EP0134162B1 - Neodymlegierungen und Verfahren zur Herstellung derselben - Google Patents

Neodymlegierungen und Verfahren zur Herstellung derselben Download PDF

Info

Publication number
EP0134162B1
EP0134162B1 EP84401307A EP84401307A EP0134162B1 EP 0134162 B1 EP0134162 B1 EP 0134162B1 EP 84401307 A EP84401307 A EP 84401307A EP 84401307 A EP84401307 A EP 84401307A EP 0134162 B1 EP0134162 B1 EP 0134162B1
Authority
EP
European Patent Office
Prior art keywords
neodymium
metal
process according
halide
calcium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP84401307A
Other languages
English (en)
French (fr)
Other versions
EP0134162A1 (de
Inventor
Françoise Seon
Bernard Boudot
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rhodia Chimie SAS
Original Assignee
Rhone Poulenc Chimie SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from FR8311139A external-priority patent/FR2548687B1/fr
Application filed by Rhone Poulenc Chimie SA filed Critical Rhone Poulenc Chimie SA
Priority to AT84401307T priority Critical patent/ATE45989T1/de
Publication of EP0134162A1 publication Critical patent/EP0134162A1/de
Application granted granted Critical
Publication of EP0134162B1 publication Critical patent/EP0134162B1/de
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C28/00Alloys based on a metal not provided for in groups C22C5/00 - C22C27/00
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B5/00General methods of reducing to metals
    • C22B5/02Dry methods smelting of sulfides or formation of mattes
    • C22B5/04Dry methods smelting of sulfides or formation of mattes by aluminium, other metals or silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B59/00Obtaining rare earth metals

Definitions

  • the present invention relates to neodymium alloys and their manufacturing process.
  • ceric rare earth metals a designation which includes lanthanum, cerium, praseodymium and neodymium, the latter is the only metal that cannot be manufactured industrially by electrolysis of these salts. Indeed, it is mentioned in the article by T. KURITA (Denki Kagaku, 1967, 35 (7) p. 496-501) that yields of 6 to 20% of pure neodymium are obtained by electrolysis in a molten bath - neodymium chloride, potassium chloride -.
  • neodymium alloys more particularly neodymium and magnesium alloys, which consists in using neodymium chloride, an alkali metal and magnesium, all the reagents being introduced and kept in the molten state throughout the duration of the reaction.
  • the objective of the present invention is to have new neodymium alloys obtained according to an industrial manufacturing process.
  • the rare earth metal involved in said alloys is therefore any metal belonging to the group formed by yttrium and lanthanides, except samarium, europium and ytterbium.
  • a “rare earth metal” or a mixture of rare earth metals chosen from the group defined above will be simplifiedly designated by “metal TR”.
  • neodymium halide neodymium fluoride or neodymium chloride or a mixture thereof is used.
  • neodymium fluoride is used.
  • the halide used is of high purity, that is to say free of residual oxide and of oxyhalide and that it be dry: its water content must be less than 5% and preferably less than 2%.
  • Neodymium fluoride is available in an anhydrous state because it is a low hygroscopic product.
  • neodymium chloride exists in the form of hydrates containing 6 to 7 moles of water per mole of neodymium chloride. It is generally prepared by the reaction of hydrochloric acid and neodymium sesquioxide.
  • this chloride requires a drying step at a temperature between 100 ° C and 500 ° C but preferably between 200 ° C and 250 ° C.
  • This treatment is also suitable for neodymium fluoride.
  • the drying time can vary between 2 and 24 hours.
  • the particle size of the neodymium halide may vary. It is commercially available in the form of a powder, the particle size of which varies from 40 to 150 ⁇ m.
  • the particle size influencing the reduction speed it is recommended that the powder is fine which can lead to a grinding operation so that the average diameter of the particles of neodymium halide is less than 100 wm. There is no lower diameter limit.
  • halide of. TR metal you can choose a TR metal fluoride, a TR metal chloride or their mixture.
  • the fluoride of the metal TR is used.
  • the properties required and the conditions for using the metal halide TR are identical to those of the neodymium halide.
  • the reducing metal used in the process of the invention can be an alkali metal, an alkaline earth metal or a mixture thereof. Mention may be made, as alkali metal, of sodium, lithium or potassium and, as alkaline earth metal, of calcium or magnesium.
  • Calcium or magnesium is preferably used and even more preferably calcium.
  • the reducing metal is used in the form in which it is sold, whether it is in the state solid or in the form of pellets or balls.
  • a preferred variant of the process of the invention consists in adding to the reaction medium calcium chloride or calcium fluoride as the case may be in order to lower the melting point and the density of the slag formed in the reaction so that the formed alloy neodymium-iron separates more easily.
  • the aim being to obtain a CaF 2 -CaCI 2 slag, the addition when the source of neodymium is neodymium fluoride or neodymium chloride, respectively calcium chloride or calcium fluoride. If the neodymium halide is a mixture of fluoride and chloride, a mixture of chloride and calcium fluoride is added in order to obtain a CaF 2 -CaCI 2 mixture having the composition defined later.
  • calcium chloride should be added when using neodymium fluoride and a metal fluoride TR and calcium fluoride when using uses neodymium chloride and a metal chloride TR. If the neodymium halide or TR metal is a mixture of fluoride and chloride or if the neodymium halides and TR metal are different in nature, it is necessary to add a CaF 2 -CaCIp mixture in order to have the desired composition.
  • the process of the invention consists in mixing a neodymium halide, a metal halide TR, a reducing metal, iron and optionally a calcium halide in the proportions given below. '°
  • the quantity of TR metal halide used is calculated according to the composition of the desired alloy. It will preferably be defined so that the metal TR represents less than 50% of the weight of the mixture consisting of neodymium and the metal TR and more preferably still less than 10%.
  • the amount of reducing metal can vary within wide limits. However, it is advantageous to use a quantity sufficient to reduce the neodymium halide and possibly the metal halide TR but it should not be too large if one does not wish to find it, of a importantly, in the final alloy.
  • the amount of reducing metal is at least equal to the stoichiometric amount or even in slight excess, up to 20% of the stoichiometric amount.
  • the amount of iron is adjusted according to the desired composition of the alloy. It is such that a fusible alloy with neodymium and iron is obtained at the reaction temperature. It is calculated so that iron represents from 5 to 30% of the weight of the alloy obtained.
  • the amount of calcium halide added is adjusted in order to obtain a slag containing from 30 to 70% by weight of calcium chloride and preferably 60 to 70%.
  • the various halides of neodymium, of metal TR and of calcium and the abovementioned metals constitute “a filler” having the desired weight composition.
  • the constituents of this charge can be reacted in any order: by simultaneous mixing of all the constituents or by making premixes, on the one hand, the halides of neodymium, calcium, metal TR and d on the other hand the reducing metal and iron.
  • the reaction is carried out at a temperature between 800 ° C and 1100 ° C.
  • the upper temperature limit is not critical and can reach a value as high as 1400 ° C.
  • a temperature between 900 ° C and 1100 ° C is chosen.
  • the reaction is carried out at atmospheric pressure but in an inert gas atmosphere.
  • rare gases including argon. It is desirable to subject the rare gas to a dehydration and deoxygenation treatment carried out according to the usual techniques, for example by passage through a molecular sieve.
  • the inert atmosphere is maintained throughout the reduction.
  • the duration of the reaction depends on the capacity of the apparatus and its ability to rapidly rise in temperature. Generally, once the desired temperature is reached, it is maintained for a variable duration of approximately 30 minutes to 3 hours.
  • a metallic phase consisting of the neodymium-iron alloy on which floats a slag consisting of CaF 2 -CaCI 2 having a density lower than that of the alloy.
  • the alloy can be immediately separated from the slag by hot casting or allowed to cool under an inert gas atmosphere at room temperature (15 to 25 ° C) so that the alloy solidifies and can then be removed from the mold.
  • the yield of rare earth metals (neodymium + metal TR) expressed relative to to the rare earth metals contained in the halides used varies from 75 to 95%.
  • the reduction is carried out in a crucible placed in a reactor made of a material resistant to hydrofluoric and hydrochloric vapors.
  • refractory steel for example, steel containing 25% chromium and 20% nickel but preferably inconel which is an alloy containing nickel, chromium (20%), iron (5%), molybdenum (8-10%).
  • Said reactor is equipped with a temperature control device (for example thermocouple), an inlet and an outlet for inert gases. It is provided in its upper part with a double envelope in which circulates a coolant.
  • a temperature control device for example thermocouple
  • This reactor is placed in an induction furnace or in an furnace heated by electrical resistances.
  • a crucible in which the temperature control device is immersed is placed at the bottom of the reactor. It must be made of a material resistant to neodymium halides or have a coating resistant to them. Preferably, a tantalum crucible is used.
  • the molten alloy can be cast in molds, for example, cast iron.
  • the proportion of TR metal can represent less than 50% of the weight of the mixture constituted by neodymium and TR metal and, preferably, less than 10%.
  • the alloys obtained according to the present invention are very rich in neodymium since they can contain up to 95%.
  • They can be used as master alloys in particular in the manufacture of permanent magnets.
  • a premix containing 530.8 g of calcium chloride in the dry state and 390.8 g of a mixture containing 96.4% of neodymium fluoride and 3.6% of praseodymium fluoride is then made: said mixture having an average particle diameter of 60 ⁇ m.
  • the calciothermic reduction reaction of neodymium fluoride and praseodymium fluoride is carried out in a tantalum crucible of about 1 liter placed at the bottom of an inconel reactor which is equipped of an inlet and an outlet of argon and of a thermocouple introduced into a thermometric sheath which is immersed in the reaction medium contained in the crucible: the upper part of the reactor is provided with a double envelope in which circulates cold water (about 10 ° C).
  • a temperature rise is carried out at the same time until the temperature fixed at 1100 ° C. is obtained; this temperature being kept constant for another 30 minutes.
  • 717.2 g of slag are collected and 296 g of a neodymium-praseodymium-iron alloy are recovered by hot casting in a cast iron ingot mold.
  • the yield of rare earths in the alloy expressed relative to the rare earths contained in neodymium and praseodymium fluorides is 90%.
  • Example 2 is reproduced, except that a mixture of neodymium fluoride and praseodymium fluoride is used, but a mixture containing 58% of neodymium chloride and 42% of praseodymium chloride.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Claims (23)

1. Neue Legierungen von Neodym, bestehend aus Neodym, Eisen und mindestens einem anderen Seltene Erden-Metall, ausgewählt aus der Gruppe von Yttrium, Lanthan, Cer, Praseodym, Gadolinium, Terbium, Dysprosium, Holmium, Erbium, Thulium, Lutecium und eingesetzt in den folgenden Mengen :
70 bis 95 % eines Gemisches aus Neodym und SE-Metall,
5 bis 30 % Eisen,
0 bis 3 % reduzierendes Metall.
2. Legierungen von Neodym nach Anspruch 1, dadurch gekennzeichnet, daß das SE-Metall Praseodym ist.
3. Legierungen von Neodym nach einem der Ansprüche 1 und 2, dadurch gekennzeichnet, daß sie bestehen aus :
83 bis 91 % eines Gemisches aus Neodym und SE-Metall,
9 bis 16 % Eisen,
0 bis 3 % Calcium.
4. Legierungen von Neodym nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß der Anteil an SE-Metall weniger als 50 % des Gewichts des Gemisches, bestehend aus Neodym und dem SE-Metall, ausmacht.
5. Legierungen von Neodym nach Anspruch 4, dadurch gekennzeichnet, daß der Anteil an SE-Metall weniger als 10 % des Gewichts des Gemisches von Neodym und dem SE-Metall ausmacht.
6. Verfahren zur Herstellung der in einem der Ansprüche 1 bis 4 beschriebenen Legierungen, dadurch gekennzeichnet, daß man ein Neodymhalogenid und ein SE-Metall-halogenid mit einem reduzierenden Metall in Gegenwart von Eisen reduziert.
7. Verfahren nach Anspruch 6, dadurch gekennzeichnet, daß das Neodymhalogenid Neodymfluorid, Neodymchlorid oder ein Gemisch davon ist.
8. Verfahren nach Anspruch 7, dadurch gekennzeichnet, daß das Neodymhalogenid einer Trocknung bei 100 °C bis 500 °C an der Luft oder unter reduziertem Druck zwischen 1 mm Quecksilber (= 133,322 Pa) und 100 mm Quecksilber (= 13 332,2 Pa) unterworfen wird.
9. Verfahren nach Anspruch 6, dadurch gekennzeichnet, daß das reduzierende Metall ein Alkalimetall wie Natrium, Lithium, Kalium oder ein Erdalkalimetall wie Calcium oder Magnesium ist.
10. Verfahren nach Anspruch 4, dadurch gekennzeichnet, daß das reduzierende Metall Calcium ist.
11. Verfahren nach Anspruch 6, dadurch gekennzeichnet, daß das SE-Metall-halogenid einer Trocknung bei 100 °C bis 500 °C an der Luft oder unter reduziertem Druck zwischen 1 mm Quecksilber (= 133,322 Pa) und 100 mm Quecksilber (= 13 322,2 Pa) unterworfen wird.
12. Verfahren nach einem der Ansprüche 6 bis 11, dadurch gekennzeichnet, daß man dem Reaktionsmedium Calciumchlorid zusetzt, wenn man Neodymfluofid und ein SE-Metall-fluorid einsetzt ; Calciumfluorid zugibt, wenn man Neodymchlorid und ein SE-Metall-chlorid einsetzt; ein Gemisch von Calciumfluorid und Calciumchlorid, wenn das Halogenid von Neodym oder dem SE-Metall ein Gemisch von Fluorid oder Chlorid ist oder wenn die Halogenide von Neodym und dem SE-Metall unterschiedlicher Natur sind.
13. Verfahren nach Anspruch 12, dadurch gekennzeichnet, daß das Calciumhalogenid einer Trocknung bei 300 °C bis 400 °C unter vermindertem Druck von 1 mm Quecksilber (= 133,322 Pa) bis 100 mm Quecksilber (= 13 332,2 Pa) unterworfen wird.
14. Verfahren nach einem der Ansprüche 6 bis 13, dadurch gekennzeichnet, daß die Menge an SE-Metall-halogenid so ist, daß man eine Legierung erhält, in der der Anteil an SE-Metall weniger als 50 % des Gewichts des Gemisches aus Neodym und SE-Metall ausmacht.
15. Verfahren nach Anspruch 14, dadurch gekennzeichnet, daß die Menge an SE-Metall-halogenid so ist, daß man eine Legierung erhält, in der der Anteil an SE-Metall weniger als 10 % des Gewichts des Gemisches aus Neodym und SE-Metall ausmacht.
16. Verfahren nach einem der Ansprüche 6 bis 15, dadurch gekennzeichnet, daß die Menge an reduzierendem Metall gleich ist der stöchiometrischen Menge oder einen leichten Überschuß bis zu 20 % der stöchiometrischen Menge ausmacht.
17. Verfahren nach einem der Ansprüche 6 bis 16, dadurch gekennzeichnet, daß die Menge an Cälciumhalogenid, das zugesetzt wird, so ist, daß man eine Schlacke erhält, enthaltend 30 bis 70% Calciumchlorid.
18. Verfahren nach Anspruch 17, dadurch gekennzeichnet, daß die Menge an zugesetztem Calciumhalogenid so ist, daß man eine Schlacke, enthaltend 60 bis 70 % Calciumchlorid, erhält.
19. Verfahren nach einem der Ansprüche 6 bis 18, dadurch gekennzeichnet, daß die Reaktion zwischen 800 °C und 1 100 °C unter Atmosphärendruck, aber unter Inertgasatmosphäre, durchgeführt wird.
20. Verfahren nach Anspruch 19, dadurch gekennzeichnet, daß die Reaktion zwischen 900 °C und 1 100 °C durchgeführt wird.
21. Verfahren nach Anspruch 19, dadurch gekennzeichnet, daß man eine Inertgasatmosphäre erzeugt durch Ausschluß von Luft und später durch Zufuhr von trockenem Argon.
22. Verfahren nach Anspruch 19 oder 20, dadurch gekennzeichnet, daß man die gewählte Temperatur während einer Dauer von 30 min bis 3 h aufrechterhält.
23. Verfahren nach einem der Ansprüche 6 bis 22, dadurch gekennzeichnet, daß man am Ende der Reaktion die erhaltene Legierung von der Schlacke abtrennt, entweder durch Gießen in der Wärme oder durch Entformen nach Abkühlen unter Inertgasatmosphäre.
EP84401307A 1983-07-05 1984-06-22 Neodymlegierungen und Verfahren zur Herstellung derselben Expired EP0134162B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT84401307T ATE45989T1 (de) 1983-07-05 1984-06-22 Neodymlegierungen und verfahren zur herstellung derselben.

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
FR8311139A FR2548687B1 (fr) 1983-07-05 1983-07-05 Alliages de neodyme et leur procede de fabrication
FR8311139 1983-07-05
FR838314392A FR2551769B2 (fr) 1983-07-05 1983-09-09 Alliages de neodyme et leur procede de fabrication
FR8314392 1983-09-09

Related Child Applications (1)

Application Number Title Priority Date Filing Date
EP88100014.5 Division-Into 1988-01-04

Publications (2)

Publication Number Publication Date
EP0134162A1 EP0134162A1 (de) 1985-03-13
EP0134162B1 true EP0134162B1 (de) 1989-08-30

Family

ID=26223515

Family Applications (2)

Application Number Title Priority Date Filing Date
EP88100014A Expired - Lifetime EP0272250B1 (de) 1983-07-05 1984-06-22 Verfahren zur Herstellung von Neodymlegierungen
EP84401307A Expired EP0134162B1 (de) 1983-07-05 1984-06-22 Neodymlegierungen und Verfahren zur Herstellung derselben

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP88100014A Expired - Lifetime EP0272250B1 (de) 1983-07-05 1984-06-22 Verfahren zur Herstellung von Neodymlegierungen

Country Status (9)

Country Link
US (1) US4636353A (de)
EP (2) EP0272250B1 (de)
JP (1) JPS6046346A (de)
KR (1) KR920006603B1 (de)
AU (1) AU579579B2 (de)
BR (1) BR8403289A (de)
CA (1) CA1253721A (de)
DE (2) DE3479595D1 (de)
FR (1) FR2551769B2 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2596563C1 (ru) * 2015-04-23 2016-09-10 Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт авиационных материалов" (ФГУП "ВИАМ") Способ получения магнитотвердого материала

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4612047A (en) * 1985-10-28 1986-09-16 The United States Of America As Represented By The United States Department Of Energy Preparations of rare earth-iron alloys by thermite reduction
US4837109A (en) * 1986-07-21 1989-06-06 Hitachi Metals, Ltd. Method of producing neodymium-iron-boron permanent magnet
FR2607520B1 (fr) * 1986-11-27 1992-06-19 Comurhex Procede d'elaboration par metallothermie d'alliages purs a base de terres rares et de metaux de transition
US4917724A (en) * 1988-10-11 1990-04-17 General Motors Corporation Method of decalcifying rare earth metals formed by the reduction-diffusion process
US4992096A (en) * 1989-06-09 1991-02-12 The Dow Chemical Company Metallothermic reduction or rare earth metals
US5073337A (en) * 1990-07-17 1991-12-17 Iowa State University Research Foundation, Inc. Rare earth/iron fluoride and methods for making and using same
US5174811A (en) * 1990-10-01 1992-12-29 Iowa State University Research Foundation, Inc. Method for treating rare earth-transition metal scrap
US5087291A (en) * 1990-10-01 1992-02-11 Iowa State University Research Foundation, Inc. Rare earth-transition metal scrap treatment method
US5240513A (en) * 1990-10-09 1993-08-31 Iowa State University Research Foundation, Inc. Method of making bonded or sintered permanent magnets
US5242508A (en) * 1990-10-09 1993-09-07 Iowa State University Research Foundation, Inc. Method of making permanent magnets
US5129945A (en) * 1990-10-24 1992-07-14 The United States Of America As Represented By The Secretary Of The Interior Scrap treatment method for rare earth transition metal alloys
US5314526A (en) * 1990-12-06 1994-05-24 General Motors Corporation Metallothermic reduction of rare earth fluorides
US5238489A (en) * 1992-06-30 1993-08-24 The United States Of America As Represented By The Secretary Of The Interior Leaching/flotation scrap treatment method
US6755924B2 (en) 2001-12-20 2004-06-29 General Electric Company Method of restoration of mechanical properties of a cast nickel-based super alloy for serviced aircraft components
US8109349B2 (en) 2006-10-26 2012-02-07 Schlumberger Technology Corporation Thick pointed superhard material
US7637574B2 (en) 2006-08-11 2009-12-29 Hall David R Pick assembly
US8567532B2 (en) 2006-08-11 2013-10-29 Schlumberger Technology Corporation Cutting element attached to downhole fixed bladed bit at a positive rake angle
US9145742B2 (en) 2006-08-11 2015-09-29 Schlumberger Technology Corporation Pointed working ends on a drill bit
US9051795B2 (en) 2006-08-11 2015-06-09 Schlumberger Technology Corporation Downhole drill bit
US8714285B2 (en) * 2006-08-11 2014-05-06 Schlumberger Technology Corporation Method for drilling with a fixed bladed bit
US8622155B2 (en) * 2006-08-11 2014-01-07 Schlumberger Technology Corporation Pointed diamond working ends on a shear bit
US8590644B2 (en) * 2006-08-11 2013-11-26 Schlumberger Technology Corporation Downhole drill bit
US8215420B2 (en) * 2006-08-11 2012-07-10 Schlumberger Technology Corporation Thermally stable pointed diamond with increased impact resistance
US8960337B2 (en) 2006-10-26 2015-02-24 Schlumberger Technology Corporation High impact resistant tool with an apex width between a first and second transitions
US9068410B2 (en) 2006-10-26 2015-06-30 Schlumberger Technology Corporation Dense diamond body
US8540037B2 (en) 2008-04-30 2013-09-24 Schlumberger Technology Corporation Layered polycrystalline diamond
WO2010003926A1 (en) * 2008-07-08 2010-01-14 Technical University Of Denmark Magnetocaloric refrigerators
WO2010117765A1 (en) * 2009-03-30 2010-10-14 Schlumberger Canada Limited Double sintered thermally stable polycrystalline diamond cutting elements
CN103687840B (zh) 2011-10-20 2016-11-23 阿克佐诺贝尔化学国际公司 纯化包含mca和dca的液体进料的方法
IN2014CN03586A (de) 2011-10-20 2015-10-09 Akzo Nobel Chemicals Int Bv
CN114891953B (zh) * 2022-03-31 2024-03-08 包头市英思特稀磁新材料股份有限公司 一种提高烧结钕铁硼出材率的方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR489155A (fr) * 1917-04-19 1918-12-28 Maurice Duburguet Préparation des métaux des terres rares
US1648954A (en) * 1921-09-29 1927-11-15 Westinghouse Lamp Co Production of rare metals and alloys thereof
FR986924A (fr) * 1943-12-11 1951-08-07 Procédé de préparation de métaux des terres rares
US3186834A (en) * 1961-03-02 1965-06-01 Dow Chemical Co Preparation of rare earth metal sponge
FR1336858A (fr) * 1962-07-27 1963-09-06 Pechiney Prod Chimiques Sa Alliages contenant des métaux des terres rares
AT329884B (de) * 1973-07-19 1976-06-10 Treibacher Chemische Werke Ag Verfahren zur herstellung von lanthan-, cer-,praseodym- und neodym-metall und -legierungen derselben sowie von mischmetallen
JPS5696834A (en) * 1979-12-28 1981-08-05 Mitsubishi Monsanto Chem Co Compound semiconductor epitaxial wafer and manufacture thereof
US4496395A (en) * 1981-06-16 1985-01-29 General Motors Corporation High coercivity rare earth-iron magnets
JPS5976A (ja) * 1982-06-22 1984-01-05 日本電気株式会社 放射線治療用高エネルギct
DE3379131D1 (en) * 1982-09-03 1989-03-09 Gen Motors Corp Re-tm-b alloys, method for their production and permanent magnets containing such alloys
JPS6263642A (ja) * 1986-09-12 1987-03-20 Sumitomo Special Metals Co Ltd 磁石素材用希土類合金及びその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Iron-Binary Phase Diagrams", O. Kubaschewski, (1982), pp. 101+102 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2596563C1 (ru) * 2015-04-23 2016-09-10 Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт авиационных материалов" (ФГУП "ВИАМ") Способ получения магнитотвердого материала

Also Published As

Publication number Publication date
DE3485950T2 (de) 1993-02-25
DE3485950D1 (de) 1992-11-05
AU579579B2 (en) 1988-12-01
AU3008184A (en) 1985-01-10
CA1253721A (fr) 1989-05-09
JPH0224902B2 (de) 1990-05-31
KR850001297A (ko) 1985-03-18
JPS6046346A (ja) 1985-03-13
DE3479595D1 (en) 1989-10-05
EP0134162A1 (de) 1985-03-13
BR8403289A (pt) 1985-06-18
EP0272250B1 (de) 1992-09-30
KR920006603B1 (ko) 1992-08-10
EP0272250A1 (de) 1988-06-22
FR2551769B2 (fr) 1990-02-02
FR2551769A2 (fr) 1985-03-15
US4636353A (en) 1987-01-13

Similar Documents

Publication Publication Date Title
EP0134162B1 (de) Neodymlegierungen und Verfahren zur Herstellung derselben
EP1409406B1 (de) Metallurgisches silizium mittlererer reinheit und verfahren zu seiner herstellung
FR2589763A1 (fr) Procede de production d'une poudre d'alliage contenant des metaux de terres rares.
CH624148A5 (de)
EP2912202B1 (de) Verfahren zur isolierung von seltenen erden und begleitenten metallelementen in der magnetphase von permanentmagneten
FR2607520A1 (fr) Procede d'elaboration par metallothermie d'alliages purs a base de terres rares et de metaux de transition
FR2555611A1 (fr) Procede de preparation d'alliages d'aluminium et de terres rares
EP2454390A1 (de) Verfahren zur extraktion von mindestens einem chemischen elemet aus einem schmelzsalzmedium
EP0161975B1 (de) Verfahren zur Herstellung von porösen Produkten aus Bor oder Borverbindungen
EP0318362B1 (de) Verfahren zur Herstellung von Boriden der Seltenen Erden
EP0341106B1 (de) Verfahren zur Herstellung von Seltenerdboriden
FR2548687A1 (fr) Alliages de neodyme et leur procede de fabrication
RU2124574C1 (ru) Способ получения лигатуры скандий-алюминий (его варианты)
FR2677798A1 (fr) Procede de vitrification reductrice de volume de dechets hautement radioactifs.
JP2926280B2 (ja) 稀土類−鉄合金の製造方法
JP2010208862A (ja) シリコン精製方法
FR2561665A1 (fr) Procede pour l'elaboration d'un alliage a absorption d'hydrogene contenant du titane
EP0402288A2 (de) Verfahren zur Abtrennung von Kalzium und Stickstoff aus Lithium
AU2004201727B8 (en) Method for grain refinement of magnesium alloy castings
FR2697030A1 (fr) Procédé de production d'alliages de magnésium de haute pureté et alliage ainsi obtenu.
JPH04235231A (ja) 軽金属−希土類金属合金を製造する方法
BE409100A (de)
FR2581397A1 (fr) Procede de reduction thermique de preparation de calcium avec utilisation d'aluminium comme reducteur
BE461124A (de)
BE538989A (de)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

17P Request for examination filed

Effective date: 19850425

17Q First examination report despatched

Effective date: 19860729

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: RHONE-POULENC CHIMIE

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

REF Corresponds to:

Ref document number: 45989

Country of ref document: AT

Date of ref document: 19890915

Kind code of ref document: T

ITF It: translation for a ep patent filed

Owner name: BARZANO' E ZANARDO MILANO S.P.A.

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
REF Corresponds to:

Ref document number: 3479595

Country of ref document: DE

Date of ref document: 19891005

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19920505

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19920609

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19920616

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19920623

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19920625

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19920630

Year of fee payment: 9

Ref country code: CH

Payment date: 19920630

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 19920703

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19920709

Year of fee payment: 9

EPTA Lu: last paid annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19930622

Ref country code: GB

Effective date: 19930622

Ref country code: AT

Effective date: 19930622

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19930623

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19930630

Ref country code: CH

Effective date: 19930630

Ref country code: BE

Effective date: 19930630

BERE Be: lapsed

Owner name: RHONE-POULENC CHIMIE

Effective date: 19930630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19940101

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19930622

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19940228

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19940301

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

EUG Se: european patent has lapsed

Ref document number: 84401307.8

Effective date: 19940110