EP0129485B1 - Electric-cable structure and its application - Google Patents

Electric-cable structure and its application Download PDF

Info

Publication number
EP0129485B1
EP0129485B1 EP84401269A EP84401269A EP0129485B1 EP 0129485 B1 EP0129485 B1 EP 0129485B1 EP 84401269 A EP84401269 A EP 84401269A EP 84401269 A EP84401269 A EP 84401269A EP 0129485 B1 EP0129485 B1 EP 0129485B1
Authority
EP
European Patent Office
Prior art keywords
structure according
polymer layer
cables
cable structure
ohms
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP84401269A
Other languages
German (de)
French (fr)
Other versions
EP0129485A1 (en
Inventor
Jean-Claude Petinelli
Dominique Bertier
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Acome SCOP
TotalEnergies Marketing Services SA
Original Assignee
Acome SCOP
Compagnie Francaise de Raffinage SA
Compagnie de Raffinage et de Distribution Total France SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Acome SCOP, Compagnie Francaise de Raffinage SA, Compagnie de Raffinage et de Distribution Total France SA filed Critical Acome SCOP
Publication of EP0129485A1 publication Critical patent/EP0129485A1/en
Application granted granted Critical
Publication of EP0129485B1 publication Critical patent/EP0129485B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/17Protection against damage caused by external factors, e.g. sheaths or armouring
    • H01B7/28Protection against damage caused by moisture, corrosion, chemical attack or weather
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/17Protection against damage caused by external factors, e.g. sheaths or armouring
    • H01B7/28Protection against damage caused by moisture, corrosion, chemical attack or weather
    • H01B7/282Preventing penetration of fluid, e.g. water or humidity, into conductor or cable
    • H01B7/285Preventing penetration of fluid, e.g. water or humidity, into conductor or cable by completely or partially filling interstices in the cable
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/24Conductive material dispersed in non-conductive organic material the conductive material comprising carbon-silicon compounds, carbon or silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B11/00Communication cables or conductors
    • H01B11/02Cables with twisted pairs or quads
    • H01B11/06Cables with twisted pairs or quads with means for reducing effects of electromagnetic or electrostatic disturbances, e.g. screens
    • H01B11/10Screens specially adapted for reducing interference from external sources
    • H01B11/1058Screens specially adapted for reducing interference from external sources using a coating, e.g. a loaded polymer, ink or print
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B9/00Power cables
    • H01B9/02Power cables with screens or conductive layers, e.g. for avoiding large potential gradients
    • H01B9/027Power cables with screens or conductive layers, e.g. for avoiding large potential gradients composed of semi-conducting layers

Definitions

  • the present invention relates to a new electric cable structure, in which the conductor is coated with several successive layers of materials, comprising a hydrophobic and semiconductor sealing gel, placed between a polymer layer, also semiconductor, and a screen. metallic.
  • the invention also relates to the application of this structure to the continuous earthing of electrical conductors and to the radialization of the field in the power cables.
  • the cable structure shown in fig. 1a is that of a telecommunication cable of a conventional type.
  • This cable comprises, for example, a plurality of conductive wires 1 made of a conductive material such as copper or aluminum, surrounded by an insulating layer 2. All of the conductive wires thus sheathed are surrounded by a conductive metallic shield 3 , forming a screen, which is itself surrounded by a protective layer constituted by a semiconductor polymer 4, ensuring good physical contact with the metal surface 3.
  • the space 5 left free between the insulating sheaths 2 and the metal surface 3 can be filled in the conventional way with a sealant.
  • the energy transport cable shown in fig. 1b which is also of a known type, comprises, for its part, a strand of conducting wires 6, which is surrounded by a sheath or semiconductive polymer layer 7.
  • a sheath or semiconductive polymer layer 7 Around this sheath 7 is arranged an insulating material 8, itself surrounded by a second semiconductor polymer layer 9, surrounded by a layer of conductive metal 10 forming a screen, for example consisting of copper, steel or aluminum.
  • the outer belt 11 can itself be constituted by an insulating or semi-conductive polymer sheath.
  • US-A-4095039 describes a cable structure in which a sealing layer having semiconductive properties and ensuring perfect sealing is interposed between a metallic screen and a semiconductive polymer layer surrounding a plurality of conductive cables.
  • the sealing layer comprises a polyisobutylene rubber, a large amount of carbon black and, if necessary, to lower its viscosity, an oil, in as small an amount as possible.
  • the object of the present invention is therefore to produce such structures of electric cables in which a perfect seal is ensured between a metal screen and a semiconductor polymer layer and which ensure a continuous earthing of the cables.
  • the subject of the invention is an electrical cable structure of the type comprising at least one screen and at least one semi-conductive polymer layer surrounding at least one conductive cable, characterized in that between said metallic screen and said layer a semiconductive polymer is interposed with a sealing layer with a dynamic viscosity of less than 100,000 centipoises at 20 ° C.
  • this sealing layer comprising a semiconductor jelly containing between 50 and 95% by weight of at least one compound of a paraffinic or naphthenic hydrocarbon oil of petroleum, vegetable or synthetic origin, and between 5 and 50% by weight of carbon black and / or graphite, or a powder of at least one metal chosen from the group comprising zinc, copper, and aluminum, or of at least one oxide of one of these metals; in that the resistivity of said sealing layer is less than 40,000 ohms x cm; and in that the resistivity of said semiconductor polymer layer is less than 20,000 ohms x cm.
  • metallic screen designates not only a conductive shielding of the type illustrated in figs. 1a and 1b, but also any ply of metallic threads, woven, braided or "guippés", to use the term used in the art.
  • the semiconductor and hydrophobic jelly used in accordance with the invention is designated by the references 12 and 13, respectively, in FIGS. 2a or 2b, on which the elements already described with reference to FIGS. 1a and 2a keep the same reference figures.
  • This jelly is interposed between the metal screens 3, respectively 10, and the semiconductive polymer sheaths 4, respectively 9.
  • Fig. 2c shows a particular application of the cable structure according to the invention, in a low noise coaxial cable.
  • the friction of the metal braid against the dielectric is generally the source of triboelectric noise.
  • the semiconductor jelly constitutes the sealing layer represented by the reference 13 which is interposed between the semiconductor polymer layer 9 which covers the insulating material 8, and the metal braid represented by the reference 10. This arrangement makes it possible to remove much of the triboelectric noise.
  • the introduction of the semiconductor and hydrophobic sealing jelly between the metal screen and the semiconductor polymer layer also makes it possible, thanks to the dielectric properties of this layer, to effectively ensure the radialization of the field in the transport cables. of energy.
  • a first advantage of the present invention is linked to the fact that the semiconductor jelly is perfectly compatible with both the metal strip, to which it adheres completely and that it protects from possible traces of moisture or other forms of corrosion of the metal. , than with the semiconductor polymer layer, due to the very nature of its constituents, insofar as these cannot diffuse into the polymer layer and where additives and conductive fillers of the same kind are preferably added than those used in the composition of the jelly.
  • a second advantage of the present invention lies in the fact that, given the presence of the semiconductor jelly, the semiconductor polymer layer no longer has to simultaneously provide effective protection of the metal strip and maximum adhesion to the metal : the semiconductor polymer layer can therefore be chosen according to the only mechanical properties required for cable protection, in addition to the desired electrical properties.
  • a third advantage of this cable belt structure resides in the fact that the semiconductor jelly ensures, by its fluidity and by its plasticity, in addition to a perfect seal and, therefore, an excellent electrical contact between the semiconductor polymer layer and the metallic screen which surrounds it, whatever the mechanical deformations imposed on the cable, while maintaining effective protection of these elements.
  • An additional advantage of the cable belt structure according to the invention finally results from the fact that the fluidity and plasticity properties of the sealing layer are not very susceptible to the effect of temperature since the dynamic viscosity is at 20 °. C, less than 100,000 centipoises and, at 100 ° C, remains between 50,000 and 100,000 centipoises.
  • This cable belt structure finally considerably facilitates the operations of connecting the cables during their installation.
  • This new type of cable belt structure therefore protects, with increased reliability, the metal screen against corrosion and ensures excellent grounding or excellent radialization of the electric field, while better protecting the cable itself by strengthening its outer sheath.
  • a proportion of the order of 50 to 95% by weight of paraffinic hydrocarbon compounds is used or Naphthenics selected to not diffuse at temperatures of the order of 50 ° C or more in polyethylene, polypropylene, polybutylene, polyvinyl chloride or any other cellular insulation material used in the composition of the belt sheath.
  • hydrocarbon compounds can be of petroleum, vegetable or synthetic origin, or be composed of mixtures of several of these oils.
  • distillation cups or oils and / or petrolatum obtained from the latter are used. Generally, less than 5% of these oils have a boiling point below 350 ° C.
  • these hydrocarbon compounds are advantageously constituted by polymers obtained from olefins having three or four carbon atoms, or by mixtures of these.
  • synthetic oil cuts having a molecular weight by weight of between 200 and 4000 and, more particularly, between 400 and 1500 are used.
  • a conductive filler such as a metal powder or metal oxide, the metal of which may advantageously be zinc, copper or aluminum, or carbon black, is added in a manner known per se. , a mixture of carbon black of varying particle size, or graphite or, finally, a mixture of the latter.
  • the proportion of the conductive charge, relative to that of the oil, is determined above all by considerations of resistance. electrical and viscosity of the desired semiconductor and hydrophobic jelly, depending on the conditions of manufacture and use of the electrical cable in the belt from which it will be introduced. This proportion can therefore vary between 5 and 50% by weight of the sealing jelly, depending on the case, and, more particularly, between 5 and 40%.
  • a particularly advantageous composition according to the invention is obtained by the use of very conductive carbon blacks of the Ketjen EC or Phillips XE2 type; these blacks, which can be used in a lower concentration than conventional blacks, for the same resistivity, make it possible to obtain compositions which are all the more hydrophobic; the concentration of these blacks is between 5 and 15% by weight, depending on whether they are used alone or not and according to the desired resistivity.
  • composition of the jelly one can finally add, without however this addition being necessary for all oils, stabilizing agents, adhesiveness agents such as resins of petroleum origin, thickening agents such as unsaturated polyolefins in proportion which may be between 0 and 20%, and finally metal passivators such as benzotriazoles, substituted or not, or any other substance known per se capable of performing a similar function, in proportion which may be between 0 and 2%, depending on the nature of the oil, of the conductive filler or metal used in the composition of the strip (or armor) of the cable.
  • stabilizing agents such as resins of petroleum origin
  • thickening agents such as unsaturated polyolefins
  • metal passivators such as benzotriazoles, substituted or not, or any other substance known per se capable of performing a similar function, in proportion which may be between 0 and 2%, depending on the nature of the oil, of the conductive filler or metal used in the composition of the strip (or armor) of the cable.
  • compositions comprising mainly an ethylene polymer, or a mixture of a homopolymer and an ethylene copolymer. , or a mixture of ethylene copolymer with a propylene monomer, vinyl acetate, ethyl acrylate or any other monomer, in a manner known per se.
  • compositions containing more than 70% of high or medium density ethylene or polyethylene compolymer will be used, in order to give this sheath the required rigidity and solidity.
  • the polyethylene used may advantageously have a density between 0.90 and 0.95 and a melt index between 0.1 and 2. It is also possible to use any plastic material capable of incorporating the conductive fillers and, in particular, polychloride plasticized vinyl.
  • the polymer composition also contains a conductive filler, which will advantageously be of the same nature as that contained by the semiconductor jelly entering the cable belt structure.
  • the proportion of this load can also vary between 5% and 45%, depending on the resistivity and robustness that can be expected from this type of sheath and the expected conditions of use of the electric cable. For the purposes of continuous earthing, this proportion will advantageously vary between 8 and 15% by weight.
  • the sheaths must finally have good resistance to stress cracking.
  • the Applicant has carried out comparative tests between them and cable structures of a conventional type.
  • compositions of these cables are listed in Table 1 below:
  • the presence of a hydrophobic semiconductor jelly between the metal screen and the semiconductor polymer layer allows this screen and this layer to remain constantly in contact. electric, without the use of any auxiliary earthing of the screen, and without risk of accidental corrosion of the latter as a result of ramification phenomena following imperfect contacts between the screen and the semiconductor layer.
  • a first cable D presents the structure illustrated in FIG. 3.
  • Around the screen 14 are successively arranged an intermediate semiconductive polymer layer 15, a steel screen 16 arranged in a helix and a semi-conductive external polymer sheath 17.
  • the polymer layers and the semiconductor jelly used in the composition of the cable D are produced with formulations identical to those of the cable C previously described.
  • Table II below gives the resistance values of the screens in ohms for 50 meters of buried cable of these cables D and D.
  • a semiconductive and hydrophobic sealing gel promotes the electrical conductivity between screens and sheaths, while ensuring longitudinal sealing.
  • the three constituents of this cable belt are therefore placed in continuous parallel contact, which makes it possible to avoid frequent earthing of the external structure of the cables and to promote the reducing effect.

Description

La présente invention concerne une nouvelle structure de câble électrique, dans laquelle le conducteur est revêtu de plusieurs couches successives de matériaux, comprenant une gelée d'étanchéité hydrophobe et semi-conductrice, disposée entre une couche polymère, également semi-conductrice, et un écran métallique.The present invention relates to a new electric cable structure, in which the conductor is coated with several successive layers of materials, comprising a hydrophobic and semiconductor sealing gel, placed between a polymer layer, also semiconductor, and a screen. metallic.

L'invention concerne également l'application de cette structure à la mise à la terre en continu de conducteurs électriques et à la radialisation du champ dans les câbles d'énergie.The invention also relates to the application of this structure to the continuous earthing of electrical conductors and to the radialization of the field in the power cables.

L'apparition des matières polymères semi-conductrices a, on le sait, amené une grande amélioration dans la fabrication des câbles électriques, tant pour les câbles de télécommunication que pour les câbles de transport d'énergie. De telles structures de câbles connus seront décrites ci-après, en référence aux fig. 1a et 1b des dessins annexés, sur lesquels:

  • Les fig. 1a et 1b sont des coupes transversales de deux types de câble de la technique antérieure;
  • les fig. 2a et 2b sont des coupes analogues des mêmes câbles présentant un perfectionnement conforme à l'invention;
  • la fig. 2c représente une coupe d'un câble coaxial conforme à l'invention;
  • la fig. 3 est une vue en perspective avec arrachés illustrant une structure de câble conforme à la présente invention.
The appearance of semiconductor polymeric materials has, as we know, brought about a great improvement in the manufacture of electric cables, both for telecommunication cables and for energy transport cables. Such known cable structures will be described below, with reference to FIGS. 1a and 1b of the accompanying drawings, in which:
  • Figs. 1a and 1b are cross sections of two types of cable of the prior art;
  • fig. 2a and 2b are similar sections of the same cables having an improvement in accordance with the invention;
  • fig. 2c shows a section of a coaxial cable according to the invention;
  • fig. 3 is a perspective view with parts broken away illustrating a cable structure according to the present invention.

La structure de câble représentée sur la fig. 1a est celle d'un câble de télécommunication d'un type classique. Ce câble comporte, par exemple, un pluralité de fils conducteurs 1 en un matériau conducteur tel que le cuivre ou l'aluminium, entourés d'une couche isolante 2. L'ensemble des fils conducteurs ainsi gainés est ceinturé par un blindage métallique conducteur 3, faisant écran, qui est lui-même entouré par une couche protectrice constituée par un polymère semi-conducteur 4, assurant un bon contact physique avec la surface métallique 3. L'espace 5 laissé libre entre les gainages isolants 2 et la surface métallique 3 peut être rempli de manière classique avec un produit d'étanchéité.The cable structure shown in fig. 1a is that of a telecommunication cable of a conventional type. This cable comprises, for example, a plurality of conductive wires 1 made of a conductive material such as copper or aluminum, surrounded by an insulating layer 2. All of the conductive wires thus sheathed are surrounded by a conductive metallic shield 3 , forming a screen, which is itself surrounded by a protective layer constituted by a semiconductor polymer 4, ensuring good physical contact with the metal surface 3. The space 5 left free between the insulating sheaths 2 and the metal surface 3 can be filled in the conventional way with a sealant.

Le câble de transport d'énergie représenté sur la fig. 1b, qui est également d'un type connu, comporte, pour sa part, un toron de fils conducteurs 6, qui est entouré par une gaine ou couche polymère semi-conductrice 7. Autour de cette gaine 7 est disposée une matière isolante 8, elle-même entourée d'une seconde couche polymère semi-conductrice 9, ceinturée par une couche de métal conducteur 10 formant écran est constituée par exemple de cuivre, d'acier ou d'aluminium. La ceinture externe 11 peut elle-même être constituée par une gaine de polymère isolant ou semi-conductrice.The energy transport cable shown in fig. 1b, which is also of a known type, comprises, for its part, a strand of conducting wires 6, which is surrounded by a sheath or semiconductive polymer layer 7. Around this sheath 7 is arranged an insulating material 8, itself surrounded by a second semiconductor polymer layer 9, surrounded by a layer of conductive metal 10 forming a screen, for example consisting of copper, steel or aluminum. The outer belt 11 can itself be constituted by an insulating or semi-conductive polymer sheath.

Les câbles usuels du type de ceux illustrés par les fig. 1a et 1b ou constitués d'assemblage de torons tels que les câbles multipolaires, présentent cependant l'inconvénient de ne pas être parfaitement étanches vis-à-vis de l'humidité et de ne pas assurer un contact parfait entre gaine semi-conductrice et surface métallique. En effet, la zone comprise entre le polymère semi-conducteur (référencé 4 sur la fig. 1 a et 9 sur la fig. 1 b) et l'écran métallique (référencé 3 sur la fig. 1a et 10 sur la fig. 1b) est toujours susceptible, à la suite d'un choc, d'une torsion de câble, d'une fissuration, d'une condensation se produisant au niveau des espaces libres ou d'une propagation longitudinale à partir des jonctions ou des épissures du câble, de laisser des traces d'humidité parvenir au contact du métal, en provoquant ainsi la détérioration de ce dernier par un phénomène de ramification, d'oxydation et/ou de corrosion. On peut limiter partiellement cet inconvénient en incorporant entre la couche métallique et le polymère semi-conducteur une couche d'un matériau hydrophile tel que la carboxyméthylcellulose ou d'un matériau hydroscopique tel qu'une argile semi-conductrice, dont le gonflement en présence d'humidité empêche l'eau de se répandre le long du métal conducteur. Néanmoins, ces produits n'empêchent pas les phénomènes de corrosion locale des écrans.The usual cables of the type of those illustrated in figs. 1a and 1b or made up of strand assemblies such as multipolar cables, however have the drawback of not being perfectly sealed against humidity and of not ensuring perfect contact between the semiconductor sheath and metal surface. Indeed, the area between the semiconductor polymer (referenced 4 in fig. 1 a and 9 in fig. 1 b) and the metal screen (referenced 3 in fig. 1a and 10 in fig. 1b ) is always susceptible, following a shock, a cable twist, a cracking, a condensation occurring at the level of the free spaces or a longitudinal propagation starting from the junctions or the splices of the cable, to allow traces of moisture to come into contact with the metal, thus causing the deterioration of the latter by a phenomenon of branching, oxidation and / or corrosion. This drawback can be partially limited by incorporating between the metallic layer and the semiconductor polymer a layer of a hydrophilic material such as carboxymethylcellulose or of a hydroscopic material such as a semiconductor clay, the swelling of which in the presence of moisture prevents water from spreading along the conductive metal. However, these products do not prevent the phenomena of local corrosion of the screens.

US-A-4095039 décrit une structure de câble dans laquelle une couche d'étanchéité ayant des propriétés semi-conductrices et assurant une parfaite étanchéité est interposée entre un écran métallique et une couche polymère semi-conductrice entourant une pluralité de câbles conducteurs. La couche d'étanchéité comprend un caoutchouc de polyisobutylène, une quantité importante de noir de carbone et, si nécessaire, pour abaisser sa viscosité, une huile, en quantité aussi faible que possible.US-A-4095039 describes a cable structure in which a sealing layer having semiconductive properties and ensuring perfect sealing is interposed between a metallic screen and a semiconductive polymer layer surrounding a plurality of conductive cables. The sealing layer comprises a polyisobutylene rubber, a large amount of carbon black and, if necessary, to lower its viscosity, an oil, in as small an amount as possible.

L'objet de la présente invention est donc de réaliser de telles structures de câbles électriques dans lesquelles une parfaite étanchéité est assuré entre un écran métallique et une couche polymère semi-conductrice et qui assurent une mise à la terre continue des câbles.The object of the present invention is therefore to produce such structures of electric cables in which a perfect seal is ensured between a metal screen and a semiconductor polymer layer and which ensure a continuous earthing of the cables.

A cet effet, l'invention a pour objet une structure de câble électrique du type comprenant au moins un écran et au moins une couche polymère semi-conductrice entourant au moins un câble conducteur, caractérisé en ce qu'entre ledit écran métallique et ladite couche polymère semi-conductrice est interposée une couche d'étanchéité d'une viscosité dynamique inférieure à 100000 centipoises à 20 °C et comprise entre 50000 et 100000 centipoises à100 °C, cette couche d'étanchéité comprenant une gelée semi-conductrice contenant entre 50 et 95% en poids d'au moins un composé d'une huile hydrocarbonée de nature paraffinique ou naphtènique d'origine pétrolière, végétale ou synthétique, et entre 5 et 50% en poids de noir de carbone et/ou de graphite, ou d'une poudre d'au moins un métal choisi dans le groupe comprenant le zinc, le cuivre, et l'aluminium, ou d'au moins un oxyde de l'un de ces métaux; en ce que la résistivité de ladite couche d'étanchéité est inférieure à 40000 ohms x cm; et en ce que la résistivité de ladite couche polymère semi-conductrice est inférieure à 20000 ohms x cm.To this end, the subject of the invention is an electrical cable structure of the type comprising at least one screen and at least one semi-conductive polymer layer surrounding at least one conductive cable, characterized in that between said metallic screen and said layer a semiconductive polymer is interposed with a sealing layer with a dynamic viscosity of less than 100,000 centipoises at 20 ° C. and between 50,000 and 100,000 centipoises at 100 ° C., this sealing layer comprising a semiconductor jelly containing between 50 and 95% by weight of at least one compound of a paraffinic or naphthenic hydrocarbon oil of petroleum, vegetable or synthetic origin, and between 5 and 50% by weight of carbon black and / or graphite, or a powder of at least one metal chosen from the group comprising zinc, copper, and aluminum, or of at least one oxide of one of these metals; in that the resistivity of said sealing layer is less than 40,000 ohms x cm; and in that the resistivity of said semiconductor polymer layer is less than 20,000 ohms x cm.

Au sens de la présente demande, on désigne par le terme «écran métallique» non seulement un blindage conducteur du type illustré par les fig. 1a et 1b, mais également toute nappe de fils métalliques, tissés, tressés ou «guippés», pour reprendre le terme en usage dans la technique.Within the meaning of the present application, the term “metallic screen” designates not only a conductive shielding of the type illustrated in figs. 1a and 1b, but also any ply of metallic threads, woven, braided or "guippés", to use the term used in the art.

La gelée semi-conductrice et hydrophobe utilisée conformément à l'invention est désignée par les références 12 et 13, respectivement, sur les fig. 2a ou 2b, sur lesquelles les éléments déjà décrits en référence aux fig. 1a et 2a conservent les mêmes chiffres de référence. Cette gelée est interposée entre les écrans métalliques 3, respectivement 10, et les gaines polymères semi-conductrices 4, respectivement 9. De par ses propriétés hydrophobes, elle isole les câbles électriques de l'humidité, tout en assurant de façon efficace une mise à la terre en continu, grâce à ses propriétés diélectriques particulières.The semiconductor and hydrophobic jelly used in accordance with the invention is designated by the references 12 and 13, respectively, in FIGS. 2a or 2b, on which the elements already described with reference to FIGS. 1a and 2a keep the same reference figures. This jelly is interposed between the metal screens 3, respectively 10, and the semiconductive polymer sheaths 4, respectively 9. By virtue of its hydrophobic properties, it insulates the electric cables from humidity, while effectively ensuring a the earth continuously, thanks to its special dielectric properties.

Bien entendu, une telle mise à la terre en continu est également applicable, selon le même principe, à d'autres types de câbles, notamment les câbles de transport d'énergie.Of course, such a continuous earthing is also applicable, according to the same principle, to other types of cables, in particular energy transport cables.

La fig. 2c représente une application particulière de la structure de câble selon l'invention, dans un câble coaxial à faible bruit. Dans les câbles coaxiaux usuels, le frottement de la tresse métallique contre le diélectrique est généralement la source de bruits triboélectriques. Sur la fig. 2c, la gelée semi-conductrice constitue la couche d'étanchéité représentée par la référence 13 qui est intercalée entre la couche polymère semi-conductrice 9 qui recouvre la matière isolante 8, et la tresse métallique représentée par la référence 10. Cette disposition permet de supprimer une grande partie des bruits triboélectriques.Fig. 2c shows a particular application of the cable structure according to the invention, in a low noise coaxial cable. In common coaxial cables, the friction of the metal braid against the dielectric is generally the source of triboelectric noise. In fig. 2c, the semiconductor jelly constitutes the sealing layer represented by the reference 13 which is interposed between the semiconductor polymer layer 9 which covers the insulating material 8, and the metal braid represented by the reference 10. This arrangement makes it possible to remove much of the triboelectric noise.

L'introduction de la gelée d'étanchéité semi-conductrice et hydrophobe entre écran métallique et couche polymère semi-conductrice permet en outre, grâce aux propriétés diélectriques de cette couche, d'assurer de façon efficace la radialisation du champ dans les câbles de transport d'énergie.The introduction of the semiconductor and hydrophobic sealing jelly between the metal screen and the semiconductor polymer layer also makes it possible, thanks to the dielectric properties of this layer, to effectively ensure the radialization of the field in the transport cables. of energy.

Un premier avantage de la présente invention est lié au fait que la gelée semi-conductrice est parfaitement compatible tant avec le feuillard métallique, auquel elle adhère complètement et qu'elle protège des traces éventuelles d'humidité ou d'autres formes de corrosion du métal, qu'avec la couche polymère semi-conductrice, du fait de la nature même de ses constituants, dans la mesure où ceux-ci ne peuvent diffuser dans la couche polymère et où sont ajoutés de préférence des additifs et des charges conductrices de même nature que ceux entrant dans la composition de la gelée.A first advantage of the present invention is linked to the fact that the semiconductor jelly is perfectly compatible with both the metal strip, to which it adheres completely and that it protects from possible traces of moisture or other forms of corrosion of the metal. , than with the semiconductor polymer layer, due to the very nature of its constituents, insofar as these cannot diffuse into the polymer layer and where additives and conductive fillers of the same kind are preferably added than those used in the composition of the jelly.

Un second avantage de la présente invention réside dans le fait que, compte tenu de la présence de la gelée semi-conductrice, la couche polymère semi-conductrice n'a plus à assurer simultanément une protection efficace du feuillard métallique et une adhérence maximale au métal: la couche polymère semi-conductrice peut donc être choisie en fonction des seules propriétés mécaniques requises pour la protection du câble, outre les propriétés électriques désirées.A second advantage of the present invention lies in the fact that, given the presence of the semiconductor jelly, the semiconductor polymer layer no longer has to simultaneously provide effective protection of the metal strip and maximum adhesion to the metal : the semiconductor polymer layer can therefore be chosen according to the only mechanical properties required for cable protection, in addition to the desired electrical properties.

Un troisième avantage de cette structure de ceinture de câble réside dans le fait que la gelée semi-conductrice assure, par sa fluidité et par sa plasticité, outre une parfaite étanchéité et, donc, un excellent contact électrique entre la couche polymère semi-conductrice et l'écran métallique qui l'entourent, quelles que soient les déformations mécaniques imposées au câble, tout en maintenant une protection efficace de ces éléments.A third advantage of this cable belt structure resides in the fact that the semiconductor jelly ensures, by its fluidity and by its plasticity, in addition to a perfect seal and, therefore, an excellent electrical contact between the semiconductor polymer layer and the metallic screen which surrounds it, whatever the mechanical deformations imposed on the cable, while maintaining effective protection of these elements.

Un avantage supplémentaire de la structure de ceinture de câble selon l'invention résulte enfin du fait que les propriétés de fluidité et de plasticité de la couche d'étanchéité sont peu susceptibles à l'effet de la température puisque la viscosité dynamique est à 20 °C, inférieure à 100.000 centipoises et, à 100 °C, reste comprise entre 50.000 et 100.000 centipoises.An additional advantage of the cable belt structure according to the invention finally results from the fact that the fluidity and plasticity properties of the sealing layer are not very susceptible to the effect of temperature since the dynamic viscosity is at 20 °. C, less than 100,000 centipoises and, at 100 ° C, remains between 50,000 and 100,000 centipoises.

Cette structure de ceinture de câble facilite enfin considérablement les opérations de raccordement des câbles lors de leur installation.This cable belt structure finally considerably facilitates the operations of connecting the cables during their installation.

Ce nouveau type de structure de ceinture de câble protège donc, avec un fiabilité accrue, l'écran métallique contre la corrosion et assure une excellente mise à la terre ou une excellente radialisation du champ électrique, tout en protégeant mieux le câble lui-même en renforçant sa gaine externe.This new type of cable belt structure therefore protects, with increased reliability, the metal screen against corrosion and ensures excellent grounding or excellent radialization of the electric field, while better protecting the cable itself by strengthening its outer sheath.

Dans les compositions d'étanchéité de gelées semi-conductrices susceptibles d'être introduites dans la structure de ceinture de câble électrique objet de la présente invention, on utilise une proportion de l'ordre de 50 à 95% en poids de composés hydrocarbonés paraffiniques ou naphténi- ques sélectionnés pour ne pas diffuser à des températures de l'ordre de 50 °C et plus dans le polyéthylène, polypropylène, polybutylène, polychlorure de vinyle ou tout autre matériau d'isolation cellulaire entrant dans la composition de la gaine de ceinture.In the sealing compositions for semiconductor jellies which can be introduced into the structure of the electrical cable belt which is the subject of the present invention, a proportion of the order of 50 to 95% by weight of paraffinic hydrocarbon compounds is used or Naphthenics selected to not diffuse at temperatures of the order of 50 ° C or more in polyethylene, polypropylene, polybutylene, polyvinyl chloride or any other cellular insulation material used in the composition of the belt sheath.

Ces composés hydrocarbonés peuvent être d'origine pétrolière, végétale ou synthétique, ou être composés de mélanges de plusieurs de ces huiles. On utilise avantageusement des coupes de distillation ou des huiles et/ou pétrolatum obtenues à partir de ces dernières. D'une façon générale, moins de 5% de ces huiles possèdent un point d'ébullition inférieur à 350 °C.These hydrocarbon compounds can be of petroleum, vegetable or synthetic origin, or be composed of mixtures of several of these oils. Advantageously, distillation cups or oils and / or petrolatum obtained from the latter are used. Generally, less than 5% of these oils have a boiling point below 350 ° C.

Lorsqu'ils sont d'origine synthétique, ces composés hydrocarbonés sont avantageusement constitués par des polymères obtenus à partir d'oléfines possédant trois ou quatre atomes de carbone, ou par des mélanges de celles-ci. On utilise alors avantageusement des coupes d'huiles synthétiques possédant une masse moléculaire en poids comprise entre 200 et 4000 et, plus particulièrement, entre 400 et 1500.When they are of synthetic origin, these hydrocarbon compounds are advantageously constituted by polymers obtained from olefins having three or four carbon atoms, or by mixtures of these. Advantageously, then, synthetic oil cuts having a molecular weight by weight of between 200 and 4000 and, more particularly, between 400 and 1500 are used.

A ces huiles, on ajoute, de façon connue en soi, une charge conductrice telle qu'une poudre métallique ou d'oxyde métallique, dont le métal peut être avantageusement du zinc, du cuivre ou de l'aluminium, ou du noir de carbone, un mélange de noir de carbone de granulométrie en proportion variée, ou du graphite ou, enfin, un mélange de ces derniers. La proportion de la charge conductrice, par rapport à celle de l'huile, est déterminée avant tout par des considérations de résistivité électrique et de viscosité de la gelée semi-conductrice et hydrophobe recherchée, en fonction des conditions de fabrication et d'utilisation du câble électrique dans la ceinture duquel elle sera introduite. Cette proportion peut donc varier entre 5 et 50% en poids de la gelée d'étanchéité, suivant les cas, et, plus particulièrement, entre 5 et 40%.To these oils, a conductive filler such as a metal powder or metal oxide, the metal of which may advantageously be zinc, copper or aluminum, or carbon black, is added in a manner known per se. , a mixture of carbon black of varying particle size, or graphite or, finally, a mixture of the latter. The proportion of the conductive charge, relative to that of the oil, is determined above all by considerations of resistance. electrical and viscosity of the desired semiconductor and hydrophobic jelly, depending on the conditions of manufacture and use of the electrical cable in the belt from which it will be introduced. This proportion can therefore vary between 5 and 50% by weight of the sealing jelly, depending on the case, and, more particularly, between 5 and 40%.

Une composition particulièrement intéressante selon l'invention est obtenue par l'emploi de noirs de carbone très conducteurs du type Ketjen EC ou Phillips XE2; ces noirs, utilisables en plus faible concentration que les noirs classiques, pour une même résistivité, permettent d'obtenir des compositions d'autant plus hydrophobes; la concentration de ces noirs est comprise entre 5 et 15% en poids, selon qu'ils sont utilisés seuls ou non et selon la résistivité désirée.A particularly advantageous composition according to the invention is obtained by the use of very conductive carbon blacks of the Ketjen EC or Phillips XE2 type; these blacks, which can be used in a lower concentration than conventional blacks, for the same resistivity, make it possible to obtain compositions which are all the more hydrophobic; the concentration of these blacks is between 5 and 15% by weight, depending on whether they are used alone or not and according to the desired resistivity.

Dans la composition de la gelée, on peut enfin ajouter, sans toutefois que cette addition soit nécessaire pour toutes les huiles, des agents stabilisants, des agents d'adhésivité tels que des résines d'origine pétrolière, des agents épaississants tels que des polyoléfines insaturées en proportion pouvant être comprise entre 0 et 20%, et enfin des passivateurs de métaux tels que des benzotria- zoles, substitués ou non, ou toute autre substance connue en soi capable d'assurer une fonction analogue, en proportion pouvant être comprise entre 0 et 2%, suivant la nature de l'huile, de la charge conductrice ou de métal entrant dans la composition du feuillard (ou armure) du câble.In the composition of the jelly, one can finally add, without however this addition being necessary for all oils, stabilizing agents, adhesiveness agents such as resins of petroleum origin, thickening agents such as unsaturated polyolefins in proportion which may be between 0 and 20%, and finally metal passivators such as benzotriazoles, substituted or not, or any other substance known per se capable of performing a similar function, in proportion which may be between 0 and 2%, depending on the nature of the oil, of the conductive filler or metal used in the composition of the strip (or armor) of the cable.

Les gelées semi-conductrices et hydrophobes entrant dans la structure de ceinture de câble objet de la présente invention présenteront les propriétés physiques suivantes:

  • - une résistivité électrique inférieure à 40.000 et de préférence inférieure à 10.000 ohms x cm, lorsque le câble est destiné à être mis à la terre, ou une résistivité inférieure à 20.000 ohms x cm pour les câbles dits homopolaires;
  • - une viscosité à 100 °C comprise entre 10000 et 100000 centipoises;
  • - une bonne adhérence au métal à basse température (-10 °C, conformément à la norme CNET CM 35), et
  • - une température bille-anneau, mesurée selon la norme NFT 66008, supérieure à 50 °C et, de préférence, entre 100 et 200 °C.
The semiconductor and hydrophobic jellies entering the cable belt structure object of the present invention will have the following physical properties:
  • - an electrical resistivity less than 40,000 and preferably less than 10,000 ohms x cm, when the cable is intended to be earthed, or a resistivity less than 20,000 ohms x cm for so-called homopolar cables;
  • - a viscosity at 100 ° C of between 10,000 and 100,000 centipoises;
  • - good adhesion to the metal at low temperature (-10 ° C, in accordance with standard CNET CM 35), and
  • - a ball-ring temperature, measured according to standard NFT 66008, greater than 50 ° C and, preferably, between 100 and 200 ° C.

Des essais ont été effectués depuis de nombreuses années pour rendre les matériaux de gainage thermoplastique semi-conducteurs, en incorporant dans ceux-ci des métaux, des oxydes métalliques ou des noirs de carbone de qualité courante. Mais, pour obtenir une conductibilité électrique suffisante, il fallait introduire des quantités importantes de charge conductrice, ce qui avait pour conséquence de détériorer les propriétés mécaniques des thermoplastiques et de nuire à leurs propriétés d'adhérence au feuillard métallique qu'elles devaient protéger. L'introduction d'une gelée semi-conductrice qui assure l'étanchéité complète entre la gaine et le métal permet donc l'utilisation de matériaux de gaines aux propriétés améliorées.Tests have been carried out for many years to make the cladding materials thermoplastic semiconductor, by incorporating therein metals, metal oxides or carbon blacks of current quality. However, to obtain sufficient electrical conductivity, it was necessary to introduce significant quantities of conductive charge, which had the consequence of deteriorating the mechanical properties of the thermoplastics and of adversely affecting their properties of adhesion to the metal strip which they had to protect. The introduction of a semiconductor jelly which ensures complete sealing between the sheath and the metal therefore allows the use of sheath materials with improved properties.

Parmi les polymères semi-conducteurs susceptibles d'être utilisés dans la structure de câble électrique objet de la présente invention, on trouve les compositions comprenant principalement un polymère d'éthylène, ou un mélange d'un homopolymère et d'un copolymère d'éthylène, ou encore un mélange copolymère d'éthylène avec un monomère de propylène, d'acétate de vinyle, d'acrylate d'éthyle ou tout autre monomère, de façon connue en soi. On utilisera en particulier des compositions contenant plus de 70% de compolymère d'éthylène ou de polyéthylène haute ou moyenne densité, en vue de conférer à cette gaine la rigidité et la solidité requises. Le polyéthylène utilisé pourra avoir avantageusement une densité comprise entre 0,90 et 0,95 et un indice de fluidité compris entre 0,1 et 2. On peut également utiliser tous matériaux plastiques susceptibles d'incorporer les charges conductrices et, notamment, le polychlorure de vinyle plastifié.Among the semiconductor polymers which can be used in the electric cable structure which is the subject of the present invention, there are compositions comprising mainly an ethylene polymer, or a mixture of a homopolymer and an ethylene copolymer. , or a mixture of ethylene copolymer with a propylene monomer, vinyl acetate, ethyl acrylate or any other monomer, in a manner known per se. In particular, compositions containing more than 70% of high or medium density ethylene or polyethylene compolymer will be used, in order to give this sheath the required rigidity and solidity. The polyethylene used may advantageously have a density between 0.90 and 0.95 and a melt index between 0.1 and 2. It is also possible to use any plastic material capable of incorporating the conductive fillers and, in particular, polychloride plasticized vinyl.

La composition de polymère contient en outre une charge conductrice, qui sera avantageusement de même nature que celle contenue par la gelée semi-conductrice entrant dans la structure de ceinture de câble. La proportion de cette charge peut également varier entre 5% et 45%, en fonction de la résistivité et de la robustesse que l'on peut attendre de ce type de gaine et des conditions d'utilisation attendues du câble électrique. Pour les besoins de la mise à la terre en continue, cette proportion variera avantageusement entre 8 et 15% en poids.The polymer composition also contains a conductive filler, which will advantageously be of the same nature as that contained by the semiconductor jelly entering the cable belt structure. The proportion of this load can also vary between 5% and 45%, depending on the resistivity and robustness that can be expected from this type of sheath and the expected conditions of use of the electric cable. For the purposes of continuous earthing, this proportion will advantageously vary between 8 and 15% by weight.

Les couches polymères semi-conductrices pourrant avantageusement avoir la composition suivante (% en poids):

  • - poyéthylène ou copolymère éthylène-acrylate d'éthyle ou copolymère éthylène-acétate de vinyle ou d'un copolymère éthylène-polypropylène ou d'une combinaison quelconque de ces, quatre polymères 10 à 100%
  • - noir de carbone 5 à 20%
  • - mélange d'antioxydant 0,1 à 2%
The semiconductor polymer layers can advantageously have the following composition (% by weight):
  • - polyethylene or ethylene-ethyl acrylate copolymer or ethylene-vinyl acetate copolymer or of an ethylene-polypropylene copolymer or of any combination of these, four polymers 10 to 100%
  • - carbon black 5 to 20%
  • - mixture of antioxidant 0.1 to 2%

Les couches polymères entrant dans la structure de ceinture de câble objet de la présente invention présentent de préférence les propriétés physiques suivantes:

  • - résistivité inférieure à 10.000 et de préférence à 1.000 ohms x cm, lorsque l'écran est destiné à la mise à la terre, ou de 10 à 10.000 ohms x cm, lorsqu'il s'agit de radialiser le champ au sein d'un isolant;
  • - allongement à la rupture supérieure à 100% et, de préférence, à 300% (Norme NFT 51034);
  • - dureté Shore D comprise entre 35 et 70 et, de préférence, entre 50 et 70.
The polymer layers entering the cable belt structure which is the subject of the present invention preferably have the following physical properties:
  • - resistivity less than 10,000 and preferably 1,000 ohms x cm, when the screen is intended for earthing, or from 10 to 10,000 ohms x cm, when it is a question of radializing the field within an insulator;
  • - elongation at break greater than 100% and preferably 300% (Standard NFT 51034);
  • - Shore D hardness between 35 and 70 and preferably between 50 and 70.

Les gaines doivent enfin posséder une bonne résistance à la fissuration sous contrainte.The sheaths must finally have good resistance to stress cracking.

Afin de vérifier la robustesse, la longévité et la qualité de la mise à la terre des structures de câbles conformes à la présente invention, la Demanderesse a procédé à des essais comparatifs entre celles-ci et des structures de câble d'un type classique.In order to check the robustness, longevity and quality of the earthing of the cable structures in accordance with the present invention, the Applicant has carried out comparative tests between them and cable structures of a conventional type.

Trois câbles A, B et C, d'une longueur de 50 mètres, possédant une structure telle que celles schématisées à la fig. 1a, pour le câble A, et à la fig. 2a, pour les câbles B et C, ont ainsi été enterrés dans des terrains de nature variée.Three cables A, B and C, 50 meters long, with a structure like those shown schematically in fig. 1a, for cable A, and in fig. 2a, for cables B and C, were thus buried in various types of land.

Les compositions de ces câbles sont énumérées dans le tableau 1 suivant:

Figure imgb0001
Figure imgb0002
The compositions of these cables are listed in Table 1 below:
Figure imgb0001
Figure imgb0002

Bien que les résistances des écrans par rapport à la terre soient comparables pour les trois types de cables, lors de leur mise en terre (de l'ordre de 10 à 25 ohms par 50 mètres), seule la résistance des écrans des câbles B et C par rapport à la terre demeure sensiblement constante dans le temps et se situe déjà entre 40 et 60% en dessous de la résistance du câble A, au bout de deux ans, dans les mêmes conditions d'utilisation.Although the resistances of the screens with respect to earth are comparable for the three types of cables, when they are earthed (of the order of 10 to 25 ohms per 50 meters), only the resistance of the screens of cables B and C with respect to the earth remains substantially constant over time and is already between 40 and 60% below the resistance of cable A, after two years, under the same conditions of use.

Ainsi, dans les câbles étanches possédant la structure conforme à la présente invention, la présence d'une gelée semi-conductrice hydrophobe entre l'écran métallique et la couche polymère semi-conductrice permet à cet écran et à cette couche de demeurer constamment en contact électrique, sans utilisation d'aucune mise à la terre auxiliaire de l'écran, et sans risque de corrosion accidentelle de ce dernier par suite de phénomènes de ramification consécutifs à des contacts imparfaits entre écran et couche semi-conductrice.Thus, in waterproof cables having the structure according to the present invention, the presence of a hydrophobic semiconductor jelly between the metal screen and the semiconductor polymer layer allows this screen and this layer to remain constantly in contact. electric, without the use of any auxiliary earthing of the screen, and without risk of accidental corrosion of the latter as a result of ramification phenomena following imperfect contacts between the screen and the semiconductor layer.

Des essais comparatifs additionnels ont été effectués avec deux autres types de câbles, D et E, enterrés dans les mêmes conditions, en vue de montrer la meilleure continuité électrique des structures de câble conformes à l'invention.Additional comparative tests were carried out with two other types of cables, D and E, buried under the same conditions, in order to show the best electrical continuity of the cable structures according to the invention.

Un premier câble D présente la structure illustrée par la fig. 3. Un écran métallique annelé 14, en cuivre, entoure les fils conducteurs 21, gainés d'un isolant 22. Autour de l'écran 14 sont successivement disposés une couche polymère semi-conductrice intermédiaire 15, un écran en acier 16 disposé en hélice et une gaine polymère externe semi-conductrice 17.A first cable D presents the structure illustrated in FIG. 3. A corrugated metallic screen 14, made of copper, surrounds the conductive wires 21, sheathed with an insulator 22. Around the screen 14 are successively arranged an intermediate semiconductive polymer layer 15, a steel screen 16 arranged in a helix and a semi-conductive external polymer sheath 17.

Entre les couches 14 et 15, 15 et 16, et 16 et 17 a été injectée une gelée semi-conductrice, respectivement 18, 19 et 20, assurant l'étanchéité du câble.Between layers 14 and 15, 15 and 16, and 16 and 17 was injected a semiconductor jelly, respecti clothing 18, 19 and 20, ensuring the tightness of the cable.

Les couches polymères et la gelée semi-conductrice entrant dans la composition du câble D sont réalisées avec des formulations identiques à celles du câble C précédemment décrit.The polymer layers and the semiconductor jelly used in the composition of the cable D are produced with formulations identical to those of the cable C previously described.

Les propriétés électriques de ce câble D ont été comparées avec celles d'un câble E construit sur le même modèle, mais sans introduction de gelée semi-conductrice d'étanchéité en 18, 19 et 20.The electrical properties of this cable D were compared with those of a cable E built on the same model, but without the introduction of semiconductive sealing jelly in 18, 19 and 20.

Le tableau Il ci-après donne les valeurs de résistance des écrans en ohms pour 50 mètres de câble enterrés de ces câbles D et D.

Figure imgb0003
Table II below gives the resistance values of the screens in ohms for 50 meters of buried cable of these cables D and D.
Figure imgb0003

Ce tableau montre donc que les meilleurs résultats sont obtenus avec le câble D; en effet, si les valeurs de résistance de l'écran 16 par rapport à la terre sont comparables, la valeur de résistance par rapport à la terre de l'écran 14, dans la version étanche D est plus faible d'un facteur 15 environ par rapport à celle de la version E non étanchée dudit câble, tandis que la résistance entre écrans est divisée d'un facteur de l'ordre de 10.This table therefore shows that the best results are obtained with cable D; in fact, if the resistance values of the screen 16 with respect to the earth are comparable, the resistance value with respect to the earth of the screen 14, in the waterproof version D is lower by a factor of about 15 compared to that of the unsealed version E of said cable, while the resistance between screens is divided by a factor of the order of 10.

Ainsi, dans la structure du câble D étanche, conforme à la surface métallique du ou des écrans et la couche polymère semi-conductrice, une gelée d'étanchéité semi-conductrice et hydrophobe, favorise la conductibilité électrique entre écrans et gaines, tout en assurant l'étanchéité longitudinale. Les trois constituants de cette ceinture de câble se trouvent donc mis en contact continuel parallèle, ce qui permet d'éviter les fréquentes mises à la terre de la structure externe des câbles et de favoriser l'effet réducteur.Thus, in the structure of the waterproof cable D, conforming to the metal surface of the screen or screens and the semiconductive polymer layer, a semiconductive and hydrophobic sealing gel, promotes the electrical conductivity between screens and sheaths, while ensuring longitudinal sealing. The three constituents of this cable belt are therefore placed in continuous parallel contact, which makes it possible to avoid frequent earthing of the external structure of the cables and to promote the reducing effect.

Claims (10)

1. An electric cable structure of the type comprising at least one metallic screen (3, 10) and at least one semi-conducting polymer layer (4, 9) surrounding at least one conductor cable (2, 6), characterised in that between said metallic screen and said semiconducting polymer layer there is disposed a sealing layer (12, 13) of a dynamic viscosity less than 100,000 centipoises at 20 °C, and comprising between 50,000 and 100,000 centipoises at 100 °C, this sealing layer comprising a semiconducting gel containing between 50 and 95% by weight of at least one compound of a hydrocarbon oil of paraffinic or naphthenic nature and of petroleum, vegetable or synthetic origin, and between 5 and 50% by weight of carbon black and/or graphite, or of a powder of at least one metal selected from the group comprising zinc, copper and aluminium or at least one oxide of one of these metals; in that the resistivity of said sealing layer is less than 40,000 ohms x cm; and in that the resistivity of said semiconducting polymer layer is less than 20,000 ohms x cm.
2. An electric cable structure according to claim 1, characterised in that the resistivity of the semi- conducting polymer layer is less than 10,000 ohms x cm and that of the sealing layer is less than 40,000 ohms x cm when said semiconducting polymer layer is used for sheathing, particularly as an outer sheath.
3. An electric cable structure according to claim 1, characterised in that the resistivity of each of the two polymer and sealing layers is less than 20,000 ohms x cm when said metallic screen is disposed externally of said layers in relation to the cable axis.
4. An electric cable structure according to any of claims 1 to 3, characterised in that the sealing layer contains stabilising agents, thickening agents and adhesive agents in a proportion of between 0 and 20%.
5. An electric cable structure according to any of claims 1 to 4, characterised in that the semiconducting polymer layer contains, in % by weight, between 10 and 100% of polyethylene, or of an ethylene-ethylacrylate copolymer, or of an ethylene-vinylacetate copolymer, or of a propyleneethylene copolymer or a combination of these four polymers, between 5 and 20% of carbon black and between 0.01 and 2% of at least one stabiliser.
6. An electric cable structure according to any of claims 1 to 5, characterised in that said semiconducting polymer layer and said sealing layer comprises semiconducting fillers and like protective additives.
7. An electric cable structure according to claim 1, characterised in that the metallic screen is made of steel, zinc, copper or aluminium.
8. Use of cables having a structure according to either of claims 1 and 2 for the continuous earthing of electric conductors.
9. Use of cables having an annular structure according to either of claims 1 and 3 for the radial distribution of electric fields within the insulation.
10. Use of cables having a structure according to any of claims 1 to 3 for the production of coaxial cables.
EP84401269A 1983-06-21 1984-06-20 Electric-cable structure and its application Expired EP0129485B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8310258A FR2547945B1 (en) 1983-06-21 1983-06-21 NEW STRUCTURE OF ELECTRIC CABLE AND ITS APPLICATIONS
FR8310258 1983-06-21

Publications (2)

Publication Number Publication Date
EP0129485A1 EP0129485A1 (en) 1984-12-27
EP0129485B1 true EP0129485B1 (en) 1987-06-03

Family

ID=9290015

Family Applications (1)

Application Number Title Priority Date Filing Date
EP84401269A Expired EP0129485B1 (en) 1983-06-21 1984-06-20 Electric-cable structure and its application

Country Status (9)

Country Link
US (1) US4621169A (en)
EP (1) EP0129485B1 (en)
JP (1) JPS60501631A (en)
KR (1) KR920000223B1 (en)
DE (1) DE3464100D1 (en)
ES (1) ES8601550A1 (en)
FR (1) FR2547945B1 (en)
WO (1) WO1985000245A1 (en)
ZA (1) ZA844682B (en)

Families Citing this family (58)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4701575A (en) * 1986-05-27 1987-10-20 Comm/Scope Company Jacketed cable with powder layer for enhanced corrosion and environmental protection
FR2607954B1 (en) * 1986-12-04 1995-02-24 Noel Gerard METHOD OF PROTECTING AN INSTALLATION ELEMENT DIVE INTO AN SURROUNDING ENVIRONMENT AND SENSITIVE TO THE ELECTRIC, MAGNETIC AND / OR ELECTROMAGNETIC INFLUENCES PRESENT IN THIS ENVIRONMENT
US5034719A (en) * 1989-04-04 1991-07-23 Prestolite Wire Corporation Radio frequency interference suppression ignition cable having a semiconductive polyolefin conductive core
JP2860839B2 (en) * 1991-04-10 1999-02-24 三菱電線工業株式会社 Power cable with separator layer
US5345170A (en) 1992-06-11 1994-09-06 Cascade Microtech, Inc. Wafer probe station having integrated guarding, Kelvin connection and shielding systems
US5561377A (en) 1995-04-14 1996-10-01 Cascade Microtech, Inc. System for evaluating probing networks
DE69604527D1 (en) * 1995-05-19 1999-11-11 Dussek Campbell Ltd Electric power cables
WO1996040849A1 (en) * 1995-06-07 1996-12-19 Lee County Mosquito Control District Lubricant compositions and methods
DE19604481A1 (en) * 1996-02-08 1997-08-14 Asea Brown Boveri Line section of a gas-insulated line
US5914613A (en) 1996-08-08 1999-06-22 Cascade Microtech, Inc. Membrane probing system with local contact scrub
FR2754630B1 (en) * 1996-10-10 2000-12-01 Electricite De France METHOD FOR MANUFACTURING A CONDUCTOR, OR ELECTRICAL CIRCUIT COMPENSATED WITH RADIOELECTRIC PARASITES SUCH AS MICRO-DISCHARGES AND CORRESPONDING CONDUCTOR OR CIRCUIT
US6002263A (en) 1997-06-06 1999-12-14 Cascade Microtech, Inc. Probe station having inner and outer shielding
US6256882B1 (en) 1998-07-14 2001-07-10 Cascade Microtech, Inc. Membrane probing system
US6578264B1 (en) 1999-06-04 2003-06-17 Cascade Microtech, Inc. Method for constructing a membrane probe using a depression
US6445202B1 (en) 1999-06-30 2002-09-03 Cascade Microtech, Inc. Probe station thermal chuck with shielding for capacitive current
US6838890B2 (en) 2000-02-25 2005-01-04 Cascade Microtech, Inc. Membrane probing system
US6914423B2 (en) 2000-09-05 2005-07-05 Cascade Microtech, Inc. Probe station
US6965226B2 (en) 2000-09-05 2005-11-15 Cascade Microtech, Inc. Chuck for holding a device under test
DE10143173A1 (en) 2000-12-04 2002-06-06 Cascade Microtech Inc Wafer probe has contact finger array with impedance matching network suitable for wide band
WO2003052435A1 (en) 2001-08-21 2003-06-26 Cascade Microtech, Inc. Membrane probing system
US6836135B2 (en) 2001-08-31 2004-12-28 Cascade Microtech, Inc. Optical testing device
US6847219B1 (en) 2002-11-08 2005-01-25 Cascade Microtech, Inc. Probe station with low noise characteristics
US7250779B2 (en) 2002-11-25 2007-07-31 Cascade Microtech, Inc. Probe station with low inductance path
US6861856B2 (en) 2002-12-13 2005-03-01 Cascade Microtech, Inc. Guarded tub enclosure
US7221172B2 (en) 2003-05-06 2007-05-22 Cascade Microtech, Inc. Switched suspended conductor and connection
US7492172B2 (en) 2003-05-23 2009-02-17 Cascade Microtech, Inc. Chuck for holding a device under test
US7057404B2 (en) 2003-05-23 2006-06-06 Sharp Laboratories Of America, Inc. Shielded probe for testing a device under test
US7250626B2 (en) 2003-10-22 2007-07-31 Cascade Microtech, Inc. Probe testing structure
GB2425844B (en) 2003-12-24 2007-07-11 Cascade Microtech Inc Active wafer probe
US7187188B2 (en) 2003-12-24 2007-03-06 Cascade Microtech, Inc. Chuck with integrated wafer support
JP2008502167A (en) 2004-06-07 2008-01-24 カスケード マイクロテック インコーポレイテッド Thermo-optic chuck
US7368927B2 (en) 2004-07-07 2008-05-06 Cascade Microtech, Inc. Probe head having a membrane suspended probe
US7420381B2 (en) 2004-09-13 2008-09-02 Cascade Microtech, Inc. Double sided probing structures
US20070102188A1 (en) 2005-11-01 2007-05-10 Cable Components Group, Llc High performance support-separators for communications cable supporting low voltage and wireless fidelity applications and providing conductive shielding for alien crosstalk
US7256351B2 (en) * 2005-01-28 2007-08-14 Superior Essex Communications, Lp Jacket construction having increased flame resistance
US7535247B2 (en) 2005-01-31 2009-05-19 Cascade Microtech, Inc. Interface for testing semiconductors
US7656172B2 (en) 2005-01-31 2010-02-02 Cascade Microtech, Inc. System for testing semiconductors
DE202005019690U1 (en) * 2005-12-16 2006-02-16 Klotz Audio Interface Systems A.I.S. Gmbh electric wire
US9390031B2 (en) * 2005-12-30 2016-07-12 Intel Corporation Page coloring to associate memory pages with programs
US7764072B2 (en) 2006-06-12 2010-07-27 Cascade Microtech, Inc. Differential signal probing system
US7723999B2 (en) 2006-06-12 2010-05-25 Cascade Microtech, Inc. Calibration structures for differential signal probing
US7403028B2 (en) 2006-06-12 2008-07-22 Cascade Microtech, Inc. Test structure and probe for differential signals
US20080113268A1 (en) * 2006-10-23 2008-05-15 Buiel Edward R Recombinant Hybrid Energy Storage Device
US7876114B2 (en) 2007-08-08 2011-01-25 Cascade Microtech, Inc. Differential waveguide probe
US7888957B2 (en) 2008-10-06 2011-02-15 Cascade Microtech, Inc. Probing apparatus with impedance optimized interface
US8410806B2 (en) 2008-11-21 2013-04-02 Cascade Microtech, Inc. Replaceable coupon for a probing apparatus
US8319503B2 (en) 2008-11-24 2012-11-27 Cascade Microtech, Inc. Test apparatus for measuring a characteristic of a device under test
DE102009041067A1 (en) * 2009-03-21 2010-09-30 Ralf Bauhaus electric wire
PT2312591T (en) * 2009-08-31 2020-04-23 Nexans Fatigue resistant metallic moisture barrier in submarine power cable
US9875825B2 (en) 2012-03-13 2018-01-23 Cable Components Group, Llc Compositions, methods and devices providing shielding in communications cables
FR2991808B1 (en) * 2012-06-08 2015-07-17 Nexans DEVICE COMPRISING A TRAPPER LAYER OF SPACE LOADS
FR2995716B1 (en) * 2012-09-17 2014-09-05 Silec Cable METHOD FOR MANUFACTURING ELECTRIC POWER TRANSPORT CABLE AND CABLE MADE BY SUCH A METHOD
US9627100B2 (en) * 2013-04-24 2017-04-18 Wireco World Group Inc. High-power low-resistance electromechanical cable
JP6261229B2 (en) * 2013-07-31 2018-01-17 株式会社潤工社 coaxial cable
WO2015130692A2 (en) * 2014-02-25 2015-09-03 Essex Group, Inc. Insulated winding wire containing semi-conductive layers
WO2016150473A1 (en) * 2015-03-20 2016-09-29 Prysmian S.P.A. Water-tight power cable with metallic screen rods
JP2017168279A (en) * 2016-03-16 2017-09-21 住友電気工業株式会社 Electric power cable, electric power cable system, method for grounding electric power cable system and method for constructing electric power cable system
DE102017210096B4 (en) * 2017-06-16 2024-02-08 Bizlink Industry Germany Gmbh Data cable for potentially explosive areas

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1915061B2 (en) * 1969-03-25 1972-03-23 Chemische Werke Hüls AG, 4370 Mari CONDUCTIVE PLASTIC MASS FOR THE CABLE SECTOR
US3878146A (en) * 1973-06-04 1975-04-15 Hexcel Corp Cured epoxy resin compositions useful in the protection of electrical cables
US4095039A (en) * 1976-04-16 1978-06-13 General Cable Corporation Power cable with improved filling compound
GB1484850A (en) * 1976-06-28 1977-09-08 Gen Cable Corp Electric cables
US4104480A (en) * 1976-11-05 1978-08-01 General Cable Corporation Semiconductive filling compound for power cable with improved properties
US4190570A (en) * 1977-05-20 1980-02-26 Witco Chemical Corporation Cable filler
US4324453A (en) * 1981-02-19 1982-04-13 Siecor Corporation Filling materials for electrical and light waveguide communications cables
FR2505082A1 (en) * 1981-04-30 1982-11-05 Cables De Lyon Geoffroy Delore SEMICONDUCTOR JAM MATERIAL FOR SUBMARINE CABLE, CABLE COMPRISING SAID MATERIAL, AND METHOD OF MANUFACTURING THE SAME
FR2508227A1 (en) * 1981-06-18 1982-12-24 Cables De Lyon Geoffroy Delore ELECTROMECHANICAL CABLE RESISTANT TO HIGH TEMPERATURES AND PRESSURES AND METHOD OF MANUFACTURING THE SAME
EP0129617B1 (en) * 1983-06-13 1988-02-03 Du Pont-Mitsui Polychemicals Co., Ltd. Semiconducting compositions and wires and cables using the same

Also Published As

Publication number Publication date
JPS60501631A (en) 1985-09-26
FR2547945B1 (en) 1986-05-02
ZA844682B (en) 1985-02-27
ES533594A0 (en) 1985-10-16
DE3464100D1 (en) 1987-07-09
ES8601550A1 (en) 1985-10-16
EP0129485A1 (en) 1984-12-27
US4621169A (en) 1986-11-04
KR850000741A (en) 1985-03-09
FR2547945A1 (en) 1984-12-28
KR920000223B1 (en) 1992-01-10
WO1985000245A1 (en) 1985-01-17

Similar Documents

Publication Publication Date Title
EP0129485B1 (en) Electric-cable structure and its application
EP2224459B1 (en) High voltage electrical cable
EP2859633B1 (en) Device with a charge sealing layer
GB1583353A (en) Electric cables
FR2937036A1 (en) TERPOLYMER AND SEMICONDUCTOR COMPOSITION FOR ELECTRIC CABLES
EP3398194B1 (en) Cable having a fire-resistant insulating layer
EP0644641B1 (en) Equipment for power cable junction and power cable equipped therewith
US6331353B1 (en) Stranded conductor filling compound and cables using same
KR102499648B1 (en) High voltage DC power cable joint system
CA2860786C (en) Medium- or high-voltage electric cable
BE878803A (en) Pregnant or termination for fitting electrical cables
KR20180007689A (en) Joint for ultra high voltage cable and ultra high voltage cable joint system comprising the same
FR3068504A1 (en) CABLE COMPRISING AN ELECTRICALLY CONDUCTIVE ELEMENT COMPRISING METALLIC CARBON FIBERS
EP0644558B2 (en) Câble insulative structure
FR2710183A1 (en) Energy cable with improved dielectric strength.
EP3404673B1 (en) Fire resisting cable
EP2498264B1 (en) Medium- or high-voltage electrical cable
WO2017153658A1 (en) Underground electric cable
EP3882930A1 (en) Ultra high voltage direct current power cable system
JPS6356645B2 (en)
EP3544025A1 (en) Electric cable including an easily peelable polymer layer
EP3671768A1 (en) Electric cable resistant to water trees
FR3086791A1 (en) CARBON-METAL MULTIBRIN CONDUCTIVE CORE FOR ELECTRIC CABLE
FR2629626A1 (en) DC cable
JPH0638322B2 (en) Electric wires and cables for running water prevention power

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): BE CH DE FR GB IT LI LU NL SE

17P Request for examination filed

Effective date: 19850511

17Q First examination report despatched

Effective date: 19860129

D17Q First examination report despatched (deleted)
ITF It: translation for a ep patent filed

Owner name: BARZANO' E ZANARDO MILANO S.P.A.

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ACOME SOCIETE ANONYME DITE:

Owner name: COMPAGNIE DE RAFFINAGE ET DE DISTRIBUTION TOTAL F

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE CH DE FR GB IT LI LU NL SE

REF Corresponds to:

Ref document number: 3464100

Country of ref document: DE

Date of ref document: 19870709

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
ITTA It: last paid annual fee
EPTA Lu: last paid annual fee
EAL Se: european patent in force in sweden

Ref document number: 84401269.0

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19980417

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19980518

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19980612

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19980617

Year of fee payment: 15

Ref country code: DE

Payment date: 19980617

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 19980619

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19980701

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19980709

Year of fee payment: 15

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990620

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990620

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19990629

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990630

Ref country code: FR

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19990630

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990630

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990630

BERE Be: lapsed

Owner name: ACOME

Effective date: 19990630

Owner name: CIE DE RAFFINAGE ET DE DISTRIBUTION TOTAL FRANCE

Effective date: 19990630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000101

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19990620

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

EUG Se: european patent has lapsed

Ref document number: 84401269.0

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20000101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000503

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST