EP0139279A2 - Fluidised bed-counter jet mill - Google Patents

Fluidised bed-counter jet mill Download PDF

Info

Publication number
EP0139279A2
EP0139279A2 EP84112177A EP84112177A EP0139279A2 EP 0139279 A2 EP0139279 A2 EP 0139279A2 EP 84112177 A EP84112177 A EP 84112177A EP 84112177 A EP84112177 A EP 84112177A EP 0139279 A2 EP0139279 A2 EP 0139279A2
Authority
EP
European Patent Office
Prior art keywords
nozzle
jet
bed
axis
plane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP84112177A
Other languages
German (de)
French (fr)
Other versions
EP0139279B1 (en
EP0139279A3 (en
Inventor
Roland Dr.-Ing. Nied
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hosokawa Alpine AG
Original Assignee
Alpine AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alpine AG filed Critical Alpine AG
Priority to AT84112177T priority Critical patent/ATE32837T1/en
Publication of EP0139279A2 publication Critical patent/EP0139279A2/en
Publication of EP0139279A3 publication Critical patent/EP0139279A3/en
Application granted granted Critical
Publication of EP0139279B1 publication Critical patent/EP0139279B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C19/00Other disintegrating devices or methods
    • B02C19/06Jet mills
    • B02C19/068Jet mills of the fluidised-bed type

Definitions

  • the invention relates to a fluidized bed jet mill with the features of the preamble of claim 1.
  • jet mills recreate especially in those cases where high demands are made on the fineness or purity of the ground product or wear and build-up are to be expected and plants with comminution machines with moving grinding tools become more complicated and expensive to acquire and operate as before economically working shredding machines.
  • the fluidized bed jet mill meets these requirements because, due to the high material load that arises, it is 2 to 4 times more efficient than the other known jet mills, e.g. B. the spiral jet mill, and works even with the hardest regrind practically without wear.
  • the bed of material is subjected to a very intensive circulation movement, with which the entire contents of the grinding chamber are detected and the jets are loaded more densely with material.
  • the fact that parts of the material bed remain and solidify - as is observed in the known fluidized bed jet mills and there deteriorates the grinding effect and makes cleaning of the grinding chamber more difficult - is effectively prevented.
  • the optimal grinding effect of the arrangement according to the invention is obtained if the distance of the intersection of the nozzle axes from the plane of the nozzle orifices is selected so that the vectorial, i.e. H. the sum of the pulse currents of all nozzles obtained by geometric addition becomes zero.
  • the impulse flow of a nozzle is to be understood as the product of the jet velocity at the nozzle mouth and the amount of gas passed through in the time unit; it corresponds to the momentum of the gas jet emerging from the nozzle and has the dimension of a force.
  • all the nozzles are of the same design and have the same dimensions. This results in equal distances for all nozzles from the nozzle mouth to the focal point of the jets, the space in which all jets overlap, so that the same grinding conditions are given for each jet.
  • the space requirement of the nozzle arrangement is kept to a minimum, so that it is possible to work with a smaller filling of the grinding chamber than before, which leads to a further improvement in the use of energy.
  • the jet mill shown in section in FIG. 1 has a grinding chamber 1 free of internals, which is designed in its lower region as a cone 2 and is closed at the top by the classifier 3 with classifying wheel 4.
  • the floor nozzle 5 opens into the grinding chamber 1 with a gas jet emerging vertically upwards and three further jet nozzles 6, the mouths of which are evenly distributed on a circle 8 coaxial with the axis 7 of the floor nozzle 5 in a plane 9 running perpendicular to the axis 7, and their axes 10 intersect at point 11 on axis 7 below level 9 (Fig. 2).
  • Bottom nozzle 5 and jet nozzles 6 are of identical design and have the same dimensions, so that the distance between the nozzle mouth and point 11 becomes the same for all nozzles 5 and 6.
  • the distance of the point 11 from the plane 9 is chosen so that the vectorial sum of the pulse currents of the nozzles 5 and 6 becomes arithmetically zero, i. H. here it is a quarter of the distance of the mouth of the floor nozzle 5 from the level 9, since all the nozzles 5 and 6 are fed from the common supply line 12 and thus the jet speed at the nozzle mouth and here the amount of gas passed through in the time unit. for all nozzles 5 and 6 are the same.
  • the material 13 to be shredded is conveyed into the grinding chamber 1 with the aid of the metering screw 14 adjustable in speed and forms here a material bed 15 of such height that material and gas (from the nozzles 5 and 6) at a low speed as a fountain 16 upwards Classification wheel 4 can be transported.
  • the classifier fine leaves the jet mill via the outlet line 17 and is from here to a (not shown) dust separator, for. B. cyclone and / or filter performed.
  • the classifier coarse material circles along the wall of the grinding chamber 1 back into the material bed 15.
  • the fineness of the finished product is set via the speed of the classifying wheel 4, which is driven by the motor 18 via a belt drive 19 with a continuously adjustable transmission ratio.

Landscapes

  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Disintegrating Or Milling (AREA)
  • Combined Means For Separation Of Solids (AREA)
  • Crushing And Grinding (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

The apparatus disclosed relates to a fluidized bed jet mill having a grinding chamber which is free of fixtures which is provided in its bottom region with a nozzle with a gas jet emerging vertically upward. The jet mill is configured such that when the grinding chamber is filled with the material to be reduced in size, material and gas emerge from the bed of material as a column of little speed. The column serves as a feeder for a classifier provided above the surface of the material bed and driven independently from the impulse of the jet emerging from the bottom nozzle. For improving the efficiency of energy utilization in grinding, a plurality of additional nozzles are provided. The additional nozzles discharge below the surface of the bed of material and into the grinding chamber. The orifices of the additional nozzles are uniformly distributed in a plane running perpendicular to the axis of the bottom nozzle. The additional nozzles are distributed about the circumference of a circle within the plane and coaxial with the axis of the bottom nozzle. The axes of the additional nozzles all intersect at a point on the axis of the bottom nozzle below the plane of the nozzle orifices.

Description

Die Erfindung bezieht sich auf eine Fließbettstrahlmühle mit den Merkmalen des Oberbegriffs von Anspruch 1.The invention relates to a fluidized bed jet mill with the features of the preamble of claim 1.

Strahlmühlen stellen trotz ihres hohen spezifischen Energieverbrauchs vor allem in den Bedarfsfällen, bei denen hohe Anforderungen an die Feinheit oder Reinheit des Mahlprodukts bestehen oder Verschleiß und Ansatzbildung zu erwarten sind und dadurch Anlagen mit Zerkleinerungsmaschinen mit bewegten Mahlwerkzeugen komplizierter und teuerer in Anschaffung und Betrieb werden, nach wie vor wirtschaftlich arbeitende Zerkleinerungsmaschinen dar.Despite their high specific energy consumption, jet mills recreate especially in those cases where high demands are made on the fineness or purity of the ground product or wear and build-up are to be expected and plants with comminution machines with moving grinding tools become more complicated and expensive to acquire and operate as before economically working shredding machines.

Insbesondere die Fließbettstrahlmühle wird diesen Anforderungen gerecht, da sie infolge der sich einstellenden hohen Gutbeladung einen um den Faktor 2 bis 4 besseren Wirkungsgrad als die anderen bekannten Strahlmühlen, z. B. die Spiralstrahlmühle, aufweist und auch bei härtestem Mahlgut praktisch ohne Verschleiß arbeitet.In particular, the fluidized bed jet mill meets these requirements because, due to the high material load that arises, it is 2 to 4 times more efficient than the other known jet mills, e.g. B. the spiral jet mill, and works even with the hardest regrind practically without wear.

Wegen der steigenden Energiekosten ist es jedoch unerläßlich, nach Maßnahmen zu suchen, mit denen der spezifische Energieverbrauch des Mahlvorgangs gesenkt, d. h. der Wirkungsgrad verbessert werden kann. Diese Aufgabe in Verbindung mit der bekannten Fließbettstrahlmühle liegt der vorliegenden Erfindung zugrunde.However, because of the rising energy costs, it is imperative to look for measures to reduce the specific energy consumption of the grinding process, i.e. H. the efficiency can be improved. This object in connection with the known fluid bed jet mill is the basis of the present invention.

Die Lösung dieser Aufgabe besteht darin, daß eine bestimmte Anzahl, z. B. 3, 4 oder 5, weiterer Strahldüsen angeordnet werden, die unterhalb der Oberfläche des in der Mahlkammer der Fließbettstrahlmühle befindlichen Gutbettes in dieses münden. Die Düsenmündungen liegen dabei gleichmäßig verteilt auf einem zur Achse der Bodendüse koaxialen Kreis in einer senkrecht zu dieser Achse verlaufenden Ebene, und die Achsen dieser Düsen schneiden sich in einem Punkt auf der Achse der Bodendüse unterhalb der Ebene der Düsenmündungen.The solution to this problem is that a certain number, for. B. 3, 4 or 5, further jet nozzles can be arranged, which open below the surface of the material bed located in the grinding chamber of the fluidized bed jet mill in this. The nozzle orifices are evenly distributed on a circle coaxial with the axis of the floor nozzle in a plane perpendicular to this axis, and the axes these nozzles intersect at a point on the axis of the floor nozzle below the plane of the nozzle orifices.

Mit dieser Anordnung wird das Gutbett einer sehr intensiven Umwälzbewegung unterzogen, mit der der gesamte Mahlkammerinhalt erfaßt wird und die Strahlen dichter mit Gut beladen werden. Dies bedeutet eine bessere Energieausnutzung mit entsprechend verbessertem Wirkungsgrad der Mahlung. Außerdem wird ein Liegenbleiben und Verfestigen von Teilen des Gutbettes - wie es bei den bekannten Fließbettstrahlmühlen beobachtet wird und dort die Mahlwirkung verschlechtert und die Reinigung der Mahlkammer erschwert - wirkungsvoll verhindert.With this arrangement, the bed of material is subjected to a very intensive circulation movement, with which the entire contents of the grinding chamber are detected and the jets are loaded more densely with material. This means better energy utilization with a correspondingly improved grinding efficiency. In addition, the fact that parts of the material bed remain and solidify - as is observed in the known fluidized bed jet mills and there deteriorates the grinding effect and makes cleaning of the grinding chamber more difficult - is effectively prevented.

Weiterhin wurde gefunden, daß der optimale Mahleffekt der erfindungsgemäßen Anordnung dann erhalten wird, wenn der Abstand des Schnittpunkts der Düsenachsen von der Ebene der Düsenmündungen so gewählt wird, daß rechnerisch die vektorielle, d. h. die durch geometrische Addition erhaltene Summe der Impulsströme sämtlicher Düsen zu Null wird. Als Impulsstrom einer Düse ist dabei das Produkt aus Strahlgeschwindigkeit an der Düsenmündung und hier in der Zeiteinheit durchgesetzter Gasmenge zu verstehen; er entspricht dem auf die Zeiteinheit bezogenen Impuls des aus der Düse austretenden Gasstrahls und hat die Dimension einer Kraft.Furthermore, it was found that the optimal grinding effect of the arrangement according to the invention is obtained if the distance of the intersection of the nozzle axes from the plane of the nozzle orifices is selected so that the vectorial, i.e. H. the sum of the pulse currents of all nozzles obtained by geometric addition becomes zero. The impulse flow of a nozzle is to be understood as the product of the jet velocity at the nozzle mouth and the amount of gas passed through in the time unit; it corresponds to the momentum of the gas jet emerging from the nozzle and has the dimension of a force.

Vorteilhaft ist es auch, wenn sämtliche Düsen gleich ausgebildet werden und gleiche Abmessungen aufweisen. Damit ergeben sich für alle Düsen gleiche Strecken von der Düsenmündung bis zum Brennpunkt der Strahlen, dem Raum, in dem sämtliche Strahlen einander überschneiden, so daß für jeden Strahl gleichartige Mahlbedingungen gegeben sind. Der Raumbedarf der Düsenanordnung wird hierbei zu einem Minimum, so daß mit kleinerer Mahlkammerfüllung als bisher gearbeitet werden kann, was eine weitere Verbesserung der Energieausnutzung mit sich bringt.It is also advantageous if all the nozzles are of the same design and have the same dimensions. This results in equal distances for all nozzles from the nozzle mouth to the focal point of the jets, the space in which all jets overlap, so that the same grinding conditions are given for each jet. The space requirement of the nozzle arrangement is kept to a minimum, so that it is possible to work with a smaller filling of the grinding chamber than before, which leads to a further improvement in the use of energy.

Ein Ausführungsbeispiel der Erfindung ist in der Zeichnung dargestellt. Die in Fig. 1 im Schnitt wiedergegebene Strahlmühle besitzt eine von Einbauten freie Mahlkammer 1, die in ihrem unteren Bereich als Konus 2 ausgebildet ist und nach oben hin durch den Sichter 3 mit Sichtrad 4 abgeschlossen ist. In die Mahlkammer 1 münden die Bodendüse 5 mit senkrecht nach oben austretendem Gasstrahl und drei weitere Strahldüsen 6, deren Mündungen auf einem zur Achse 7 der Bodendüse 5 koaxialen Kreis 8 in einer senkrecht zur Achse 7 verlaufenden Ebene 9 gleichmäßig verteilt liegen, und deren Achsen 10 sich im Punkt 11 auf der Achse 7 unterhalb der Ebene 9 schneiden (Fig. 2). Bodendüse 5 und Strahldüsen 6 sind gleich ausgebildet und besitzen gleiche Abmessungen, so daß der Abstand zwischen Düsenmündung und Punkt 11 für alle Düsen 5 und 6 gleich groß wird. Der Abstand des Punktes 11 von der Ebene 9 ist so gewählt, daß rechnerisch die vektorielle Summe der Impulsströme der Düsen 5 und 6 zu Null wird, d. h. er beträgt hier ein Viertel des Abstands der Mündung der Bodendüse 5 von der Ebene 9, da alle Düsen 5 und 6 aus der gemeinsamen Versorgungsleitung 12 gespeist werden und somit Strahlgeschwindigkeit an der Düsenmündung und hier in der Zeiteinheit durchgesetzte Gasmenge.für alle Düsen 5 und 6. gleich sind.An embodiment of the invention is shown in the drawing. The jet mill shown in section in FIG. 1 has a grinding chamber 1 free of internals, which is designed in its lower region as a cone 2 and is closed at the top by the classifier 3 with classifying wheel 4. The floor nozzle 5 opens into the grinding chamber 1 with a gas jet emerging vertically upwards and three further jet nozzles 6, the mouths of which are evenly distributed on a circle 8 coaxial with the axis 7 of the floor nozzle 5 in a plane 9 running perpendicular to the axis 7, and their axes 10 intersect at point 11 on axis 7 below level 9 (Fig. 2). Bottom nozzle 5 and jet nozzles 6 are of identical design and have the same dimensions, so that the distance between the nozzle mouth and point 11 becomes the same for all nozzles 5 and 6. The distance of the point 11 from the plane 9 is chosen so that the vectorial sum of the pulse currents of the nozzles 5 and 6 becomes arithmetically zero, i. H. here it is a quarter of the distance of the mouth of the floor nozzle 5 from the level 9, since all the nozzles 5 and 6 are fed from the common supply line 12 and thus the jet speed at the nozzle mouth and here the amount of gas passed through in the time unit. for all nozzles 5 and 6 are the same.

Das zu zerkleinernde Gut 13 wird mit Hilfe der in der Drehzahl einstellbaren Dosierschnecke 14 in die Mahlkammer 1 gefördert und bildet hier ein Gutbett 15 solcher Höhe, daß Gut und Gas (von den Düsen 5 und 6) mit geringer Geschwindigkeit als Fontäne 16 nach oben zum Sichtrad 4 transportiert werden. Das Sichterfeingut verläßt die Strahlmühle über die Austrittsleitung 17 und wird von hier zu einem (nicht gezeichneten) Staubabscheider, z. B. Zyklon und/oder Filter, geführt. Das Sichtergrobgut kreist entlang der Wand der Mahlkammer 1 zurück in das Gutbett 15. Die Feinheit des Fertiggutes wird über die Drehzahl des Sichtrades 4 eingestellt, das vom Motor 18 über einen Riementrieb 19 mit stufenlos einstellbarem Übersetzungsverhältnis angetrieben wird.The material 13 to be shredded is conveyed into the grinding chamber 1 with the aid of the metering screw 14 adjustable in speed and forms here a material bed 15 of such height that material and gas (from the nozzles 5 and 6) at a low speed as a fountain 16 upwards Classification wheel 4 can be transported. The classifier fine leaves the jet mill via the outlet line 17 and is from here to a (not shown) dust separator, for. B. cyclone and / or filter performed. The classifier coarse material circles along the wall of the grinding chamber 1 back into the material bed 15. The fineness of the finished product is set via the speed of the classifying wheel 4, which is driven by the motor 18 via a belt drive 19 with a continuously adjustable transmission ratio.

Claims (3)

1. Fließbettstrahlmühle mit einer von Einbauten freien Mahlkammer, in deren Bodenbereich eine Düse mit senkrecht nach oben austretendem Gasstrahl angeordnet ist und die bis zu einer solchen Höhe vollständig mit dem zu zerkleinernden Gut gefüllt ist, daß Gut und Gas als Fontäne geringer Geschwindigkeit aus dem Gutbett austreten, wobei diese Fontäne zur Speisung eines oberhalb der Oberfläche des Gutbettes vorgesehenen, unabhängig vom Impuls des aus der Bodendüse austretenden Strahls betriebenen Sichters dient, dadurch gekennzeichnet, daß eine bestimmte Anzahl weiterer, unterhalb der Oberfläche des Gutbettes (15) in der Mahlkammer (1) in diese mündender Strahldüsen (6) angeordnet ist, deren Mündungen in einer senkrecht zur Achse (7) der Bodendüse (5) verlaufenden Ebene (9) auf einem zur Achse der Bodendüse koaxialen Kreis (8) gleichmäßig verteilt liegen, und deren Achsen (10) sich in einem Punkt (11) auf der Achse der Bodendüse unterhalb der Ebene (9) der Düsenmündungen schneiden.1. Fluidized bed jet mill with a grinding chamber free of internals, in the bottom area of which a nozzle with a vertically upward emerging gas jet is arranged and which is completely filled to such a height with the material to be comminuted that material and gas from the material bed as a low-speed fountain emerge, this fountain serving to feed a sifter provided above the surface of the material bed and operated independently of the impulse of the jet emerging from the floor nozzle, characterized in that a certain number of further ones, below the surface of the material bed (15) in the grinding chamber (1 ) is arranged in these opening jet nozzles (6), the openings of which are evenly distributed in a plane (9) running perpendicular to the axis (7) of the floor nozzle (5) on a circle (8) coaxial with the axis of the floor nozzle, and whose axes ( 10) intersect at a point (11) on the axis of the floor nozzle below the plane (9) of the nozzle orifices. 2. Fließbettstrahlmühle nach Anspruch 1, dadurch gekennzeichnet, daß der Schnittpunkt (11) der Düsenachsen (7, 10) von der Mündungsebene (9) den Abstand hat, für den rechnerisch die vektorielle Summe der Impulsströme sämtlicher Düsen (5, 6) zu Null wird, wobei unter dem Impulsstrom einer Düse das Produkt aus Strahlgeschwindigkeit an der Düsenmündung und hier in der Zeiteinheit durchgesetzter Gasmenge zu verstehen ist.2. Fluid bed jet mill according to claim 1, characterized in that the intersection (11) of the nozzle axes (7, 10) from the mouth plane (9) has the distance for which the vectorial sum of the pulse currents of all the nozzles (5, 6) is zero , the pulse current of a nozzle being understood to mean the product of the jet velocity at the nozzle mouth and here the amount of gas passed through in the time unit. 3. Fließbettstrahlmühle nach Anspruch 2, dadurch gekennzeichnet, daß sämtliche Düsen (5, 6) gleich ausgebildet sind und gleiche Abmessungen aufweisen.3. Fluid bed jet mill according to claim 2, characterized in that all the nozzles (5, 6) are of identical design and have the same dimensions.
EP84112177A 1983-10-20 1984-10-11 Fluidised bed-counter jet mill Expired EP0139279B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT84112177T ATE32837T1 (en) 1983-10-20 1984-10-11 FLUID BED COUNTERFLOW MILL.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3338138 1983-10-20
DE3338138A DE3338138C2 (en) 1983-10-20 1983-10-20 Fluidized bed opposed jet mill

Publications (3)

Publication Number Publication Date
EP0139279A2 true EP0139279A2 (en) 1985-05-02
EP0139279A3 EP0139279A3 (en) 1985-10-02
EP0139279B1 EP0139279B1 (en) 1988-03-09

Family

ID=6212326

Family Applications (1)

Application Number Title Priority Date Filing Date
EP84112177A Expired EP0139279B1 (en) 1983-10-20 1984-10-11 Fluidised bed-counter jet mill

Country Status (5)

Country Link
US (1) US4602743A (en)
EP (1) EP0139279B1 (en)
JP (1) JPS60168547A (en)
AT (1) ATE32837T1 (en)
DE (1) DE3338138C2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0362525A2 (en) * 1988-10-05 1990-04-11 Messer Griesheim Gmbh Cold-grinding method and apparatus
EP0377170A2 (en) * 1988-12-31 1990-07-11 Hoechst Aktiengesellschaft Method for the manufacture of fine-grained polyester ketone powder and its use
EP0488637A2 (en) * 1990-11-27 1992-06-03 Xerox Corporation A fluidized bed jet mill
US5247052A (en) * 1988-12-31 1993-09-21 Hoechst Aktiengesellschaft Fine-grained polyether-ketone powder, process for the manufacture thereof, and the use thereof
WO2008046727A2 (en) * 2006-10-16 2008-04-24 Evonik Degussa Gmbh Amorphous submicron particles
DE102010052028A1 (en) 2010-11-23 2012-05-24 Sasol Wax Gmbh Process for milling waxes using grinding aids in a jet mill, use of polyols as grinding aids and wax powders containing polyols
WO2014080035A1 (en) * 2012-11-26 2014-05-30 Klafs Gmbh & Co. Kg Micronizer
DE102020006008B3 (en) 2020-10-01 2022-03-31 Hosokawa Alpine Aktiengesellschaft Fluidized bed opposed jet mill for the production of finest particles from feed material of low bulk density and method therefor
US11339021B2 (en) 2018-12-11 2022-05-24 Hosokawa Alpine Aktiengesellschaft Device for winding and changing the reels of web material as well as a dedicated process
US11654605B2 (en) 2018-10-13 2023-05-23 Hosokawa Alpine Aktiengesellschaft Die head and process to manufacture multilayer tubular film

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4765545A (en) * 1985-03-21 1988-08-23 Ricegrowers' Co-Operative Mills, Ltd. Rice hull ash filter
DE3510610C2 (en) * 1985-03-23 1987-02-19 Alpine Ag, 8900 Augsburg Method for producing a spherical grain shape in toners for electrophotography
DE3519309C1 (en) * 1985-05-30 1986-12-18 Alpine Ag, 8900 Augsburg Process for the continuous production of granules from a solid in a fluidized material bed
JPH07712B2 (en) * 1985-10-11 1995-01-11 三井東圧化学株式会社 Inorganic filler-containing polyolefin resin composition
DE3617489A1 (en) * 1986-05-24 1987-11-26 Bayer Ag SINTERABLE SI (DOWN ARROW) 3 (DOWN ARROW) N (DOWN ARROW) 4 (DOWN ARROW) POWDER AND ITS PRODUCTION METHOD
US4905918A (en) * 1988-05-27 1990-03-06 Ergon, Inc. Particle pulverizer apparatus
DE3825469A1 (en) * 1988-07-27 1990-02-01 Basf Ag METHOD FOR DISPERSION, CRUSHING OR DESAGGLOMERATION AND SIGHTING OF SOLIDS
JP2754680B2 (en) * 1989-03-17 1998-05-20 大同特殊鋼株式会社 Processing method of metal powder
US4986479A (en) * 1989-08-14 1991-01-22 Ingersoll-Rand Company Fluid jet shredder apparatus and method of use
US5542613A (en) * 1992-12-10 1996-08-06 Nied; Roland Process for impact crushing of solid particles
DE4431534B4 (en) * 1994-02-10 2006-12-28 Nied, Roland, Dr. Ing. Machine for acting on comminuted and classifiable raw material, as well as method for operating the machine
DE4419222C2 (en) * 1994-06-01 2002-05-29 Hosokawa Alpine Ag & Co Fluidized bed jet mill
DE19513034A1 (en) * 1995-04-06 1996-10-10 Nied Roland Fluid bed jet milling device
DE19608242A1 (en) * 1996-03-04 1997-09-11 Bayer Ag Sampling procedure for particle-laden guest flows
DE19641129A1 (en) * 1996-10-05 1998-04-09 Nied Roland Method of decomposing solid matter particles in fluidised bed
DE19728382C2 (en) * 1997-07-03 2003-03-13 Hosokawa Alpine Ag & Co Method and device for fluid bed jet grinding
AT407525B (en) * 1999-07-09 2001-04-25 Holderbank Financ Glarus METHOD FOR CRUSHING PIECES OR GRANULES AND DEVICE FOR CARRYING OUT THIS METHOD
FR2811915A1 (en) * 2000-07-21 2002-01-25 Recyclage Et Technologie Recycling procedure for large tyres uses high-pressure water jets to cut off tyre walls before removing tread
DE10033628A1 (en) 2000-07-11 2002-01-24 Hosokawa Alpine Ag & Co Fluid-bed opposed jet mill
DE10045160C2 (en) * 2000-08-14 2002-07-18 Ulf Noll Gmbh Multifunctional device for grinding, sifting, mixing and / or deagglomeration
US7032849B2 (en) * 2003-01-23 2006-04-25 Ricoh Company, Ltd. Fluidized bed pulverizing and classifying apparatus, and method of pulverizing and classifying solids
US7445806B2 (en) * 2004-09-02 2008-11-04 Kraft Foods Global Brands Llc Process for selective grinding and recovery of dual-density foods
US7449275B2 (en) 2004-09-21 2008-11-11 Kao Corporation Process for preparing toner
US7560218B2 (en) * 2004-10-01 2009-07-14 Kao Corporation Process for preparing toner
JP4491328B2 (en) 2004-10-29 2010-06-30 花王株式会社 Toner production method
DE102005039118A1 (en) 2005-08-18 2007-02-22 Wacker Chemie Ag Method and device for comminuting silicon
US8067051B2 (en) * 2006-06-19 2011-11-29 Kraft Foods R & D, Inc. Process for milling cocoa shells
US20150239048A1 (en) * 2012-09-12 2015-08-27 Xiamen Tungsten Co., Ltd. Manufacturing method of rare earth magnet alloy powder, rare earth magnet and a powder making device
CN103721818B (en) * 2012-10-11 2015-12-02 中磁科技股份有限公司 A kind of method reducing fluidisation air-flow mill grinding room temperature
CN105195281B (en) * 2015-09-11 2017-08-25 哈尔滨工业大学 A kind of dregs breaking device for slag gasification furnace bottom
CN106076563B (en) * 2016-08-16 2018-12-04 浙江国正安全技术有限公司 Fluidized bed air flow crusher campaigning device
CN107051682A (en) * 2017-02-10 2017-08-18 广州中卓智能装备有限公司 The grinding system of innovation type fluidized bed airflow grinding machine
CN106824452A (en) * 2017-02-10 2017-06-13 广州中卓智能装备有限公司 Fluidized bed airflow grinding machine intelligence change system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2103454A (en) * 1933-09-18 1937-12-28 Hephaest A G Fur Motorische Kr Impact-crusher for comminuting hard materials
FR967396A (en) * 1947-06-05 1950-11-02 Crusher device
US2672296A (en) * 1949-01-04 1954-03-16 Blaw Knox Co Fluid impact pulverizer
DE921970C (en) * 1952-02-21 1955-01-07 Basf Ag Grinding device
DE3140294A1 (en) * 1981-10-10 1983-04-28 Alpine Ag, 8900 Augsburg Method and device for separating a mixture of materials into components having differing degrees of grindability

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1948609A (en) * 1932-01-18 1934-02-27 American Pulverizing Corp Method of pulverizing minerals and similar materials
US2413420A (en) * 1940-02-26 1946-12-31 Thermo Plastics Corp Method and apparatus for dispersing or drying fluent material in high velocity elastic fluid jets
US2832545A (en) * 1955-03-03 1958-04-29 Exxon Research Engineering Co Supersonic jet grinding means and method
US3186648A (en) * 1963-05-27 1965-06-01 Grace W R & Co Fluid energy mill
DE2040519C2 (en) * 1970-08-14 1984-04-12 Alpine Ag, 8900 Augsburg Fluidized bed jet mill
US4424199A (en) * 1981-12-11 1984-01-03 Union Carbide Corporation Fluid jet seed particle generator for silane pyrolysis reactor
US4553704A (en) * 1984-02-21 1985-11-19 James Howden & Company Limited Pulverizing apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2103454A (en) * 1933-09-18 1937-12-28 Hephaest A G Fur Motorische Kr Impact-crusher for comminuting hard materials
FR967396A (en) * 1947-06-05 1950-11-02 Crusher device
US2672296A (en) * 1949-01-04 1954-03-16 Blaw Knox Co Fluid impact pulverizer
DE921970C (en) * 1952-02-21 1955-01-07 Basf Ag Grinding device
DE3140294A1 (en) * 1981-10-10 1983-04-28 Alpine Ag, 8900 Augsburg Method and device for separating a mixture of materials into components having differing degrees of grindability

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0362525A2 (en) * 1988-10-05 1990-04-11 Messer Griesheim Gmbh Cold-grinding method and apparatus
EP0362525A3 (en) * 1988-10-05 1991-01-16 Messer Griesheim Gmbh Cold-grinding method and apparatus
EP0377170A2 (en) * 1988-12-31 1990-07-11 Hoechst Aktiengesellschaft Method for the manufacture of fine-grained polyester ketone powder and its use
EP0377170A3 (en) * 1988-12-31 1991-05-02 Hoechst Aktiengesellschaft Method for the manufacture of fine-grained polyester ketone powder and its use
US5247052A (en) * 1988-12-31 1993-09-21 Hoechst Aktiengesellschaft Fine-grained polyether-ketone powder, process for the manufacture thereof, and the use thereof
EP0488637A2 (en) * 1990-11-27 1992-06-03 Xerox Corporation A fluidized bed jet mill
EP0488637A3 (en) * 1990-11-27 1992-08-12 Xerox Corporation A fluidized bed jet mill
US8039105B2 (en) 2006-10-16 2011-10-18 Evonik Degussa Gmbh Amorphous submicron particles
CN101616743B (en) * 2006-10-16 2014-03-05 赢创德固赛有限责任公司 Amorphous submicron particles
US7850102B2 (en) 2006-10-16 2010-12-14 Evonik Degussa Gmbh Amorphous submicron particles
WO2008046727A2 (en) * 2006-10-16 2008-04-24 Evonik Degussa Gmbh Amorphous submicron particles
WO2008046727A3 (en) * 2006-10-16 2008-07-17 Evonik Degussa Gmbh Amorphous submicron particles
TWI446970B (en) * 2006-10-16 2014-08-01 Evonik Degussa Gmbh Amorphous submicron particles
RU2458741C2 (en) * 2006-10-16 2012-08-20 Эвоник Дегусса Гмбх Amorphous submicron particles
DE102010052028A1 (en) 2010-11-23 2012-05-24 Sasol Wax Gmbh Process for milling waxes using grinding aids in a jet mill, use of polyols as grinding aids and wax powders containing polyols
WO2012069041A1 (en) 2010-11-23 2012-05-31 Sasol Wax Gmbh Process for grinding waxes using grinding aids in a jet mill, use of polyols as a grinding aid and wax powder comprising polyols
US9249365B2 (en) 2010-11-23 2016-02-02 Sasol Wax Gmbh Process for grinding waxes using grinding aids in a jet mill, use of polyols as a grinding aid and wax powder comprising polyols
WO2014080035A1 (en) * 2012-11-26 2014-05-30 Klafs Gmbh & Co. Kg Micronizer
US11654605B2 (en) 2018-10-13 2023-05-23 Hosokawa Alpine Aktiengesellschaft Die head and process to manufacture multilayer tubular film
US11339021B2 (en) 2018-12-11 2022-05-24 Hosokawa Alpine Aktiengesellschaft Device for winding and changing the reels of web material as well as a dedicated process
DE102020006008B3 (en) 2020-10-01 2022-03-31 Hosokawa Alpine Aktiengesellschaft Fluidized bed opposed jet mill for the production of finest particles from feed material of low bulk density and method therefor
EP3988214A1 (en) 2020-10-01 2022-04-27 HOSOKAWA ALPINE Aktiengesellschaft Fluidized bed mill for producing fine particles of low bulk material and method for same
US11833523B2 (en) 2020-10-01 2023-12-05 Hosokawa Alpine Aktiengesellschaft Fluidized bed opposed jet mill for producing ultrafine particles from feed material of a low bulk density and a process for use thereof

Also Published As

Publication number Publication date
DE3338138C2 (en) 1986-01-16
JPS60168547A (en) 1985-09-02
ATE32837T1 (en) 1988-03-15
EP0139279B1 (en) 1988-03-09
JPS628215B2 (en) 1987-02-21
US4602743A (en) 1986-07-29
DE3338138A1 (en) 1985-05-09
EP0139279A3 (en) 1985-10-02

Similar Documents

Publication Publication Date Title
EP0139279B1 (en) Fluidised bed-counter jet mill
DE2711515A1 (en) CLASSIFYING JET MILL
EP0115057A2 (en) Pneumatic separator in the field of fine material
EP1172149B1 (en) Fluidised bed-counter jet mill
DE69305413T2 (en) Pulverizer
DE2040519C2 (en) Fluidized bed jet mill
DE3140294A1 (en) Method and device for separating a mixture of materials into components having differing degrees of grindability
DE4031260A1 (en) FLOTATION APPARATUS
DE3910349A1 (en) PAPER MATERIAL PROCESSING DEVICE
DE10200688A1 (en) Tribo-mechanical activation of natural zeolite, e.g. clinoptilolite, to micro-particles useful in food supplements, food or pharmaceutical products, comprises multifunctional milling, classifying, mixing and/or deagglomeration
DE10045160C2 (en) Multifunctional device for grinding, sifting, mixing and / or deagglomeration
DE69318355T2 (en) Centrifugal blasting device and device for removing burrs with this device
DE19718668C2 (en) Process for separating and continuously removing difficult-to-disperse components
DE3426478C1 (en) Sifting mill
DE1179083B (en) Vibrating mill
CH665961A5 (en) Device for material crushing.
DE3730597A1 (en) AIR JET FLOW CRUSHER
DE2543691C2 (en) Jet mill
AT400820B (en) FLUID BED COUNTERFLOW MILL
EP0369015A1 (en) Flotation machine
DE854612C (en) Process for the operation of centrifugal separators of pneumatic suction and compressed air systems in automatic mills and the corresponding device
DE1136888B (en) Device for comminuting piece goods, in particular minerals, and for floating the ground goods
DE2950558A1 (en) Re-entrant circulating stream jet - directs feed material and carrier fluid into circular chamber, transmitting resultant circular velocity to classifying vortex
DE68914031T2 (en) Device and method for washing granular filter media.
AT127842B (en) Method and device for the comminution of material.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT BE CH FR GB IT LI LU NL SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

RTI1 Title (correction)
RBV Designated contracting states (corrected)

Designated state(s): AT BE CH FR GB LI LU NL SE

AK Designated contracting states

Designated state(s): AT BE CH FR GB LI LU NL SE

17P Request for examination filed

Effective date: 19860207

17Q First examination report despatched

Effective date: 19860827

D17Q First examination report despatched (deleted)
GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH FR GB LI LU NL SE

REF Corresponds to:

Ref document number: 32837

Country of ref document: AT

Date of ref document: 19880315

Kind code of ref document: T

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
EPTA Lu: last paid annual fee
REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

NLT1 Nl: modifications of names registered in virtue of documents presented to the patent office pursuant to art. 16 a, paragraph 1

Owner name: HOSOKAWA ALPINE AKTIENGESELLSCHAFT TE AUGSBURG, BO

EAL Se: european patent in force in sweden

Ref document number: 84112177.5

REG Reference to a national code

Ref country code: CH

Ref legal event code: PFA

Free format text: ALPINE AKTIENGESELLSCHAFT TRANSFER- HOSOKAWA ALPINE AKTIENGESELLSCHAFT & CO. OHG

Ref country code: CH

Ref legal event code: NV

Representative=s name: SCHMAUDER & PARTNER AG PATENTANWALTSBUERO

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 19990922

Year of fee payment: 16

REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20001011

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20030902

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20030918

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20030924

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20030930

Year of fee payment: 20

Ref country code: GB

Payment date: 20030930

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20031016

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20031020

Year of fee payment: 20

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20041010

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20041010

Ref country code: CH

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20041010

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20041011

Ref country code: AT

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20041011

BE20 Be: patent expired

Owner name: *HOSOKAWA ALPINE A.G. & CO. K.G.

Effective date: 20041011

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

EUG Se: european patent has lapsed
NLV7 Nl: ceased due to reaching the maximum lifetime of a patent

Effective date: 20041011