EP0139279A2 - Fluidised bed-counter jet mill - Google Patents
Fluidised bed-counter jet mill Download PDFInfo
- Publication number
- EP0139279A2 EP0139279A2 EP84112177A EP84112177A EP0139279A2 EP 0139279 A2 EP0139279 A2 EP 0139279A2 EP 84112177 A EP84112177 A EP 84112177A EP 84112177 A EP84112177 A EP 84112177A EP 0139279 A2 EP0139279 A2 EP 0139279A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- nozzle
- jet
- bed
- axis
- plane
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B02—CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
- B02C—CRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
- B02C19/00—Other disintegrating devices or methods
- B02C19/06—Jet mills
- B02C19/068—Jet mills of the fluidised-bed type
Definitions
- the invention relates to a fluidized bed jet mill with the features of the preamble of claim 1.
- jet mills recreate especially in those cases where high demands are made on the fineness or purity of the ground product or wear and build-up are to be expected and plants with comminution machines with moving grinding tools become more complicated and expensive to acquire and operate as before economically working shredding machines.
- the fluidized bed jet mill meets these requirements because, due to the high material load that arises, it is 2 to 4 times more efficient than the other known jet mills, e.g. B. the spiral jet mill, and works even with the hardest regrind practically without wear.
- the bed of material is subjected to a very intensive circulation movement, with which the entire contents of the grinding chamber are detected and the jets are loaded more densely with material.
- the fact that parts of the material bed remain and solidify - as is observed in the known fluidized bed jet mills and there deteriorates the grinding effect and makes cleaning of the grinding chamber more difficult - is effectively prevented.
- the optimal grinding effect of the arrangement according to the invention is obtained if the distance of the intersection of the nozzle axes from the plane of the nozzle orifices is selected so that the vectorial, i.e. H. the sum of the pulse currents of all nozzles obtained by geometric addition becomes zero.
- the impulse flow of a nozzle is to be understood as the product of the jet velocity at the nozzle mouth and the amount of gas passed through in the time unit; it corresponds to the momentum of the gas jet emerging from the nozzle and has the dimension of a force.
- all the nozzles are of the same design and have the same dimensions. This results in equal distances for all nozzles from the nozzle mouth to the focal point of the jets, the space in which all jets overlap, so that the same grinding conditions are given for each jet.
- the space requirement of the nozzle arrangement is kept to a minimum, so that it is possible to work with a smaller filling of the grinding chamber than before, which leads to a further improvement in the use of energy.
- the jet mill shown in section in FIG. 1 has a grinding chamber 1 free of internals, which is designed in its lower region as a cone 2 and is closed at the top by the classifier 3 with classifying wheel 4.
- the floor nozzle 5 opens into the grinding chamber 1 with a gas jet emerging vertically upwards and three further jet nozzles 6, the mouths of which are evenly distributed on a circle 8 coaxial with the axis 7 of the floor nozzle 5 in a plane 9 running perpendicular to the axis 7, and their axes 10 intersect at point 11 on axis 7 below level 9 (Fig. 2).
- Bottom nozzle 5 and jet nozzles 6 are of identical design and have the same dimensions, so that the distance between the nozzle mouth and point 11 becomes the same for all nozzles 5 and 6.
- the distance of the point 11 from the plane 9 is chosen so that the vectorial sum of the pulse currents of the nozzles 5 and 6 becomes arithmetically zero, i. H. here it is a quarter of the distance of the mouth of the floor nozzle 5 from the level 9, since all the nozzles 5 and 6 are fed from the common supply line 12 and thus the jet speed at the nozzle mouth and here the amount of gas passed through in the time unit. for all nozzles 5 and 6 are the same.
- the material 13 to be shredded is conveyed into the grinding chamber 1 with the aid of the metering screw 14 adjustable in speed and forms here a material bed 15 of such height that material and gas (from the nozzles 5 and 6) at a low speed as a fountain 16 upwards Classification wheel 4 can be transported.
- the classifier fine leaves the jet mill via the outlet line 17 and is from here to a (not shown) dust separator, for. B. cyclone and / or filter performed.
- the classifier coarse material circles along the wall of the grinding chamber 1 back into the material bed 15.
- the fineness of the finished product is set via the speed of the classifying wheel 4, which is driven by the motor 18 via a belt drive 19 with a continuously adjustable transmission ratio.
Landscapes
- Engineering & Computer Science (AREA)
- Food Science & Technology (AREA)
- Disintegrating Or Milling (AREA)
- Combined Means For Separation Of Solids (AREA)
- Crushing And Grinding (AREA)
- Engine Equipment That Uses Special Cycles (AREA)
Abstract
Description
Die Erfindung bezieht sich auf eine Fließbettstrahlmühle mit den Merkmalen des Oberbegriffs von Anspruch 1.The invention relates to a fluidized bed jet mill with the features of the preamble of
Strahlmühlen stellen trotz ihres hohen spezifischen Energieverbrauchs vor allem in den Bedarfsfällen, bei denen hohe Anforderungen an die Feinheit oder Reinheit des Mahlprodukts bestehen oder Verschleiß und Ansatzbildung zu erwarten sind und dadurch Anlagen mit Zerkleinerungsmaschinen mit bewegten Mahlwerkzeugen komplizierter und teuerer in Anschaffung und Betrieb werden, nach wie vor wirtschaftlich arbeitende Zerkleinerungsmaschinen dar.Despite their high specific energy consumption, jet mills recreate especially in those cases where high demands are made on the fineness or purity of the ground product or wear and build-up are to be expected and plants with comminution machines with moving grinding tools become more complicated and expensive to acquire and operate as before economically working shredding machines.
Insbesondere die Fließbettstrahlmühle wird diesen Anforderungen gerecht, da sie infolge der sich einstellenden hohen Gutbeladung einen um den Faktor 2 bis 4 besseren Wirkungsgrad als die anderen bekannten Strahlmühlen, z. B. die Spiralstrahlmühle, aufweist und auch bei härtestem Mahlgut praktisch ohne Verschleiß arbeitet.In particular, the fluidized bed jet mill meets these requirements because, due to the high material load that arises, it is 2 to 4 times more efficient than the other known jet mills, e.g. B. the spiral jet mill, and works even with the hardest regrind practically without wear.
Wegen der steigenden Energiekosten ist es jedoch unerläßlich, nach Maßnahmen zu suchen, mit denen der spezifische Energieverbrauch des Mahlvorgangs gesenkt, d. h. der Wirkungsgrad verbessert werden kann. Diese Aufgabe in Verbindung mit der bekannten Fließbettstrahlmühle liegt der vorliegenden Erfindung zugrunde.However, because of the rising energy costs, it is imperative to look for measures to reduce the specific energy consumption of the grinding process, i.e. H. the efficiency can be improved. This object in connection with the known fluid bed jet mill is the basis of the present invention.
Die Lösung dieser Aufgabe besteht darin, daß eine bestimmte Anzahl, z. B. 3, 4 oder 5, weiterer Strahldüsen angeordnet werden, die unterhalb der Oberfläche des in der Mahlkammer der Fließbettstrahlmühle befindlichen Gutbettes in dieses münden. Die Düsenmündungen liegen dabei gleichmäßig verteilt auf einem zur Achse der Bodendüse koaxialen Kreis in einer senkrecht zu dieser Achse verlaufenden Ebene, und die Achsen dieser Düsen schneiden sich in einem Punkt auf der Achse der Bodendüse unterhalb der Ebene der Düsenmündungen.The solution to this problem is that a certain number, for. B. 3, 4 or 5, further jet nozzles can be arranged, which open below the surface of the material bed located in the grinding chamber of the fluidized bed jet mill in this. The nozzle orifices are evenly distributed on a circle coaxial with the axis of the floor nozzle in a plane perpendicular to this axis, and the axes these nozzles intersect at a point on the axis of the floor nozzle below the plane of the nozzle orifices.
Mit dieser Anordnung wird das Gutbett einer sehr intensiven Umwälzbewegung unterzogen, mit der der gesamte Mahlkammerinhalt erfaßt wird und die Strahlen dichter mit Gut beladen werden. Dies bedeutet eine bessere Energieausnutzung mit entsprechend verbessertem Wirkungsgrad der Mahlung. Außerdem wird ein Liegenbleiben und Verfestigen von Teilen des Gutbettes - wie es bei den bekannten Fließbettstrahlmühlen beobachtet wird und dort die Mahlwirkung verschlechtert und die Reinigung der Mahlkammer erschwert - wirkungsvoll verhindert.With this arrangement, the bed of material is subjected to a very intensive circulation movement, with which the entire contents of the grinding chamber are detected and the jets are loaded more densely with material. This means better energy utilization with a correspondingly improved grinding efficiency. In addition, the fact that parts of the material bed remain and solidify - as is observed in the known fluidized bed jet mills and there deteriorates the grinding effect and makes cleaning of the grinding chamber more difficult - is effectively prevented.
Weiterhin wurde gefunden, daß der optimale Mahleffekt der erfindungsgemäßen Anordnung dann erhalten wird, wenn der Abstand des Schnittpunkts der Düsenachsen von der Ebene der Düsenmündungen so gewählt wird, daß rechnerisch die vektorielle, d. h. die durch geometrische Addition erhaltene Summe der Impulsströme sämtlicher Düsen zu Null wird. Als Impulsstrom einer Düse ist dabei das Produkt aus Strahlgeschwindigkeit an der Düsenmündung und hier in der Zeiteinheit durchgesetzter Gasmenge zu verstehen; er entspricht dem auf die Zeiteinheit bezogenen Impuls des aus der Düse austretenden Gasstrahls und hat die Dimension einer Kraft.Furthermore, it was found that the optimal grinding effect of the arrangement according to the invention is obtained if the distance of the intersection of the nozzle axes from the plane of the nozzle orifices is selected so that the vectorial, i.e. H. the sum of the pulse currents of all nozzles obtained by geometric addition becomes zero. The impulse flow of a nozzle is to be understood as the product of the jet velocity at the nozzle mouth and the amount of gas passed through in the time unit; it corresponds to the momentum of the gas jet emerging from the nozzle and has the dimension of a force.
Vorteilhaft ist es auch, wenn sämtliche Düsen gleich ausgebildet werden und gleiche Abmessungen aufweisen. Damit ergeben sich für alle Düsen gleiche Strecken von der Düsenmündung bis zum Brennpunkt der Strahlen, dem Raum, in dem sämtliche Strahlen einander überschneiden, so daß für jeden Strahl gleichartige Mahlbedingungen gegeben sind. Der Raumbedarf der Düsenanordnung wird hierbei zu einem Minimum, so daß mit kleinerer Mahlkammerfüllung als bisher gearbeitet werden kann, was eine weitere Verbesserung der Energieausnutzung mit sich bringt.It is also advantageous if all the nozzles are of the same design and have the same dimensions. This results in equal distances for all nozzles from the nozzle mouth to the focal point of the jets, the space in which all jets overlap, so that the same grinding conditions are given for each jet. The space requirement of the nozzle arrangement is kept to a minimum, so that it is possible to work with a smaller filling of the grinding chamber than before, which leads to a further improvement in the use of energy.
Ein Ausführungsbeispiel der Erfindung ist in der Zeichnung dargestellt. Die in Fig. 1 im Schnitt wiedergegebene Strahlmühle besitzt eine von Einbauten freie Mahlkammer 1, die in ihrem unteren Bereich als Konus 2 ausgebildet ist und nach oben hin durch den Sichter 3 mit Sichtrad 4 abgeschlossen ist. In die Mahlkammer 1 münden die Bodendüse 5 mit senkrecht nach oben austretendem Gasstrahl und drei weitere Strahldüsen 6, deren Mündungen auf einem zur Achse 7 der Bodendüse 5 koaxialen Kreis 8 in einer senkrecht zur Achse 7 verlaufenden Ebene 9 gleichmäßig verteilt liegen, und deren Achsen 10 sich im Punkt 11 auf der Achse 7 unterhalb der Ebene 9 schneiden (Fig. 2). Bodendüse 5 und Strahldüsen 6 sind gleich ausgebildet und besitzen gleiche Abmessungen, so daß der Abstand zwischen Düsenmündung und Punkt 11 für alle Düsen 5 und 6 gleich groß wird. Der Abstand des Punktes 11 von der Ebene 9 ist so gewählt, daß rechnerisch die vektorielle Summe der Impulsströme der Düsen 5 und 6 zu Null wird, d. h. er beträgt hier ein Viertel des Abstands der Mündung der Bodendüse 5 von der Ebene 9, da alle Düsen 5 und 6 aus der gemeinsamen Versorgungsleitung 12 gespeist werden und somit Strahlgeschwindigkeit an der Düsenmündung und hier in der Zeiteinheit durchgesetzte Gasmenge.für alle Düsen 5 und 6. gleich sind.An embodiment of the invention is shown in the drawing. The jet mill shown in section in FIG. 1 has a
Das zu zerkleinernde Gut 13 wird mit Hilfe der in der Drehzahl einstellbaren Dosierschnecke 14 in die Mahlkammer 1 gefördert und bildet hier ein Gutbett 15 solcher Höhe, daß Gut und Gas (von den Düsen 5 und 6) mit geringer Geschwindigkeit als Fontäne 16 nach oben zum Sichtrad 4 transportiert werden. Das Sichterfeingut verläßt die Strahlmühle über die Austrittsleitung 17 und wird von hier zu einem (nicht gezeichneten) Staubabscheider, z. B. Zyklon und/oder Filter, geführt. Das Sichtergrobgut kreist entlang der Wand der Mahlkammer 1 zurück in das Gutbett 15. Die Feinheit des Fertiggutes wird über die Drehzahl des Sichtrades 4 eingestellt, das vom Motor 18 über einen Riementrieb 19 mit stufenlos einstellbarem Übersetzungsverhältnis angetrieben wird.The
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AT84112177T ATE32837T1 (en) | 1983-10-20 | 1984-10-11 | FLUID BED COUNTERFLOW MILL. |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE3338138 | 1983-10-20 | ||
DE3338138A DE3338138C2 (en) | 1983-10-20 | 1983-10-20 | Fluidized bed opposed jet mill |
Publications (3)
Publication Number | Publication Date |
---|---|
EP0139279A2 true EP0139279A2 (en) | 1985-05-02 |
EP0139279A3 EP0139279A3 (en) | 1985-10-02 |
EP0139279B1 EP0139279B1 (en) | 1988-03-09 |
Family
ID=6212326
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP84112177A Expired EP0139279B1 (en) | 1983-10-20 | 1984-10-11 | Fluidised bed-counter jet mill |
Country Status (5)
Country | Link |
---|---|
US (1) | US4602743A (en) |
EP (1) | EP0139279B1 (en) |
JP (1) | JPS60168547A (en) |
AT (1) | ATE32837T1 (en) |
DE (1) | DE3338138C2 (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0362525A2 (en) * | 1988-10-05 | 1990-04-11 | Messer Griesheim Gmbh | Cold-grinding method and apparatus |
EP0377170A2 (en) * | 1988-12-31 | 1990-07-11 | Hoechst Aktiengesellschaft | Method for the manufacture of fine-grained polyester ketone powder and its use |
EP0488637A2 (en) * | 1990-11-27 | 1992-06-03 | Xerox Corporation | A fluidized bed jet mill |
US5247052A (en) * | 1988-12-31 | 1993-09-21 | Hoechst Aktiengesellschaft | Fine-grained polyether-ketone powder, process for the manufacture thereof, and the use thereof |
WO2008046727A2 (en) * | 2006-10-16 | 2008-04-24 | Evonik Degussa Gmbh | Amorphous submicron particles |
DE102010052028A1 (en) | 2010-11-23 | 2012-05-24 | Sasol Wax Gmbh | Process for milling waxes using grinding aids in a jet mill, use of polyols as grinding aids and wax powders containing polyols |
WO2014080035A1 (en) * | 2012-11-26 | 2014-05-30 | Klafs Gmbh & Co. Kg | Micronizer |
DE102020006008B3 (en) | 2020-10-01 | 2022-03-31 | Hosokawa Alpine Aktiengesellschaft | Fluidized bed opposed jet mill for the production of finest particles from feed material of low bulk density and method therefor |
US11339021B2 (en) | 2018-12-11 | 2022-05-24 | Hosokawa Alpine Aktiengesellschaft | Device for winding and changing the reels of web material as well as a dedicated process |
US11654605B2 (en) | 2018-10-13 | 2023-05-23 | Hosokawa Alpine Aktiengesellschaft | Die head and process to manufacture multilayer tubular film |
Families Citing this family (33)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4765545A (en) * | 1985-03-21 | 1988-08-23 | Ricegrowers' Co-Operative Mills, Ltd. | Rice hull ash filter |
DE3510610C2 (en) * | 1985-03-23 | 1987-02-19 | Alpine Ag, 8900 Augsburg | Method for producing a spherical grain shape in toners for electrophotography |
DE3519309C1 (en) * | 1985-05-30 | 1986-12-18 | Alpine Ag, 8900 Augsburg | Process for the continuous production of granules from a solid in a fluidized material bed |
JPH07712B2 (en) * | 1985-10-11 | 1995-01-11 | 三井東圧化学株式会社 | Inorganic filler-containing polyolefin resin composition |
DE3617489A1 (en) * | 1986-05-24 | 1987-11-26 | Bayer Ag | SINTERABLE SI (DOWN ARROW) 3 (DOWN ARROW) N (DOWN ARROW) 4 (DOWN ARROW) POWDER AND ITS PRODUCTION METHOD |
US4905918A (en) * | 1988-05-27 | 1990-03-06 | Ergon, Inc. | Particle pulverizer apparatus |
DE3825469A1 (en) * | 1988-07-27 | 1990-02-01 | Basf Ag | METHOD FOR DISPERSION, CRUSHING OR DESAGGLOMERATION AND SIGHTING OF SOLIDS |
JP2754680B2 (en) * | 1989-03-17 | 1998-05-20 | 大同特殊鋼株式会社 | Processing method of metal powder |
US4986479A (en) * | 1989-08-14 | 1991-01-22 | Ingersoll-Rand Company | Fluid jet shredder apparatus and method of use |
US5542613A (en) * | 1992-12-10 | 1996-08-06 | Nied; Roland | Process for impact crushing of solid particles |
DE4431534B4 (en) * | 1994-02-10 | 2006-12-28 | Nied, Roland, Dr. Ing. | Machine for acting on comminuted and classifiable raw material, as well as method for operating the machine |
DE4419222C2 (en) * | 1994-06-01 | 2002-05-29 | Hosokawa Alpine Ag & Co | Fluidized bed jet mill |
DE19513034A1 (en) * | 1995-04-06 | 1996-10-10 | Nied Roland | Fluid bed jet milling device |
DE19608242A1 (en) * | 1996-03-04 | 1997-09-11 | Bayer Ag | Sampling procedure for particle-laden guest flows |
DE19641129A1 (en) * | 1996-10-05 | 1998-04-09 | Nied Roland | Method of decomposing solid matter particles in fluidised bed |
DE19728382C2 (en) * | 1997-07-03 | 2003-03-13 | Hosokawa Alpine Ag & Co | Method and device for fluid bed jet grinding |
AT407525B (en) * | 1999-07-09 | 2001-04-25 | Holderbank Financ Glarus | METHOD FOR CRUSHING PIECES OR GRANULES AND DEVICE FOR CARRYING OUT THIS METHOD |
FR2811915A1 (en) * | 2000-07-21 | 2002-01-25 | Recyclage Et Technologie | Recycling procedure for large tyres uses high-pressure water jets to cut off tyre walls before removing tread |
DE10033628A1 (en) | 2000-07-11 | 2002-01-24 | Hosokawa Alpine Ag & Co | Fluid-bed opposed jet mill |
DE10045160C2 (en) * | 2000-08-14 | 2002-07-18 | Ulf Noll Gmbh | Multifunctional device for grinding, sifting, mixing and / or deagglomeration |
US7032849B2 (en) * | 2003-01-23 | 2006-04-25 | Ricoh Company, Ltd. | Fluidized bed pulverizing and classifying apparatus, and method of pulverizing and classifying solids |
US7445806B2 (en) * | 2004-09-02 | 2008-11-04 | Kraft Foods Global Brands Llc | Process for selective grinding and recovery of dual-density foods |
US7449275B2 (en) | 2004-09-21 | 2008-11-11 | Kao Corporation | Process for preparing toner |
US7560218B2 (en) * | 2004-10-01 | 2009-07-14 | Kao Corporation | Process for preparing toner |
JP4491328B2 (en) | 2004-10-29 | 2010-06-30 | 花王株式会社 | Toner production method |
DE102005039118A1 (en) | 2005-08-18 | 2007-02-22 | Wacker Chemie Ag | Method and device for comminuting silicon |
US8067051B2 (en) * | 2006-06-19 | 2011-11-29 | Kraft Foods R & D, Inc. | Process for milling cocoa shells |
US20150239048A1 (en) * | 2012-09-12 | 2015-08-27 | Xiamen Tungsten Co., Ltd. | Manufacturing method of rare earth magnet alloy powder, rare earth magnet and a powder making device |
CN103721818B (en) * | 2012-10-11 | 2015-12-02 | 中磁科技股份有限公司 | A kind of method reducing fluidisation air-flow mill grinding room temperature |
CN105195281B (en) * | 2015-09-11 | 2017-08-25 | 哈尔滨工业大学 | A kind of dregs breaking device for slag gasification furnace bottom |
CN106076563B (en) * | 2016-08-16 | 2018-12-04 | 浙江国正安全技术有限公司 | Fluidized bed air flow crusher campaigning device |
CN107051682A (en) * | 2017-02-10 | 2017-08-18 | 广州中卓智能装备有限公司 | The grinding system of innovation type fluidized bed airflow grinding machine |
CN106824452A (en) * | 2017-02-10 | 2017-06-13 | 广州中卓智能装备有限公司 | Fluidized bed airflow grinding machine intelligence change system |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2103454A (en) * | 1933-09-18 | 1937-12-28 | Hephaest A G Fur Motorische Kr | Impact-crusher for comminuting hard materials |
FR967396A (en) * | 1947-06-05 | 1950-11-02 | Crusher device | |
US2672296A (en) * | 1949-01-04 | 1954-03-16 | Blaw Knox Co | Fluid impact pulverizer |
DE921970C (en) * | 1952-02-21 | 1955-01-07 | Basf Ag | Grinding device |
DE3140294A1 (en) * | 1981-10-10 | 1983-04-28 | Alpine Ag, 8900 Augsburg | Method and device for separating a mixture of materials into components having differing degrees of grindability |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1948609A (en) * | 1932-01-18 | 1934-02-27 | American Pulverizing Corp | Method of pulverizing minerals and similar materials |
US2413420A (en) * | 1940-02-26 | 1946-12-31 | Thermo Plastics Corp | Method and apparatus for dispersing or drying fluent material in high velocity elastic fluid jets |
US2832545A (en) * | 1955-03-03 | 1958-04-29 | Exxon Research Engineering Co | Supersonic jet grinding means and method |
US3186648A (en) * | 1963-05-27 | 1965-06-01 | Grace W R & Co | Fluid energy mill |
DE2040519C2 (en) * | 1970-08-14 | 1984-04-12 | Alpine Ag, 8900 Augsburg | Fluidized bed jet mill |
US4424199A (en) * | 1981-12-11 | 1984-01-03 | Union Carbide Corporation | Fluid jet seed particle generator for silane pyrolysis reactor |
US4553704A (en) * | 1984-02-21 | 1985-11-19 | James Howden & Company Limited | Pulverizing apparatus |
-
1983
- 1983-10-20 DE DE3338138A patent/DE3338138C2/en not_active Expired
-
1984
- 1984-10-11 EP EP84112177A patent/EP0139279B1/en not_active Expired
- 1984-10-11 AT AT84112177T patent/ATE32837T1/en not_active IP Right Cessation
- 1984-10-19 US US06/662,815 patent/US4602743A/en not_active Expired - Lifetime
- 1984-10-19 JP JP59218777A patent/JPS60168547A/en active Granted
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2103454A (en) * | 1933-09-18 | 1937-12-28 | Hephaest A G Fur Motorische Kr | Impact-crusher for comminuting hard materials |
FR967396A (en) * | 1947-06-05 | 1950-11-02 | Crusher device | |
US2672296A (en) * | 1949-01-04 | 1954-03-16 | Blaw Knox Co | Fluid impact pulverizer |
DE921970C (en) * | 1952-02-21 | 1955-01-07 | Basf Ag | Grinding device |
DE3140294A1 (en) * | 1981-10-10 | 1983-04-28 | Alpine Ag, 8900 Augsburg | Method and device for separating a mixture of materials into components having differing degrees of grindability |
Cited By (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0362525A2 (en) * | 1988-10-05 | 1990-04-11 | Messer Griesheim Gmbh | Cold-grinding method and apparatus |
EP0362525A3 (en) * | 1988-10-05 | 1991-01-16 | Messer Griesheim Gmbh | Cold-grinding method and apparatus |
EP0377170A2 (en) * | 1988-12-31 | 1990-07-11 | Hoechst Aktiengesellschaft | Method for the manufacture of fine-grained polyester ketone powder and its use |
EP0377170A3 (en) * | 1988-12-31 | 1991-05-02 | Hoechst Aktiengesellschaft | Method for the manufacture of fine-grained polyester ketone powder and its use |
US5247052A (en) * | 1988-12-31 | 1993-09-21 | Hoechst Aktiengesellschaft | Fine-grained polyether-ketone powder, process for the manufacture thereof, and the use thereof |
EP0488637A2 (en) * | 1990-11-27 | 1992-06-03 | Xerox Corporation | A fluidized bed jet mill |
EP0488637A3 (en) * | 1990-11-27 | 1992-08-12 | Xerox Corporation | A fluidized bed jet mill |
US8039105B2 (en) | 2006-10-16 | 2011-10-18 | Evonik Degussa Gmbh | Amorphous submicron particles |
CN101616743B (en) * | 2006-10-16 | 2014-03-05 | 赢创德固赛有限责任公司 | Amorphous submicron particles |
US7850102B2 (en) | 2006-10-16 | 2010-12-14 | Evonik Degussa Gmbh | Amorphous submicron particles |
WO2008046727A2 (en) * | 2006-10-16 | 2008-04-24 | Evonik Degussa Gmbh | Amorphous submicron particles |
WO2008046727A3 (en) * | 2006-10-16 | 2008-07-17 | Evonik Degussa Gmbh | Amorphous submicron particles |
TWI446970B (en) * | 2006-10-16 | 2014-08-01 | Evonik Degussa Gmbh | Amorphous submicron particles |
RU2458741C2 (en) * | 2006-10-16 | 2012-08-20 | Эвоник Дегусса Гмбх | Amorphous submicron particles |
DE102010052028A1 (en) | 2010-11-23 | 2012-05-24 | Sasol Wax Gmbh | Process for milling waxes using grinding aids in a jet mill, use of polyols as grinding aids and wax powders containing polyols |
WO2012069041A1 (en) | 2010-11-23 | 2012-05-31 | Sasol Wax Gmbh | Process for grinding waxes using grinding aids in a jet mill, use of polyols as a grinding aid and wax powder comprising polyols |
US9249365B2 (en) | 2010-11-23 | 2016-02-02 | Sasol Wax Gmbh | Process for grinding waxes using grinding aids in a jet mill, use of polyols as a grinding aid and wax powder comprising polyols |
WO2014080035A1 (en) * | 2012-11-26 | 2014-05-30 | Klafs Gmbh & Co. Kg | Micronizer |
US11654605B2 (en) | 2018-10-13 | 2023-05-23 | Hosokawa Alpine Aktiengesellschaft | Die head and process to manufacture multilayer tubular film |
US11339021B2 (en) | 2018-12-11 | 2022-05-24 | Hosokawa Alpine Aktiengesellschaft | Device for winding and changing the reels of web material as well as a dedicated process |
DE102020006008B3 (en) | 2020-10-01 | 2022-03-31 | Hosokawa Alpine Aktiengesellschaft | Fluidized bed opposed jet mill for the production of finest particles from feed material of low bulk density and method therefor |
EP3988214A1 (en) | 2020-10-01 | 2022-04-27 | HOSOKAWA ALPINE Aktiengesellschaft | Fluidized bed mill for producing fine particles of low bulk material and method for same |
US11833523B2 (en) | 2020-10-01 | 2023-12-05 | Hosokawa Alpine Aktiengesellschaft | Fluidized bed opposed jet mill for producing ultrafine particles from feed material of a low bulk density and a process for use thereof |
Also Published As
Publication number | Publication date |
---|---|
DE3338138C2 (en) | 1986-01-16 |
JPS60168547A (en) | 1985-09-02 |
ATE32837T1 (en) | 1988-03-15 |
EP0139279B1 (en) | 1988-03-09 |
JPS628215B2 (en) | 1987-02-21 |
US4602743A (en) | 1986-07-29 |
DE3338138A1 (en) | 1985-05-09 |
EP0139279A3 (en) | 1985-10-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0139279B1 (en) | Fluidised bed-counter jet mill | |
DE2711515A1 (en) | CLASSIFYING JET MILL | |
EP0115057A2 (en) | Pneumatic separator in the field of fine material | |
EP1172149B1 (en) | Fluidised bed-counter jet mill | |
DE69305413T2 (en) | Pulverizer | |
DE2040519C2 (en) | Fluidized bed jet mill | |
DE3140294A1 (en) | Method and device for separating a mixture of materials into components having differing degrees of grindability | |
DE4031260A1 (en) | FLOTATION APPARATUS | |
DE3910349A1 (en) | PAPER MATERIAL PROCESSING DEVICE | |
DE10200688A1 (en) | Tribo-mechanical activation of natural zeolite, e.g. clinoptilolite, to micro-particles useful in food supplements, food or pharmaceutical products, comprises multifunctional milling, classifying, mixing and/or deagglomeration | |
DE10045160C2 (en) | Multifunctional device for grinding, sifting, mixing and / or deagglomeration | |
DE69318355T2 (en) | Centrifugal blasting device and device for removing burrs with this device | |
DE19718668C2 (en) | Process for separating and continuously removing difficult-to-disperse components | |
DE3426478C1 (en) | Sifting mill | |
DE1179083B (en) | Vibrating mill | |
CH665961A5 (en) | Device for material crushing. | |
DE3730597A1 (en) | AIR JET FLOW CRUSHER | |
DE2543691C2 (en) | Jet mill | |
AT400820B (en) | FLUID BED COUNTERFLOW MILL | |
EP0369015A1 (en) | Flotation machine | |
DE854612C (en) | Process for the operation of centrifugal separators of pneumatic suction and compressed air systems in automatic mills and the corresponding device | |
DE1136888B (en) | Device for comminuting piece goods, in particular minerals, and for floating the ground goods | |
DE2950558A1 (en) | Re-entrant circulating stream jet - directs feed material and carrier fluid into circular chamber, transmitting resultant circular velocity to classifying vortex | |
DE68914031T2 (en) | Device and method for washing granular filter media. | |
AT127842B (en) | Method and device for the comminution of material. |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Designated state(s): AT BE CH FR GB IT LI LU NL SE |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
RTI1 | Title (correction) | ||
RBV | Designated contracting states (corrected) |
Designated state(s): AT BE CH FR GB LI LU NL SE |
|
AK | Designated contracting states |
Designated state(s): AT BE CH FR GB LI LU NL SE |
|
17P | Request for examination filed |
Effective date: 19860207 |
|
17Q | First examination report despatched |
Effective date: 19860827 |
|
D17Q | First examination report despatched (deleted) | ||
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE CH FR GB LI LU NL SE |
|
REF | Corresponds to: |
Ref document number: 32837 Country of ref document: AT Date of ref document: 19880315 Kind code of ref document: T |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) | ||
ET | Fr: translation filed | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
EPTA | Lu: last paid annual fee | ||
REG | Reference to a national code |
Ref country code: FR Ref legal event code: CD |
|
NLT1 | Nl: modifications of names registered in virtue of documents presented to the patent office pursuant to art. 16 a, paragraph 1 |
Owner name: HOSOKAWA ALPINE AKTIENGESELLSCHAFT TE AUGSBURG, BO |
|
EAL | Se: european patent in force in sweden |
Ref document number: 84112177.5 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PFA Free format text: ALPINE AKTIENGESELLSCHAFT TRANSFER- HOSOKAWA ALPINE AKTIENGESELLSCHAFT & CO. OHG Ref country code: CH Ref legal event code: NV Representative=s name: SCHMAUDER & PARTNER AG PATENTANWALTSBUERO |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: LU Payment date: 19990922 Year of fee payment: 16 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: CD |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20001011 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: IF02 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 20030902 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20030918 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 20030924 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20030930 Year of fee payment: 20 Ref country code: GB Payment date: 20030930 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 20031016 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20031020 Year of fee payment: 20 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20041010 Ref country code: GB Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20041010 Ref country code: CH Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20041010 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20041011 Ref country code: AT Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20041011 |
|
BE20 | Be: patent expired |
Owner name: *HOSOKAWA ALPINE A.G. & CO. K.G. Effective date: 20041011 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: PE20 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
EUG | Se: european patent has lapsed | ||
NLV7 | Nl: ceased due to reaching the maximum lifetime of a patent |
Effective date: 20041011 |