, injecting, slurrying, spreading, dusting, scattering, dry pickling, wet pickling, wet pickling, slurry pickling or incrusting.
  • the active compound concentrations in the use forms can be varied within a substantial range. They are generally between 1 and 0.0001% by weight, preferably between 0.5 and 0.001
  • amounts of active ingredient of 0.001 to 50 g per kilogram of seed, preferably 0.01 to 10 g, are generally required.
  • active ingredient concentrations of 0.00001 to 0.1% by weight, preferably 0.0001 to 0.02% by weight, are required at the site of action.
  • Solvent 100 parts by weight of dimethylformamide.
  • Emulsifier 0.25 part by weight of alkylaryl polyglycol ether
  • active compound 1 part by weight of active compound is mixed with the stated amounts of solvent and emulsifier and the concentrate is diluted with water to the desired concentration.
  • the plants are placed in a greenhouse at a temperature of approx. 20 ° C and a relative humidity of approx. 80% in order to promote the development of rust pustules. Evaluation is carried out 10 days after the inoculation.
  • Solvent 100 parts by weight of dimethylformamide emulsifier: 0.25 parts by weight of alkylaryl polyglycol ether
  • active compound 1 part by weight of active compound is mixed with the stated amounts of solvent and emulsifier and the concentrate is diluted with water to the desired concentration.
  • the plants are placed in a greenhouse at a temperature of approx. 20 ° C and a relative humidity of approx. 80%.
  • Evaluation is carried out 7 days after the inoculation.
  • Solvent 4.7 parts by weight of acetone emulsifier: 0.3 part by weight of alkyl aryl polyglycol ether
  • active compound 1 part by weight of active compound is mixed with the stated amounts of solvent and emulsifier and the concentrate is diluted with water to the desired concentration.
  • the plants are then placed in a greenhouse at 20 ° C. and a relative humidity of approx. 70%.
  • Evaluation is carried out 12 days after the inoculation.

Abstract

Die vorliegende Erfindung betrifft neue Hydroxyethylazolyl- oxim-Derivate, mehrere Verfahren zu ihrer Herstellung und ihre Verwendung als Fungizide. Die Verbindungen der allgemeinen Formel <IMAGE> in welcher Ar, R¹, R² und X die in der Beschreibung angegebene Bedeutung besitzen, werden zum Beispiel erhalten, wenn man Hydroxyethylazolyl-keto-Derivate mit Hydroxylamin-Derivaten zur Umsetzung bringt. Daneben gibt es noch andere Herstellungsverfahren. Die Verbindungen besitzen eine gute Wirkung gegen phytopathogene Pilze und sind als Pflanzenschutzmittel geeignet.

Description

  • Die vorliegende Erfindung betrifft neue Hydroxyethylazolyl-oxim-Derivate, mehrere Verfahren zu ihrer Herstellung und ihre Verwendung ats Fungizide.
  • Es ist bereits bekannt geworden, daß bestimmte Hydroxyethylazol-Derivate, wie z.B. das 2-(4-Chlorphenoxy- methyl)-3,3-dimethyl-1-(imidazol-1-yl)-butan-2-ol, gute fungizide Eigenschaften aufweisen (vgl. z.B. DE-OS 30 18 866 [Le A 20 3307). Die Wirkung dieser Verbindungen ist jedoch bei niedrigen Aufwandmengen und Anwendungskonzentrationen nicht immer voll befriedigend.
  • Es wurden neue Hydroxyethylazolyl-oxim-Derivate der allgemeinen Formel (1),
    Figure imgb0001
    in welcher
    • Ar für gegebenenfalls substituiertes Aryl steht,
    • R1 für Wasserstoff oder Alkyl steht,
    • R2 für Wasserstoff, Alkyl, Alkenyl, Alkinyl, gegebenenfalls substituiertes Aralkyl oder gegebenenfalls substituiertes Cycloalkylalkyl steht und
    • X für ein Stickstoffatom oder die CH-Gruppe steht, und deren Säureadditions-Salze und Metallsalz-Komplexe gefunden.
  • Weiterhin wurde gefunden, daß man die Hydroxyethylazolyl-oxim-Derivate der FormeL (I) erhält, wenn man
    • a) Hydroxyethylazolyl-keto-Derivate der Formel (II),
      Figure imgb0002
      in welcher Ar, R1 und X die oben angegebene Bedeutung haben, wobei die Keto-Gruppe auch in ketten- oder ringförmiger Acetal- bzw. Ketal-Struktur vorliegen kann, mit HydroxyLamin-Derivaten der Formel (III),
      Figure imgb0003
      in welcher R2 die oben angegebene Bedeutung hat, in Gegenwart eines Verdünnungsmittels umsetzt, und gegeben-. enfalls noch
    • b) die nach dem Verfahren (a) erhaltenen HydroxyethyLazolyl-oxim-Derivate der Formel (la) (das sind Verbindungen der allgemeinen Formel (I), wobei R2 für Wasserstoff steht),
      Figure imgb0004
      in wetcher Ar, R1 und X die oben angegebene Bedeutung haben, mit HaLogeniden der Formel (IV),
      Figure imgb0005
      in welcher Hal für Chlor, Brom oder Jod steht und R 3 für die Bedeutungen von R2, außer für Wasserstoff, steht, in Gegenwart eines Verdünnungsmittels und gegebenenfalls in Gegenwart einer Base umsetzt; oder
    • c) Oxirane der allgemeinen Formet (V),
      Figure imgb0006
      in welcher Ar, R1 und R3 die oben angegebene Bedeutung haben, mit Azolen der Formel (VI),
      Figure imgb0007
      in welcher X die oben angegebene Bedeutung hat und M für Wasserstoff oder ein Alkalimetall steht, in Gegenwart eines Verdünnungsmittels und gegebenenfalls in Gegenwart einer Base umsetzt.
  • An die so erhaltenen Verbindungen der formel (I) können gegebenenfalls anschließend eine Säure oder ein Metallsalz addiert werden.
  • Die Verbindungen der Formel (I) können in zwei geometrischen Isomeren (syn- und anti-Form) vorliegen; vorwiegend fallen sie als Gemische unterschiedlicher Zusammensetzung beider Formen an.
  • Die erfindungsgemäßen Verbindungen der allgemeinen Formel (I) zeigen überraschenderweise eine bessere fungizide Wirkung als die aus dem Stande der Technik bekannten Hydroxyethylazol-Derivate.
  • Die erfindungsgemäßen Wirkstoffe stellen somit eine Bereicherung der Technik dar.
  • Die erfindungsgemäßen Hydroxyethylazolyl-oxim-Derivate sind durch die Formel (I) allgemein definiert. In dieser formel stehen vorzugsweise :
    • Ar für Naphthyl oder für gegebenenfalls einfach oder mehrfach, gleich oder verschieden substituiertes Phenyl, wobei als Substituenten genannt seien : Halogen, Alkyl mit 1 bis 4 Kohlenstoffatomen, Alkoxy und Alkylthio mit jeweils 1 bis 2 Kohlenstoffatomen, Nitro, Halogenalkyl und Halogenalkoxy sowie Halogenalkylthio mit jeweils 1 bis 2 Kohlenstoffatomen und 1 bis 5 gleichen oder verschiedenen Halogenatomen, wie vorzugsweise Fluor- und Chloratomen, Alkoximinomethyl mit 1 bis 4 Kohtenstoffatomen im Alkylteil, Alkenyloximinomethyl mit 2 bis 4 Kohlenstoffatomen im Alkenylteil, sowie jeweils gegebenenfalls durch Halogen und/oder Alkyl mit 1 bis 2 KohLenstoffatomen substituiertes Phenyl, Phenoxy, Benzyl und Benzyloxy;
    • R für Wasserstoff und geradkettiges oder verzweigtes Alkyl mit 1 bis 4 Kohlenstoffatomen;
    • R2 für Wasserstoff, geradkettiges oder verzweigtes Alkyl mit 1 bis 4 Kohlenstoffatomen, Alkenyl und Alkinyl mit jeweils 2 bis 6 Kohlenstoffatomen, für gegebenenfalls einfach oder mehrfach, gleich oder verschieden substituiertes Phenylalkyl mit 1 bis 2 Kohlenstoffatomen im Alkylteil, wobei als Phenylsubstituenten die bei Ar genannten Phenylsubstituenten infrage kommen, sowie für gegebenenfalls einfach bis dreifach, gleich oder verschieden durch Alkyl mit 1 bis 3 Kohlenstoffatomen substituiertes Cycloalkylmethyl mit 5 oder 6 KohLenstoffatomen im Cycloalkylteil; und
    • X für ein Stickstoffatom oder die CH-Gruppe.
  • Besonders bevorzugt sind diejenigen Verbindungen der formel (I), in denen
    • Ar für Naphthyl oder für gegebenenfalls einfach bis dreifach, gleich oder verschieden substituiertes Phenyl steht, wobei als Substituenten genannt seien : Fluor, Chlor, Methyl Triflormethyl, Trifluormethoxy, Trifluormethylthio, Hydroxyiminomethyl, Methoximinomethyl, Ethoximinomethyt, Allyloximinomethyl sowie jeweils gegebenenfalls durch ChLor und/oder Methyl substituiertes Phenyl, Phenoxy, Benzyl und Benzyloxy;
    • R1 für Wasserstoff oder geradkettiges Alkyl mit 1 bis 4 Kohlenstoffatomen steht;
    • R2 für Wasserstoff, geradkettiges Alkyl mit 1 bis 4 Koh- , lenstoffatomen, Allyl, Sutenyl, Propargyl, für gegebenenfalls einfach bis zweifach, gleich oder verschieden durch Fluor, Chlor, Methyl, Trifluormethyl oder Trifluormethoxy substituiertes Benzyl steht, oder für gegebenenfalls durch Methyl oder Ethyl substituiertes Cyclohexylmethyl steht; und
    • X für ein Stickstoffatom oder die CH-Gruppe steht.
  • Bevorzugte erfindungsgemäße Verbindungen sind auch Additionsprodukte aus Säuren und denjenigen Hydroxyethylazolyl-oxim-Derivaten der Formel (1), in denen die Substituenten Ar, R1, R2 und X die Bedeutungen haben, die bereits vorzugsweise für diese Substituenten genannt wurden.
  • Zu den Säuren, die addiert werden können, gehören vorzugsweise Halogenwasserstoffsäuren, wie z.B. die Chlorwasserstoffsäure und die Bromwasserstoffsäure, insbesondere die Chlorwasserstoffsäure, ferner Phosphorsäure, Salpetersäure, mono- und bifunktionelle Carbonsäuren und Hydroxycarbonsäuren, wie z.B. Essigsäure, Maleinsäure, Bernsteinsäure, fumarsäure, Weinsäure, Zitronensäure, Salizylsäure, Sorbinsäure und Milchsäure, sowie Sulfonsäuren, wie p-Toluolsulfonsäure und 1,5-Naphthalindisulfonsäure. Außerdem bevorzugte erfindungsgemäße Verbindungen sind Additionsprodukte aus Salzen von Metallen der II. bis IV. Haupt- und der I. und II. sowie IV. bis VIII. Nebengruppe und denjenigen Hydroxyethylazolyl-oxim-Derivaten der Formel (1), in denen die Substituenten Ar, R1, R2 und X die Bedeutungen haben, die bereits vorzugsweise für diese Substituenten genannt wurden.
  • Hierbei sind SaLze des Kupfers, Zinks, Mangans, Magnesiums, Zinns, Eisens und des Nickels besonders bevorzugt. Als Anionen dieser Salze kommen solche in Betracht, die sich von solchen Säuren ableiten, die zu physiologisch verträglichen Additionsprodukten führen. Besonders bevorzugte derartige Säuren sind in diesem Zusammenhang die Halogenwasserstoffsäuren,wie z.B. die Chlorwasserstoffsäure und die Bromwasserstoffsäure, Salpetersäure und Schwefelsäure.
  • Im einzelnen seien außer den bei den Herstellungsbeispielen genannten Verbindungen die folgenden Verbindungen der allgemeinen formel (I)
    Figure imgb0008
    genannt (wobei X sowohl für ein Stickstoffatom als auch für die CH-Gruppe steht) :
    Figure imgb0009
    Figure imgb0010
    Figure imgb0011
  • Verwendet man beispielsweise 2-(2,4-Dichlorphenyl)-3,3-dimethoxy-2-hydroxy-1-(1,2,4-triazol-1-yl)-propan und O-Methyl-hydroxylamin-hydrochlorid als Ausgangsstoffe, so kann der Ablauf des erfindungsgemäßen Verfahrens (a) durch das folgende Formelschema wiedergegeben werden :
    Figure imgb0012
  • Verwendet man beispielsweise 2-(2,4-Dichlorphenyl)-2-hydroxy-2-hydroximinomethyl-1-(1,2,4-triazol-1-yl)-ethan und 4-Chlorbenzylchlorid als Ausgangsstoffe, so kann der Ablauf des erfindungsgemäßen Verfahrens (b) durch das folgende formelschema wiedergegeben werden :
    Figure imgb0013
  • Verwendet man beispietzweise 2-(2,4-Dichlorphonyl)-2-(1-methoxyimino-1-butyl)-oxiran und 1,2,4-Triazol als Ausgangsstoffe, so kann der Ablauf des erfindungsgemäßen Verfahrens (c) durch das folgende formelschema wiedergegeben werden :
    Figure imgb0014
  • Die für die Durchführung des erfindungsgemäßen Verfahrens (a) als Ausgangsstoffe zu verwendenden Hydroxyethylazolyl-keto-Derivate sind durch die Formel (11) allgemein definiert. In dieser Formel haben Ar, R1, R 2 und X vorzugsweise die Bedeutungen, die bereits im Zusammenhang mit der Beschreibung der erfindungsgemäßen Stoffe der Formel (I) vorzugsweise für diese Substituenten genannt wurden.
  • Die Hydroxyethylazolyl-keto-Derivate der Formel (II) sind teilweise beschrieben (vgl. z.B. EP 00 78 594); bzw. sind sie Gegenstand einer eigenen Patentanmeldung, die noch nicht veröffentlicht ist (vgl. die deutsche Patentanmeldung P 32 42 252 vom 15.11.1982 [LeA 22 013]); bzw. lassen sie sich nach den dort angegebenen Verfahren erhalten, indem man Oxirane der Formel (VII),
    Figure imgb0015
    in welcher
    • Ar und R1 die oben angegebene Bedeutung haben, wobei die Keto-Gruppe auch in ketten- oder ringförmiger Acetal- bzw. KetaL-Struktur vorliegen kann,
      mit Azolen der formel (VI) entsprechend den Bedingungen des Verfahrens (c) umsetzt.
  • Die Oxirane der FormeL (VII) sind teilweise beschrieben (vgL. z.B. EP 00 78 549); bzw. sind sie Gegenstand einer eigenen Patentanmeldung, die noch nicht veröffentlicht ist (vgL. die deutsche Patentanmeldung P 32 42 252 vom 15.11.1982 [LeA 22 0133); bzw. können sie in allgemein bekannter Art und Weise erhalten werden, indem man die entsprechenden Ketone in üblicher Weise epoxidiert.
  • Die außerdem für die Durchführung des erfindungsgemäßen Verfahrens (a) als Ausgangsstoffe zu verwendenden Hydroxyl-amin-Derivate sind durch die Formel (III) allgemein definiert. In dieser Formel steht R2 vorzugsweise für die Bedeutungen, die bereits im Zusammenhang mit der Beschreibung der erfindungsgemäßen Stoffe der Formel (I) vorzugsweise für diesen Substituenten genannt wurden. Die Hydroxylamin-Derivate der Formel (III) sind allgemein bekannte Verbindungen der organischen Chemie.
  • Die bei der Durchführung des erfindungsgemäßen Verfahrens (b) als Ausgangsstoffe zu verwendenden Hydroxyethylazolyl-oxim-Derivate der Formel (Ia) sind erfindumgsgemäße Verbindungen.
  • Die außerdem für die Durchführung des erfindungsgemäßen Verfahrens (b) als Ausgangsstoffe zu verwendenden Halogenide sind durch die Formel (IV) allgemein definiert. In dieser Formel steht R3 vorzugsweise für die Bedeutungen, die bereits im Zusammenhang mit der Beschreibung der erfindungsgemäßen Stoffe der Formel (I) für R2, außer Wasserstoff, vorzugsweise genannt wurden.
  • Die Halogenide der Formel (IV) sind allgemein bekannte Verbindungen der organischen Chemie.
  • Die bei der Durchführung des erfindungsgemäßen Verfahrens (c) als Ausgangsstoffe zu verwendenden Oxirane sind durch die Formel (V) allgemein definiert. In dieser Formel stehen Ar, R1 und R2 vorzugsweise für die Bedeutungen, die bereits im Zusammenhang mit der Beschreibung der erfindungsgemäßen Stoffe der Formel (I) vorzugsweise für diese Substituenten genannt wurden.
  • Die Oxirane der Formel (V) sind noch nicht bekannt. Sie können jedoch in allgemein bekannter.Art und Weise erhatten werden, indem man die entsprechenden Keto-oxim-Derivate der Formel (VIII)
    Figure imgb0016
    in welcher
    • Ar, R1 und R3 die oben angegebene Bedeutung haben, entweder
      • α) mit Dimethyloxosulfonium-methylid der Formel (IX),
        Figure imgb0017
        in an sich bekannter Weise in Gegenwart eines Verdünnungsmittels, wie beispietsweise Dimethylsulfoxid, bei Te.mpe- raturen zwischen 20°C und 80°C umsetzt (vgl. hierzu die Angaben in J.Am.Chem.Soc. 87, 1363-1364 (1965)) oder
      • β) mit Trimethylsulfonium-methylsulfat der formel (X),
        Figure imgb0018
        in an sich bekannter Weise in Gegenwart eines inerten organischen Lösungsmittels, wie z.B. Acetonitril, und in Gegenwart einer Base, wie z.B. Natriummethylet, bei Temperaturen zwischen 0°C bis 60°C, vorzugsweise bei Raumtemperatur, umsetzt (vgl. auch die Angaben in Heterocycles 8, 397 (1977)).
  • Die Keto-oxim-Derivate der formel (VIII) werden erhalten, indem man entsprechende Ketone der Formel (XI),
    Figure imgb0019
    in welcher Ar und R1 die oben angegebene Bedeutung haben, in üblicher Art und Weise mit einem nitrosierenden Agenz, wie beispielsweise salpetriger Säure und ihrer Ester, umsetzt und gegebenenfalls die entstehenden Keto-oxime der Formel (XII),
    Figure imgb0020
    in welcher Ar und R1 die oben angegebene Bedeutung haben, mit Halogeniden der Formel (IV) entsprechend den Bedingungen des Verfahrens (b) umsetzt.
  • Die außerdem für die Durchführung des erfindungsgemäßen Verfahrens (c) als Ausgangsstoffe zu verwendenden Azole sind durch die Formel (VI) allgemein definiert. In dieser Formel steht X vorzugsweise für die Bedeutungen, die bereits in der Erfindungsdefinition für diesen Substituenten genannt wurden. M steht vorzugsweise für Wasserstoff, Natrium oder Kalium.
  • Die Azole der Formel (VI) sind allgemein bekannte Verbindungen der organischen Chemie.
  • Als Verdünnungsmittel kommen für das erfindungsgemäße Verfahren (a) vorzugsweise Alkohole und Wasser, bzw. Gemische beider infrage.
  • Die Reaktionstemperaturen können beim Verfahren (a) in einem größeren Bereich variiert werden. Im allgemeinen arbeitet man zwischen 20°C und 120°C, vorzugsweise zwischen 50°C und 100°C.
  • Bei der Durchführung des erfindungsgemäßen Verfahrens (a) setzt man auf 1 Mol der Verbindung der Formel (II) vorzugsweise 1 bis 1,5 Mol HydroxyLamin-Derivat der Formel (III) ein. Die Isolierung der Verbindungen der Formel (I) erfolgt nach üblichen Methoden.
  • Nach einer bevorzugten Ausführungsform des Verfahrens (a) werden die Hydroxylamin-Derivate der Formel (III) in Form ihrer Salze, insbesondere als Hydrochloride, gegebenenfalls in Gegenwart eines Säurebindemittels, wie beispielsweise Natriumacetat, eingesetzt.
  • Für die erfindungsgemäße Umsetzung gemäß Verfahren (b) kommen als Verdünnungsmittet inerte organischen Lösungsmittel infrage. Hierzu gehören vorzugsweise Ether, wie Tetrahydrofuran und Dioxan; aromatische Kohlenwasserstoffe, wie Toluol und Benzol; in einzelnen Fällen auch chlorierte Kohlenwasserstoffe, wie Chloroform, Methylenchlorid oder Tetrachlorkohlenstoff; sowie Hexamethylphosphorsäure-triamid, Säureamide, wie Dimethylformamid und Sulfoxide, wie Dimethylsulfoxid.
  • Die erfindungsgemäße Umsetzung gemäß Verfahren (b) wird gegebenenfalls in Gegenwart einer starken Base durchgeführt. Hierzu gehören vorzugsweise Alkalimetallamide, -hydride, -hydroxide und -carbonate, wie beispielsweise Natriumamid, -carbonat, -hydroxid oder -hydrid und Kaliumamid, -carbonat,-hydroxid oder -hydrid, sowie quarternäre Ammoniumhydroxide und Phosphoniumhydroxide, wie beispielsweise Tetramethylammoniumhydroxid, Benzyltrimethylammoniumhydroxid oder Dibenzyl-dimethyl-ammoniumhydroxid und Tetraphenylphosphoniumhydroxid oder Methyltriphenylphosphoniumhydroxid.
  • Die Reaktionstemperaturen können bei dem Verfahren (b) in einem größeren Bereich variiert werden. Im allgemeinen arbeitet man zwischen 20°C und 150°C, vorzugsweise bei Raumtemperatur. In einzelnen Fälten ist es vorteilhaft, bei der Siedetemperatur des Lösungsmittels, beispielsweise zwischen 60°C und 100°C, zu arbeiten.
  • Bei der Durchführung des erfindungsgemäßen Verfahren (b) setzt man auf 1 Mol der Verbindungen der Formel (la) vorzugsweise 1 bis 3 Mol Halogenid der Formel (IV) ein. Zur Isolierung der Endprodukte wird das Reaktionsgemisch vom Lösungsmittel befreit und der Rückstand mit Wasser und einem organischen Lösungsmittel versetzt. Die organische Phase wird abgetrennt, in üblicher Weise aufgearbeitet und gereinigt.
  • In einer bevorzugten Ausführungsform des Verfahrens (b) wird die erfindungsgemäße Umsetzung in einem Zweiphasensystem, wie beispielsweise wässrige Natron- oder Kalilauge/Toluol oder Methylenchlorid, unter Zusatz von 0,01 bis 1 Mol eines Phasen-Transfer-Katalysators, wie beispielsweise Ammonium- oder Phosphoniumverbindungen, durchgeführt, wobei in der organischen Phase oder an der Grenzfläche die Alkoholate entstehen und mit den in der organischen Phase befindlichen Halogeniden umgesetzt werden.
  • Als VerdünnungsmitteL kommen für das erfindungsgemäße Verfahren (c) unter den Reaktionsbedingungen inerte organische Lösungsmittel infrage. Hierzu gehören vorzugsweise Alkohole, wie z.B. Ethanol, MethoxyethanoL oder PropanoL; Ketone, wie z.B. 2-Butanon; Nitrite, wie z.B. Acetonitril; Ester, wie z.B. Essigester; Ether, wie z.B. Dioxan; aromatische Kohlenwasserstoffe, wie z.B. Benzol und Toluol; oder Amide, wie z.B. Dimethylformamid.
  • ALs Basen kommen für die erfindungsgemäße Umsetzung gemäß Verfahren (c) alle üblicherweise verwendbaren anorganischen und organischen Basen in Betracht. Hierzu gehören vorzugsweise Alkalicarbonate, wie z.B. Natrium-und Kaliumcarbonat; Alkalihydroxide, wie z.B. Natriumhydroxid; Alkalialkoholate, wie z.B. Natrium- und Kalium-methylat und -ethylat; Alkalihydride, wie z.B. Natriumhydrid; sowie niedere tertiäre Alkylamine, Cycloalkylamine und Aralkylamine, wie insbesondere Triethylamin.
  • Die Reaktionstemperaturen können bei der Durchführung des erfindungsgemäßen Verfahrens (c) in einem größeren Bereich variiert werden. Im allgemeinen arbeitet man bei Temperaturen zwischen 0°C und 200°C, vorzugsweise zwischen 60°C und 150°C.
  • Bei der Durchführung des erfindungsgemäßen Verfahrens (c) setzt man vorzugsweise auf 1 Mol Oxiran der Formel (V) 1 bis 2 Mol Azol der Formel (VI) und gegebenenfalls 1 bis 2 Mol Base ein; die Isolierung der Endprodukte erfolgt in allgemein üblicher Weise.
  • Zur Herstellung von Säureadditions-Salten der Verbindungen der allgemeinen Formel (I) kommen vorzugsweise diejenigen Säuren infrage, die bereits im Zusammenhang mit der Beschreibung der erfindungsgemäßen Säureadditions-Salze als bevorzugte Säuren genannt wurden.
  • Die Säureadditions-Salze der Verbindungen der Formel (I) können in einfacher Weise nach üblichen Salzbildungsmethoden, z.B. durch Lösen einer Verbindung der allgemeinen Formel (I) in einem inerten Lösungsmittel und Hinzufügen der Säure, z.B. Chlorwasserstoffsäure, erhalten werden und in bekannter Weise, z.B. durch Abfiltrieren, isoliert und gegebenenfalls durch Waschen mit einem inerten organischen Lösungsmittel gereinigt werden.
  • Zur Herstellung von Metallsalz-Komplexen der Verbindungen der allgemeinen Formel (I) kommen vorzugsweise diejenigen Salze von Metallen infrage, die bereits weiter oben beschrieben wurden.
  • Die Metallsalz-Komplexe von Verbindungen der allgemeinen Formel (I) können in einfacher Weise nach üblichen Verfah-5ren erhalten werden, so z.B. durch Lösen des Metallsalzes in Alkohol, z.B. Ethanol und Hinzufügen zu Verbindungen der allgemeinen Formel (I). Man kann Metallsalz-Komplexe in bekannter Weise, z.B. durch Abfiltrieren, isolieren und gegebenenfalls durch Umkristallisation reinigen.
  • Die erfindungsgemäßen Wirkstoffe weisen eine starke mikrobizide Wirkung auf und können zur Bekämpfung von unerwünschten Mikroorganismen praktisch eingesetzt werden. Die Wirkstoffe sind für den Gebrauch als Pflanzenschutzmittel geeignet.
  • Fungizide Mittel im Pflanzenschutz werden eingesetzt zur Bekämpfung von Plasmodiophoromycetes, Oomycetes, Chytridiomycetes, Zygomycetes, Ascomycetes, Basidiomycetes und Deuteromycetes.
  • Die gute Pflanzenverträglichkeit der Wirkstoffe in den zur Bekämpfung von PfLanzenkrankheiten notwendigen Konzentrationen erlaubt eine BehandLung von oberirdischen Pflanzenteilen, von Pflanz- und Saatgut und des Bodens.
  • Die Verbindungen zeigen eine gute Wirkung insbesondere gegen Puccinia-Arten und Cochliobolus-Arten in Weizenkulturen, sowie gegen Venturia-Arten, wie z.B. gegen Venturia inaequalis, den Erreger des Apfelschorfes. Außerdem ist noch zu erwähnen eine gute Wirkung gegen Mehltau und Septoria nodorum an Getreide und gegen Pyricularia oryzae an Reis. Im Agarplattentest zeigen die erfindungsgemäßen Wirkstoffe eine große Wirkungsbreite.
  • Die Wirkstoffe können in die üblichen Formulierungen übergeführt werden, wie Lösungen, Emulsionen, Spritzpulver, Suspensionen, Pulver, Stäubemittel, Schäume, Pasten, lösliche Pulver, Granulate, Aerosole, Suspensions-Emulsionskonzentrate, Saatgutpuder, Wirkstoff-imprägnierte Natur-und synthetische Stoffe, Feinstverkapselungen in polymeren Stoffen und in Hüllmassen für Saatgut, ferner in Formulierungen mit Brennsätzen, wie Räucherpatronen, -dosen, -spiralen u.ä. sowie ULV-Kalt- und Warmnebel-Formulierungen.
  • Diese Formulierungen werden in bekannter Weise hergestellt, z.B. durch Vermischen der Wirkstoffe mit Streckmitteln, also flüssigen Lösungsmitteln, unter Druck stehenden verflüssigten Gasen und/oder festen Trägerstoffen, gegebenenfalls.unter Verwendung von oberflächenaktiven Mitteln, also Emulgiermitteln und /oder Dispergiermitteln und/oder schaumerzeugenden Mitteln. Im Falle der Benutzung von Wasser als Streckmittel können z.B. auch organische Lösungsmittel als Hilfslösungsmittel verwendet werden. Als flüssige Lösungsmittel kommen im wesentlichen infrage: Aromaten, wie Xylol, Toluol, oder Alkyl-naphthaline, chlorierte Aromaten oder chlorierte aliphatische Kohlenwasserstoffe, wie Chlorbenzole, Chlorethylene oder Methylenchlorid, aliphatische Kohlenwasserstoffe, wie Cyclohexan oder Paraffine, z.B. Erdölfraktionen, Alkohole, wie Butanol oder Glycol sowie deren Ether und Ester, Ketone, wie Aceton. Methylethylketon, Methylisobutylketon oder Cyclohexanon, starke polare Lösungsmittel, wie Dimethylformamid und Dimethylsulfoxid, sowie Wasser; mit verflüssigten gasförmigen Streckmitteln oder Trägerstoffen sind solche Flüssigkeiten gemeint, welche bei normaler Temperatur und unter Normaldruck gasförmig sind, z.B. Aerosol-Treibgase, wie Halogenkohlenwasserstoffe sowie Butan, Propan, Stickstoff und Kohlendioxid; als feste Trägerstoffe kommen in Frage: z.B. natürliche Gesteinsmehle, wie Kaoline, Tonerden, Talkum, Kreide, Quarz, Attapulgit, Montmorillonit oder Diatomeenerde Und synthetische Gesteinsmehle, wie hochdisperse Kieselsäure, Aluminiumoxid und Silikate; als feste Trägerstoffe für Granulate kommen in Frage: z.B. gebrochene und fraktionierte natürliche Gesteine wie Calcit, Marmor, Bims, Sepialith, Dolomit sowie synthetische Granulate aus anorganischen und organischen Mehlen sowie Granulate aus organischem Material, wie Sägemehl, Kokosnußschalen, Maiskolben und Tabakstengeln; als Emulgier- und/oder schaumerzeugende Mittel kommen in Frage: z.B. nichtionogene und anionische Emulgatoren, wie Polyoxyethylen-Fettsäureester, Polyoxyethylen-Fettalkohol-ether, z.B. Alkylarylpolyglykol-ether, Alkylsulfonate, Alkylsulfate, Arylsulfonate sowie Eiweißhydrolysate; als Dispergiermittel kommen in Frage: z.B. Lignin-Sulfitablaugen und Methylcellulose.
  • Es können in den Formulierungen Haftmittel wie Carboxymethylcellulose, natürliche und synthetische pulverige, körnige oder latexförmige Polymere verwendet werden, wie Gummiarabicum, Polyvinylalkohol, Polyvinylacetat, sowie natürliche Phospholipide, wie Kephaline und Lecithine, und synthetische Phospholipide. Weitere Additive können mineralische und vegetabile Oele sein.
  • Es können Farbstoffe wie anorganische Pigmente, z.B. Eisenoxid, Titanoxid, Ferrocyanblau und organische Farbstoffe, wie Alizarin-, Azo- und Metallphthalocyaninfarbstoffe und Spurennährstoffe wie Salze von Eisen, Mangan, Bor, Kupfer, Kobalt, Molybdän und Zink verwendet werden. Die Formulierungen enthalten im allgemeinen zwischen 0,1 und 95 Gewichtsprozent Wirkstoff, vorzugsweise zwischen 0,5 und 90 %.
  • Die erfindungsgemäßen Wirkstoffe können in den Formulierungen oder in den verschiedenen Anwendungsformen in Mischung mit anderen bekannten Wirkstoffen vorliegen, wie Fungiziden, Bakteriziden, Insektiziden, Akariziden, Nematiziden, Herbiziden, Schutzstoffen gegen Vogelfraß, Wuchsstoffen, Pflanzennährstoffen und Bodenstrukturverbesserungsmitteln.
  • Die Wirkstoffe können als solche, in Form ihrer Formulierungen oder der daraus durch weiteres Verdünnen bereiteten Anwendungsformen, wie gebrauchsfertige Lösungen, Emulsionen, Suspensionen, Pulver, Pasten und Granulate angewendet werden. Die Anwendung geschieht in üblicher Weise, z.B. durch Gießen, Tauchen, Spritzen, Sprühen, Vernebeln, Verdampfen, Injizieren, Verschlämmen, Verstreichen, Stäuben, Streuen, Trockenbeizen, Feuchtbeizen, Naßbeizen, Schlämmbeizen oder Inkrustieren.
  • Bei der Behandlung von Pflanzenteilen können die Wirkstoffkonzentrationen in den Anwendungsformen in einem größeren Bereich variiert werden. Sie liegen im allgemeinen zwischen 1 und 0,0001 Gew.-%, vorzugsweise zwischen 0,5 und 0,001
  • Bei der Saatgutbehandlung werden im allgemeinen Wirkstoffmengen von 0,001 bis 50 g je Kilogramm Saatgut, vorzugsweise 0,01 bis 10 g, benötigt.
  • Bei Behandlung des Bodens sind Wirkstoffkonzentrationen von 0,00001 bis 0,1 Gew.-%, vorzugsweise von 0,0001 bis 0,02 Gew.-%, am Wirkungsort erforderlich.
  • Verwendungsbeispiele
  • In den nachfolgenden Beispielen werden die nachstehend angegebenen Verbindungen als Vergleichssubstanzen eingesetzt;
    Figure imgb0021
    Figure imgb0022
    Figure imgb0023
    Figure imgb0024
  • Beispiel A: Puccinia-Test (Weizen) / protektiv
  • Lösungsmittel: 100 Gewichtsteile Dimethylformamid Emulgator: 0,25 Gewichtsteile Alhylarylpolyglykolether
  • Zur Herstellung einer zweckmäßigen Wirkstoffzubereitung vermischt man 1 Gewichtsteil Wirkstoff mit den angegebenen Mengen Lösungsmittel und Emulgator und verdünnt das Konzentrat mit Wasser auf die gewünschte Konzentration.
  • Zur Prüfung auf protektive Wirksamkeit werden junge Pflanzen mit einer Sporensuspension von Puccinia recondita in einer 0,1 %igen wäßrigen Agarlösung inokuliert. Nach Antrocknen besprüht man die Pflanzen mit der Wirkstoffzubereitung taufeucht. Die Pflanzen verbleiben 24 Stunden bei 20°C und 100 % rel. Luftfeuchtigkeit in einer Inkubationskabine.
  • Die Pflanzen werden in einem Gewächshaus bei einer Temperatur von ca. 20°C und einer relativen Luftfeuchtigkeit von ca. 80 % aufgestellt, um die Entwicklung von Rostpusteln zu begünstigen. 10 Tage nach der Inokulation erfolgt die Auswertung.
  • Eine deutliche Überlegenheit in der Wirksamkeit gegenüber dem Stand der Technik zeigen bei diesem Test z.B. die Verbindungen gemäß folgender Herstellungsbeispiele:
    • 2, 4 und 6.
    Beispiel B: Cochliobolus sativus-Test (Gerste) / protektiv
  • Lösungsmittel: 100 Gewichtsteile Dimethylformamid Emulgator: 0,25 Gewichtsteile Alkylarylpolyglykolether
  • Zur Herstellung einer zweckmäßigen Wirkstoffzubereitung vermischt man 1 Gewichtsteil Wirkstoff mit den angegebenen Mengen Lösungsmittel und Emulgator und verdünnt das Konzentrat mit Wasser auf die gewünschte Konzentration.
  • Zur Prüfung auf protektive Wirksamkeit besprüht man junge Pflanzen mit der Wirkstoffzubereitung taufeucht. Nach Antrocknen des Spritzbelages werden die Pflanzen mit einer Konidiensuspension von Cochliobolus sativus besprüht. Die Pflanzen verbleiben 48 Stunden bei 20°C und 100 % rel. Luftfeuchtigkeit in einer Inkubationskabine.
  • Die Pflanzen werden in einem Gewächshaus bei einer Temperatur von ca. 20°C und einer relativen Luftfeuchtigkeit von ca. 80 % aufgestellt.
  • 7 Tage nach der Inokulation erfolgt die Auswertung.
  • Eine deutliche Überlegenheit in der Wirksamkeit gegenüber dem Stand der Technik zeigen bei diesem Test z.B. die Verbindungen gemäß folgender Herstellungsbeispiele:
    • 2, 4 und 6.
    Beispiel C: Venturia-Test (Apfel) / protektiv
  • Lösungsmittel: 4,7 Gewichtsteile Aceton Emulgatof: 0,3 Gewichtsteile Alkyl-aryl-polyglykolether
  • Zur Herstellung einer zweckmäßigen Wirkstoffzubereitung vermischt man 1 Gewichtsteil Wirkstoff mit den angegebenen Mengen Lösungsmittel und Emulgator und verdünnt das Konzentrat mit Wasser auf die gewünschte Konzentration.
  • Zur Prüfung auf protektive Wirksamkeit bespritzt man junge Pflanzen mit der Wirkstoffzubereitung bis zur Tropfnässe. Nach Antrocknen des Spritzbelages werden die Pflanzen mit einer wäßrigen Konidiensuspension des Apfelschorferregers (Venturia inaequalis) inokuliert und verbleiben dann 1 Tag bei 20°C und 100 % relativer Luftfeuchtigkeit in einer Inkubationskabine.
  • Die Pflanzen werden dann im Gewächshaus bei 20°C und einer relativen Luftfeuchtigkeit von ca. 70 % aufgestellt.
  • 12 Tage nach der Inokulation erfolgt die Auswertung.
  • Eine deutliche Überlegenheit in der Wirksamkeit gegenüber dem Stand der Technik zeigen in diesem Test z.B. die Verbindungen gemäß folgender Herstellungsbeispiele:
    • 2 und 4
  • Herstellungsbeispiele :
  • Beispiel 1 :
  • Figure imgb0025
  • (Verfahren (a))
  • 10 g (0,038 Mol) 1,1-Dimethoxy-2-hydroxy-2-phenyl-3-(1,2,4-triazol-1-yl)-propan werden mit 50 ml Wasser, 5 mt konzentrierter Salzsäure und 3 g Hydroxylammonium-hydrochlorid 15 Stunden unter Rückfluß erhitzt. Anschließend wird das Reaktionsgemisch mit gesättigter Natriumhydrogencarbonatlösung versetzt. Die wässrige Phase wird mit 100 ml n-Butanol versetzt, die organische Phase wird danach abgetrennt und die wässrige Phase zweimal mit je 50 ml Butanol gewaschen. Die vereinigten Butanolphasen werden mit 50 ml Wasser gewaschen, über Natriumsulfat getrocknet und im Vakuum eingeengt. Der Rückstand wird in 100 ml Methylenchlorid aufgenommen und mit 50 ml mit Chlorwasserstoff gesättigtem Diethylether versetzt. Das Reaktionsgemisch wird eingeengt und der Rückstand aus 100 ml Acetonitril umkristallisiert.
  • Man erhält 4 g (40 X der Theorie) 2-Hydroxy-2-phenyl-2-(1,2,4-triazol-1-yl-methyl)-acetaldoxim-hydrochlorid vom Schmelzpunkt 178°C bis 180°C (Zersetzung). Herstellung des Ausgangsproduktes :
    Figure imgb0026
  • Durch die übliche Umsetzung von rohem 2-Dimethoxymethyt-2-phenyl-oxiran mit 1,2,4-Triazol in Gegenwart von Kaliumhydroxid erhält man 1,1-Dimethoxy-2-hydroxy-2-phenyl-3-(1,2,4-triazol-1-yl)-propan vom Schmelzpunkt 85°C bis 86°C.
    Figure imgb0027
  • Durch übliche Umsetzung von ω-Dimethoxyacetophenon mit Dimethylsulfid/Dimethylsulfat in Gegenwart von Kalium- tert.-butylat erhält man 2-Dimethoxymethyl-2-phenyl- oxiran, das direkt weiter umgesetzt wird.
    Figure imgb0028
  • Durch übliche Umsetzung von Dimethoxy-phenyl-acetaldehyd in Methanol mit konzentrierter Salzsäure erhält man ω -Dimethoxyacetophenon vom Siedepunkt 130°C/8 Torr.
    Figure imgb0029
  • Durch übliche Umsetzung von ω-Dichloracetophenon mit Natriummethylat in Methanol erhält man Dimethoxy-phenyl-acetaldehyd, der direkt weiter umgesetzt wird.
    Figure imgb0030
  • Durch übliche Umsetzung von Acetophenon mit Sulfurylchlorid erhält man ω-Dichloratetophenon vom Siedepunkt 1300C/12 Torr.
  • Beispiel 2 :
  • Figure imgb0031
  • (Verfahren b)
  • 4 g (0,015 Mol) 2-Hydroxy-2-phenyl-2-(1,2,4-triazol-1-yl- methyl)-acetaldoxim-hydrochlorid (Beispiel 1) in 40 ml Toluol werden mit 40 ml wässriger Natriumhydroxidlösung, 1 mt einer 50 %igen wässerigen Lösung von Trimethylbenzyl-ammoniumhydroxid und 2,9 g (0,015 Mol) 2,4-Dichlorbenzylchlorid 10 Stunden bei Raumtemperatur gerührt. Danach wird die Toluolphase abgetrennt, dreimal mit je 100 ml gesättigter Natriumchloridlösung gewaschen, über Natriumsulfat getrocknet und im Vakuum eingeengt. Der Rückstand wird in Diethylether aufgenommen und mit Chlorwasserstoff gesättigtem Diethylether versetzt. Das Reaktionsgemisch wird eingeengt und der Rückstand aus 20 ml Ethanol umkristallisiert.
  • Man erhält 1 g (15,6 X der Theorie) 3-(2,4-Dichlorbenzyl- oximino)-2-hydroxy-2-phenyl-1-(1,2,4-triazol-1-yl)-propan-hydrochlorid vom Schmelzpunkt 148°C bis 153°C.
    Figure imgb0032
    Figure imgb0033

Claims (9)

1. Hydroxyethylazolyl-oxim-Derivate der allgemeinen Formel (I),
Figure imgb0034
in welcher
Ar für gegebenenfalls substituiertes Aryl steht,
R1 für Wasserstoff oder Alkyl steht,
R2 für Wasserstoff, Alkyl, Alkenyl, Alkinyl, gegebenenfalls substituiertes Aralkyl oder gegebenenfalls substituiertes Cycloalkylalkyl steht und
X für ein Stickstoffatom oder die CH-Gruppe steht, und deren Säureadditions-Salze und Metallsalz-Komplexe.
2. Verbindungen der allgemeinen Formel (I) in Anspruch 1, wobei
Ar für Naphthyl oder für gegebenenfalls einfach oder mehrfach, gleich oder verschieden substituiertes Phenyl steht, wobei als Substituenten zu nennen sind:
Halogen, Alkyl mit 1 bis 4 Kohlenstoffatomen, Alkoxy und Alkylthio mit jeweils 1 bis 2 Kohlenstoffatomen, Nitro, Halogenalkyl und Halogenalkoxy sowie Halogenalkylthio mit jeweils 1 bis 2 Kohlenstoffatomen und 1 bis 5 gleichen oder verschiedenen Halogenatomen, Alkoximinomethyl mit 1 bis 4 Kohlenstoffatomen im Alkylteil, Alkenyloximinomethyl mit 2 bis 4 Kohlenstoffatomen im Alkenylteil, sowie jeweils gegebenenfalls durch Halogen und/oder Alkyl mit 1 bis 2 Kohlenstoffatomen substituiertes Phenyl, Phenoxy, Benzyl und Benzyloxy;
R für Wasserstoff und geradkettiges oder verzweigtes Alkyl mit 1 bis 4 Kohlenstoffatomen steht;
R 2 für Wasserstoff, für geradkettiges oder verzweigtes Alkyl mit 1 bis 4 Kohlenstoffatomen,für Alkenyl und Alkinyl mit jeweils 2 bis 6 Kohlenstoffatomen steht, für gegebenenfalls einfach oder mehrfach, gleich oder verschieden substituiertes Phenylalkyl mit 1 bis 2 Kohlenstoffatomen im Alkylteil steht, wobei als Phenylsubstituenten die bei Ar aufgelisteten Phenylsubstituenten zu nennen sind, sowie für gegebenenfalls einfach bis dreifach, gleich oder verschieden durch Alkyl mit 1 bis 3 Kohlenstoffatomen substituiertes Cycloalkylmethyl mit 5 oder 6 Kohlenstoffatomen im Cycloalkylteil steht; und
X für ein Stickstoffatom oder die CH-Gruppe steht.
3. Verbindungen der allgemeinen Formel (I) in Anspruch 1, wobei
Ar für Naphthyl oder für gegebenenfalls einfach bis dreifach, gleich oder verschieden durch Fluor, Chlor, Methyl, Trifluormethyl, Trifluormethoxy, Trifluormethylthio, Hydroxyiminomethyl, Methoximinomethyl, Ethoximinomethyl, Allyloximinomethyl, sowie jeweils durch gegebenenfalls durch Chlor und/oder Methyl substituiertes Phenyl, Phenoxy, Benzyl und Benzyloxy substituiertes Phenyl steht;
R für Wasserstoff oder geradkettiges Alkyl mit 1 bis 4 Kohlenstoffatomen steht;
R 2 für Wasserstoff, geradkettiges Alkyl mit 1 bis 4 Kohlenstoffatomen, Allyl, Butenyl, Propargyl, für gegebenenfalls einfach bis zweifach, gleich oder verschieden durch Fluor, Chlor, Methyl, Trifluormethyl oder Trifluormethoxy substituiertes Benzyl steht, oder für gegebenenfalls durch Methyl oder Ethyl substituiertes Cyclohexylmethyl steht; und
X für ein Stickstoffatom oder die CH-Gruppe steht.
4. Verfahren zur Herstellung von Hydroxyethylazolyl-oxim-Derivaten der allgemeinen Formel (I),
Figure imgb0035
in welcher
Ar für gegebenenfalls substituiertes Aryl steht,
R1 für Wasserstoff oder Alkyl steht,
R2 für Wasserstoff, Alkyl, Alkenyl, Alkinyl, gegebenenfalls substituiertes Aralkyl oder gegebenenfalls substituiertes Cycloalkylalkyl steht und
X für ein Stickstoffatom oder die CH-Gruppe steht, dadurch gekennzeichnet, daß man
a) Hydroxyethylazolyl-keto-Derivate der Formel (II),
Figure imgb0036
in welcher Ar, R1 und X die oben angegebene Bedeutung haben, wobei die Keto-Gruppe auch in ketten- oder ringförmiger Acetal- bzw. Ketal-Struktur vorliegen kann, mit Hydroxylamin-Derivaten der Formel (III)
Figure imgb0037
in welcher R2 die oben angegebene Bedeutung hat, in Gegenwart eines Verdünnungsmittels umsetzt, und gegebenenfalls noch
b) nach Verfahren a) erhaltene Hydroxyethylazolyl-oxim-Derivate der Formel (la),
Figure imgb0038
in welcher Ar, R1 und X die oben angegebene Bedeutung haben, mit Halogeniden der Formel (IV),
Figure imgb0039
in welcher Hal für Chlor, Brom oder Jod steht und R 3 für die Bedeutungen von R2, außer für Wasserstoff, steht, in Gegenwart eines Verdünnungsmittels und gegebenenfalls in Gegenwart einer Base umsetzt; oder
c) Oxirane der allgemeinen Formel (V),
Figure imgb0040
in welcher Ar, R1 und R3 die oben angegebene Bedeutung haben, mit Azolen der Formel (VI),
Figure imgb0041
in welcher X die oben angegebene Bedeutung hat und M für Wasserstoff oder ein Alkalimetall steht,
in Gegenwart eines Verdünnungsmittels und gegebenenfalls in Gegenwart einer Base umsetzt, und gegebenenfalls noch an die so erhaltenen Verbindungen der Formel (I) anschließend eine Säure oder ein Metallsalz addiert.
5) Fungizide Mittel, gekennzeichnet durch einen Gehalt an mindestens einem Hydroxyethylazolyl-oxim-Derivat der Formel (I) in Ansprüchen 1 und 4.
6) Verfahren zur Bekämpfung von Pilzen, dadurch gekennzeichnet, daß man Hydroxyethylazolyl-oxim-Derivate der Formel (I) in Ansprüchen 1 und 4 auf Pilze oder ihren Lebensraum einwirken läßt.
7) Verwendung von Hydroxyethylazolyl-oxim-Derivaten der Formel (I) in Ansprüchen 1 und 4 als Pflanzenschutzmittel.
8) Verwendung von Hydroxyethylazolyl-oxim-Derivaten der Formel (I) in Ansprüchen 1 und 4 zur Bekämpfung von Pilzen.
9) Verfahren zur Herstellung von fungiziden Mitteln, dadurch gekennzeichnet, daß man Hydroxyethylazolyl-oxim-Derivate der Formel (I) in Ansprüchen 1 und 4 mit Streckmitteln und/oder oberflächenaktiven Mitteln vermischt.
EP84111054A 1983-09-26 1984-09-17 Hydroxyethylazolyl-oxim-Derivate Expired - Lifetime EP0141205B1 (de)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE3334781 1983-09-26
DE3334781 1983-09-26
DE3407005 1984-02-27
DE19843407005 DE3407005A1 (de) 1983-09-26 1984-02-27 Hydroxyethylazolyl-oxim-derivate

Publications (3)

Publication Number Publication Date
EP0141205A2 true EP0141205A2 (de) 1985-05-15
EP0141205A3 EP0141205A3 (en) 1986-12-10
EP0141205B1 EP0141205B1 (de) 1990-06-06

Family

ID=25814328

Family Applications (1)

Application Number Title Priority Date Filing Date
EP84111054A Expired - Lifetime EP0141205B1 (de) 1983-09-26 1984-09-17 Hydroxyethylazolyl-oxim-Derivate

Country Status (14)

Country Link
US (1) US4622335A (de)
EP (1) EP0141205B1 (de)
AT (1) ATE53386T1 (de)
AU (1) AU560734B2 (de)
BR (1) BR8404805A (de)
CA (1) CA1235418A (de)
DE (2) DE3407005A1 (de)
DK (1) DK458184A (de)
EG (1) EG17130A (de)
ES (1) ES536218A0 (de)
GR (1) GR80457B (de)
HU (1) HU196113B (de)
IL (1) IL73042A (de)
NZ (1) NZ209648A (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0241232A1 (de) * 1986-04-03 1987-10-14 Shionogi Seiyaku Kabushiki Kaisha Isoxazoläthanol-Derivate
EP0575122A2 (de) * 1992-06-17 1993-12-22 Rohm And Haas Company Fungizide (2-Aryl-2-substituiertes) Ethyl-1,2,4-Triazole

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3334779A1 (de) * 1983-09-26 1985-04-11 Bayer Ag, 5090 Leverkusen Hydroxyethyl-azol-derivate
DE3582305D1 (de) * 1984-11-02 1991-05-02 Bayer Ag Optisch aktives 2-(4-chlorphenoxymethyl)-3,3-dimethyl-1-(1,2,4-triazol-1-yl)-2-butanol, ein verfahren zu dessen herstellung und dessen verwendung als antimykotikum.
DE3725396A1 (de) * 1987-07-31 1989-02-09 Bayer Ag Hydroxyethyl-azolyl-oximether
DE3804981A1 (de) * 1988-02-18 1989-08-31 Bayer Ag Substituierte triazole
US5358939A (en) * 1992-06-25 1994-10-25 Rohm And Haas Company Fungicidal 2-aryl-2,2-disubstituted ethyl-1,2,4-triazoles

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3018866A1 (de) * 1980-05-16 1981-11-26 Bayer Ag, 5090 Leverkusen 1-hydroxyethyl-azol-derivate, verfahren zu ihrer herstellung sowie ihre verwendung als pflanzenwachstumsregulatoren und fungizide
EP0065107A2 (de) * 1981-04-28 1982-11-24 Bayer Ag Azolylpropyl-oximino-Derivate, Verfahren zu ihrer Herstellung sowie ihre Verwendung als Fungizide und Pflanzenwachstumsregulatoren
EP0071568A1 (de) * 1981-06-04 1983-02-09 Ciba-Geigy Ag Mandelsäure-Derivate, Verfahren zu ihrer Herstellung und ihre Verwendung zur Bekämpfung von Mikroorganismen
EP0078594A1 (de) * 1981-08-19 1983-05-11 Imperial Chemical Industries Plc Triazolderivate, Verfahren zu ihrer Herstellung, diese enthaltende Zusammensetzungen und Verfahren zur Bekämpfung von Pilzen und Regulierung des Pflanzenwuchses
EP0097496A2 (de) * 1982-06-18 1984-01-04 Smith and Nephew Plastics Limited Verfahren zur Versteifung von Oberstoffen und so hergestellte Produkte

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2335020C3 (de) * 1973-07-10 1981-10-08 Bayer Ag, 5090 Leverkusen 1-(1,2,4-Triazol-1-yl)-2-phenoxy-4,4-dimethyl-pentan-3-on-Derivate, Verfahren zu ihrer Herstellung und ihre Verwendung als Fungizide
PH19709A (en) * 1982-11-23 1986-06-16 Ciba Geigy Ag Microbicidal 1-carbonyl-1-phenoxyphenyl-2-azolylethanol derivatives
GB8301678D0 (en) * 1983-01-21 1983-02-23 Ici Plc Heterocyclic compounds
EP0117578A3 (de) * 1983-02-23 1985-01-30 Shionogi & Co., Ltd. Azol-substituierte Alkoholderivate

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3018866A1 (de) * 1980-05-16 1981-11-26 Bayer Ag, 5090 Leverkusen 1-hydroxyethyl-azol-derivate, verfahren zu ihrer herstellung sowie ihre verwendung als pflanzenwachstumsregulatoren und fungizide
EP0065107A2 (de) * 1981-04-28 1982-11-24 Bayer Ag Azolylpropyl-oximino-Derivate, Verfahren zu ihrer Herstellung sowie ihre Verwendung als Fungizide und Pflanzenwachstumsregulatoren
EP0071568A1 (de) * 1981-06-04 1983-02-09 Ciba-Geigy Ag Mandelsäure-Derivate, Verfahren zu ihrer Herstellung und ihre Verwendung zur Bekämpfung von Mikroorganismen
EP0078594A1 (de) * 1981-08-19 1983-05-11 Imperial Chemical Industries Plc Triazolderivate, Verfahren zu ihrer Herstellung, diese enthaltende Zusammensetzungen und Verfahren zur Bekämpfung von Pilzen und Regulierung des Pflanzenwuchses
EP0097496A2 (de) * 1982-06-18 1984-01-04 Smith and Nephew Plastics Limited Verfahren zur Versteifung von Oberstoffen und so hergestellte Produkte

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0241232A1 (de) * 1986-04-03 1987-10-14 Shionogi Seiyaku Kabushiki Kaisha Isoxazoläthanol-Derivate
EP0575122A2 (de) * 1992-06-17 1993-12-22 Rohm And Haas Company Fungizide (2-Aryl-2-substituiertes) Ethyl-1,2,4-Triazole
EP0575122A3 (en) * 1992-06-17 1994-05-25 Rohm & Haas Fungicidal (2-aryl-2-substituted) ethyl-1,2,4-triazoles
TR26895A (tr) * 1992-06-17 1994-08-22 Rohm & Haas Comp Fungisidal (2-aril-2-ikame-edilmis)etil-1,2,4-triazoller.

Also Published As

Publication number Publication date
DK458184A (da) 1985-03-27
EP0141205B1 (de) 1990-06-06
ATE53386T1 (de) 1990-06-15
ES8505664A1 (es) 1985-06-01
CA1235418A (en) 1988-04-19
IL73042A0 (en) 1984-12-31
DE3482418D1 (de) 1990-07-12
NZ209648A (en) 1987-03-06
AU3340384A (en) 1985-04-04
US4622335A (en) 1986-11-11
HUT35930A (en) 1985-08-28
GR80457B (en) 1985-01-28
EG17130A (en) 1991-06-30
EP0141205A3 (en) 1986-12-10
DE3407005A1 (de) 1985-04-04
HU196113B (en) 1988-10-28
DK458184D0 (da) 1984-09-25
IL73042A (en) 1988-03-31
AU560734B2 (en) 1987-04-16
ES536218A0 (es) 1985-06-01
BR8404805A (pt) 1985-08-13

Similar Documents

Publication Publication Date Title
EP0110048B1 (de) Substituierte 1-Hydroxyethyl-triazolyl-Derivate
EP0077479A2 (de) Phenoxyphenyl-azolylmethyl-ketone und -carbinole, Verfahren zu ihrer Herstellung und ihre Verwendung als Fungizide und als Zwischenprodukte
EP0096786B1 (de) Hydroxyalkinyl-azolyl-Derivate, Verfahren zu ihrer Herstellung sowie ihre Verwendung als Fungizide
EP0131845B1 (de) Verwendung von substituierten Diazolyl-alkyl-carbinolen zur Bekämpfung von Pilzen im Pflanzenschutz
EP0121888B1 (de) 1-Azolyl-3-pyrazolyl-2-propanol-Derivate, Verfahren zu ihrer Herstellung und ihre Verwendung als Fungizide
EP0121171A2 (de) Fungizide Mittel, Verfahren zu ihrer Herstellung und deren Verwendung
EP0076370B1 (de) Substituierte Azolyl-phenoxy-Derivate, Verfahren zu ihrer Herstellung und ihre Verwendung als Fungizide
EP0047405B1 (de) Azolylalkyl-Derivate, Verfahren zu ihrer Herstellung und ihre Verwendung als Fungizide
EP0108995B1 (de) Hydroxyalkinyl-azolyl-Derivate
EP0141205B1 (de) Hydroxyethylazolyl-oxim-Derivate
EP0102578B1 (de) 2-Aryl-2-azolylmethyl-1,3-dioxepine
EP0118069B1 (de) Fungizide Mittel 1,3-Diazolyl-propanole enthaltend
EP0119572B1 (de) Substituierte Phenethyl-triazolyl-Derivate, Verfahren zu ihrer Herstellung sowie ihre Verwendung als Fungizide
EP0141204B1 (de) Hydroxyethyl-azol-Derivate
EP0028346B1 (de) Trisubstituierte Benzyl-oximether, Verfahren zu ihrer Herstellung sowie ihre Verwendung als Fungizide
EP0123218A2 (de) Azolylethyl-benzyl-ether-Derivate, Verfahren zu ihrer Herstellung und ihre Verwendung als Fungizide
EP0182188A2 (de) Triazolylmethylcarbinol-arylacetale
EP0073331B1 (de) 5-Aryloxy-5-azolyl-3,3-dimethyl-1-penten-4-one und -ole, Verfahren zu ihrer Herstellung sowie ihre Verwendung als Fungizide
EP0160930A2 (de) Cyclische Azolylvinylether
EP0129115A2 (de) Azolylmethyl-thienyl-carbinol-Derivate
EP0065204B1 (de) 3-Substituierte 1-Azolyl-3-methyl-1-phenoxy-butan-2-one und -ole, Verfahren zu ihrer Herstellung und ihre Verwendung als Fungizide
EP0090936B1 (de) Substituierte Azolylethyl-oximinoalkyl-ether, Verfahren zu ihrer Herstellung und ihre Verwendung als Fungizide
EP0124012A2 (de) Phenoxytriazolyl-ketone und -carbinole, Verfahren zu ihrer Herstellung und ihre Verwendung als Fungizide
EP0405240A1 (de) Verwendung von substituierten Bis-azolyl-Derivaten zur Bekämpfung von Pilzen im Pflanzenschutz
EP0142654A1 (de) Triazolylmethyl-pyridyloxymethyl-carbinol-Derivate

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19840917

AK Designated contracting states

Designated state(s): AT BE CH DE FR GB IT LI NL SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH DE FR GB IT LI NL SE

17Q First examination report despatched

Effective date: 19880504

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE FR GB IT LI NL SE

REF Corresponds to:

Ref document number: 53386

Country of ref document: AT

Date of ref document: 19900615

Kind code of ref document: T

ITF It: translation for a ep patent filed

Owner name: ING. C. GREGORJ S.P.A.

REF Corresponds to:

Ref document number: 3482418

Country of ref document: DE

Date of ref document: 19900712

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
ET Fr: translation filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19900818

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19900829

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19900830

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19900831

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19900918

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19900924

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19900926

Year of fee payment: 7

ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19900930

Year of fee payment: 7

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19910917

Ref country code: AT

Effective date: 19910917

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19910918

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19910930

Ref country code: CH

Effective date: 19910930

Ref country code: BE

Effective date: 19910930

BERE Be: lapsed

Owner name: BAYER A.G.

Effective date: 19910930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19920401

GBPC Gb: european patent ceased through non-payment of renewal fee
NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19920529

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19920602

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

EUG Se: european patent has lapsed

Ref document number: 84111054.7

Effective date: 19920408