EP0128988B1 - Method and device for eliminating interferences due to load variation in switched-mode power supplies - Google Patents

Method and device for eliminating interferences due to load variation in switched-mode power supplies Download PDF

Info

Publication number
EP0128988B1
EP0128988B1 EP83401229A EP83401229A EP0128988B1 EP 0128988 B1 EP0128988 B1 EP 0128988B1 EP 83401229 A EP83401229 A EP 83401229A EP 83401229 A EP83401229 A EP 83401229A EP 0128988 B1 EP0128988 B1 EP 0128988B1
Authority
EP
European Patent Office
Prior art keywords
voltage
load
inductance
value
terminals
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP83401229A
Other languages
German (de)
French (fr)
Other versions
EP0128988A1 (en
Inventor
Louis Deprez
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Signaux Et D'equipements Electronique Cie
Original Assignee
Compagnie de Signaux et d Equipements Electroniques SA
Compagnie de Signaux et dEntreprises Electriques SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Compagnie de Signaux et d Equipements Electroniques SA, Compagnie de Signaux et dEntreprises Electriques SA filed Critical Compagnie de Signaux et d Equipements Electroniques SA
Priority to AT83401229T priority Critical patent/ATE29353T1/en
Priority to EP83401229A priority patent/EP0128988B1/en
Priority to DE8383401229T priority patent/DE3373388D1/en
Publication of EP0128988A1 publication Critical patent/EP0128988A1/en
Application granted granted Critical
Publication of EP0128988B1 publication Critical patent/EP0128988B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/10Regulating voltage or current
    • G05F1/12Regulating voltage or current wherein the variable actually regulated by the final control device is ac
    • G05F1/14Regulating voltage or current wherein the variable actually regulated by the final control device is ac using tap transformers or tap changing inductors as final control devices
    • G05F1/16Regulating voltage or current wherein the variable actually regulated by the final control device is ac using tap transformers or tap changing inductors as final control devices combined with discharge tubes or semiconductor devices
    • G05F1/20Regulating voltage or current wherein the variable actually regulated by the final control device is ac using tap transformers or tap changing inductors as final control devices combined with discharge tubes or semiconductor devices semiconductor devices only
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/14Circuit arrangements
    • H05B41/36Controlling
    • H05B41/38Controlling the intensity of light
    • H05B41/40Controlling the intensity of light discontinuously

Definitions

  • the present invention relates to a method and a device for eliminating disturbances linked to load fluctuations in switching power supplies and relates more particularly to a method for controlling a switching power supply connected to a supply network and comprising a primary inductor coupled by a magnetic circuit common to a secondary inductor and supplying a load to which a storage capacity is connected in parallel, said method consisting in completely demagnetizing the magnetic circuit at each cutting period.
  • the main object of the present invention is to remedy these drawbacks and, to do this, it relates to a method which is essentially characterized by the fact that for this purpose the value of the secondary inductance is automatically adapted as a function of the value of the voltage across the load.
  • a device for implementing this method is characterized in that it comprises a certain number of unidirectional switching elements each connected in series between the load and one of the different intermediate taps of the secondary inductance and a circuit control with voltage thresholds for successively controlling said switching elements as a function of the value of the voltage across the load.
  • the switching elements are constituted by thyristors.
  • the device according to the invention also comprises an automatic regulation circuit controlling the chopping to compensate for the slow variations in the voltage across the terminals of the primary inductor due to variations in the voltage of the supply network.
  • This regulation circuit comprises an auxiliary magnetic circuit of low power connected in parallel on the primary inductor and the charge of which is constant, the voltage across said charge being used as the control voltage of the switching control.
  • the method according to the invention can also advantageously be applied to the case where the primary inductor and the secondary inductor are combined into a single inductor called filtering.
  • filtering There are indeed many structures in which the filtering function is obtained by means of a cell comprising an inductance and a capacitor. However, if the output voltage is very fluctuating, the filtering inductance may become saturated, which obviously reduces the filtering efficiency.
  • the value of the filtering inductance is automatically adapted as a function of the value of the voltage across the terminals of the load during the phases of restitution of the magnetic energy.
  • a number of unidirectional switching elements are used, advantageously constituted by thyristors, connected to one of the different intermediate taps of the filtering inductor and placed in parallel on the load during the phase of restitution of magnetic energy.
  • the switching power supply shown in FIG. 1 firstly comprises a magnetic circuit with a primary inductance Lp coupled to a secondary inductance Ls.
  • a cutting transistor Tr controlled by a cutter K, is inserted in the primary circuit.
  • This circuit is supplied from the AC network via a diode rectifier bridge, but without any filtering.
  • the control pulses generated by the decoupler K on the basis of the chopping transistor Tr are at high frequency, for example 25 kHz, in order to limit the dimensions of the windings of the magnetic circuit.
  • the current primary Ip When the transistor conducts, the current primary Ip has the shape shown in the diagram of FIG. 2a. It is a current pulse of duration T , T being the conduction duration of the transistor. When the transistor no longer conducts, a current pulse of duration T- T is restored to the secondary, T being the period of the switching frequency.
  • the secondary current Is thus has the appearance shown in the diagram in FIG. 2b.
  • the switching power supply is intended to supply a xenon arc lamp X of the flash type, that is to say a rapid discharge lamp in recurrent regime.
  • This type of lamp requires, for its implementation, the prior charge of a capacitor C of high value during the time interval between each induced ionization of the lamp.
  • the lamp is triggered here by a low frequency LF source.
  • the method according to the invention consists in automatically adapting the value of the secondary inductance Ls as a function of the voltage Us at the terminals of the load, which voltage is obviously extremely variable in the case of a flash type lamp, in order to '' ensure a total transfer of magnetic energy for each period of the switching frequency and thus obtain complete demagnetization of the circuit.
  • the energy transfer per period of the switching frequency is expressed by:
  • this relation will be maintained at a limit value, in order to obtain the complete demagnetization of the circuit.
  • a number of intermediate sockets are provided on the secondary inductance Ls which are connected to the load by means of unidirectional power switching elements which can only admit current when the switching transistor Tr does not conduct plus, that is to say during the phase of restitution of magnetic energy.
  • the first two are constituted by thyristors Th, and Th 2 , while the third is constituted by a simple diode D.
  • the triggers of the two thyristors are connected to a control device COM with voltage thresholds, sensitive to the output voltage Us at the terminals of lamp X.
  • the thyristor Th For a low value of the output voltage Us, only the diode D is in service and ensures the demagetization of the circuit over time (T- T ). Then, for a higher value of the voltage Us, the thyristor Th, is triggered by means of a voltage pulse generated on its trigger by the threshold device COM. This pulse has the appearance shown in the diagram of FIG. 2c and it is synchronized on the switching frequency, thanks to a synchronization link S provided between the cutter K and the device with thresholds COM. It will be noted that when the thyristor Th, conducts, the diode D is automatically subjected to an inverse potential which no longer allows it to conduct.
  • the thyristor Th 2 is triggered by the threshold device COM. Diode D and thyristor Th are then reverse biased and can no longer drive, even if the trigger control is maintained on Th i , this being the direct consequence of the distribution of the potentials at the terminals of the secondary inductance.
  • the rigorous application of the demagnetization method according to the invention allows the primary inductance Lp to carry out each pulse an energy draw proportional to the network voltage, without main control loop. It is an instantaneous self-modulation of energy linked to the sinusoidal voltage of the supply network, and this despite the very large variation of the voltage across the load, which can be easily in a ratio of ten.
  • This REG circuit is shown in detail in FIG. 5 and essentially consists of a low power magnetic circuit comprising a primary inductance L, coupled to a secondary inductance L 2 .
  • the inductance L is connected in parallel to the primary inductance Lp of the main magnetic circuit by means of a diode D i , while the inductance L 2 is connected to a constant load made up of two resistors R 1 and R 2 , via a diode D 2 and a capacitor C ,.
  • the same switching transistor Tr controls the two magnetic circuits, the diode D, whose purpose is to make the energy return from the auxiliary magnetic circuit L, / L 2 independent of the state of charge of the capacitor C intended to supply the flash lamp X.
  • the inductance L 2 restores its energy accumulated over time (T- T ) by the diode D 2 and the integrator C 1 , R 1 + R 2 .
  • the load R 1 + R 2 being constant, the voltage across R 2 is the image of the average voltage U R resulting from the mains rectification for T constant.
  • This voltage at the terminals of R 2 is therefore applied to the feedback circuit of the cutter K in order to modify the duration T as a function of fluctuations in the sector and thus to ensure a constant transfer of energy to the capacitor C. Consequently, it will always be charged at the same value at the instant before discharge.
  • the demagnetization method according to the invention can also advantageously be applied to the filtering function.
  • the filtering function is obtained by means of a cell comprising an inductance L and a capacitor C, as in the example shown in FIG. 6.
  • the function of the filter inductor L is twofold.
  • the same winding is used to limit the current in the conduction phase of the cutting transistor Tr, controlled by the cutter K 1 , then restores its energy when the latter is blocked.
  • the filtering inductor requires a relatively long demagnetization period, which leads to saturation. .
  • a diode D and two thyristors Th 1 and Th 2 controlled by a device with voltage thresholds COM are connected to intermediate taps of the filtering inductance L.
  • the COM threshold device in relation to the output voltage, adapts the value of the inductance in the restitution phase, so as to maintain a constant demagnetization time. This avoids the inductance from undergoing the passage of an excessive DC component in current, risking saturating it, which makes it possible to maintain the efficiency of the filter despite significant variations in current.

Abstract

1. A process for controlling a chopped power supply connected to a supply network and comprising a primary inductance (Lp) coupled through a common magnetic circuit to a secondary inductance (Ls) and supplying a load (X) to which a capacitor (C) is connected in parallel, said process consisting in completely demagnetizing the magnetic circuit for each period of the chopping, characterized in that, to this end, the value of the secondary inductance (Ls) is automatically adapted as a function of the value of the voltage (Us) at the terminals of the load (X).

Description

La présente invention concerne un procédé et un dispositif pour éliminer les perturbations liées aux fluctuations de la charge dans les alimentations à découpage et a trait plus particulièrement à un procédé de commande d'une alimentation à découpage raccordée à un réseau d'alimentation et comportant une inductance primaire couplée par un circuit magnétique commun à une inductance secondaire et alimentant une charge sur laquelle se trouve connectée en parallèle une capacité de stockage, ledit procédé consistant à démagnétiser complètement le circuit magnétique à chaque période du découpage.The present invention relates to a method and a device for eliminating disturbances linked to load fluctuations in switching power supplies and relates more particularly to a method for controlling a switching power supply connected to a supply network and comprising a primary inductor coupled by a magnetic circuit common to a secondary inductor and supplying a load to which a storage capacity is connected in parallel, said method consisting in completely demagnetizing the magnetic circuit at each cutting period.

Un tel procédé est décrit par exemple dans le document DE-A-3 025 405. Selon ce document, la démagnétisation complète du circuit est obtenue en modifisant le temps de démagnétisation, ce qui conduit à un circuit relativement complexe.Such a method is described for example in document DE-A-3 025 405. According to this document, complete demagnetization of the circuit is obtained by modifying the demagnetization time, which leads to a relatively complex circuit.

En conversation d'énergie, les circuits magnétiques constituent un type de composant souvent négligé, ce que amène une saturation du matériau, d'où une incapacité à traduire une variation linéaire de flux. Ceci entraîne un accroissement énorme de courant dans les organes de découpage, généralement constitués par des transistors, lorsque la charge est variable et que la puissance est constanté ou peu fluctuante. Il s'ensuit des perturbations sur le réseau et un risque de détérioration des organes de découpage.In energy conversation, magnetic circuits constitute a type of component that is often overlooked, which leads to saturation of the material, hence an inability to translate a linear variation in flux. This results in a huge increase in current in the cutting members, generally constituted by transistors, when the load is variable and the power is constant or little fluctuating. This results in disturbances on the network and a risk of deterioration of the cutting members.

La présente invention a pour but principal de remédier à ces inconvénients et, pour ce faire, elle a pour objet un procédé qui se caractérise essentiellement par le fait que dans ce but la valeur de l'inductance secondaire est automatiquement adaptée en fonction de la valeur de la tension aux bornes de la charge.The main object of the present invention is to remedy these drawbacks and, to do this, it relates to a method which is essentially characterized by the fact that for this purpose the value of the secondary inductance is automatically adapted as a function of the value of the voltage across the load.

Grâce à cette disposition, on obtient de façon très simple une démagnétisation complète du circuit à chaque période de la fréquence de découpage, ce qui permet d'éliminer les inconvénients mentionées plus haut.Thanks to this arrangement, a complete demagnetization of the circuit is obtained very simply in each period of the switching frequency, which makes it possible to eliminate the drawbacks mentioned above.

Un dispositif pour la mise en oeuvre de ce procédé est caractérisé en ce qu'il comprend un certain nombre d'éléments de commutation unidirectionnels connectés chacun en série entre la charge et l'une des différentes prises intermédiaires de l'inductance secondaire et un circuit de commande à seuils de tension pour commander successivement lesdits éléments de commutation en fonction de la valeur de la tension aux bornes de la charge.A device for implementing this method is characterized in that it comprises a certain number of unidirectional switching elements each connected in series between the load and one of the different intermediate taps of the secondary inductance and a circuit control with voltage thresholds for successively controlling said switching elements as a function of the value of the voltage across the load.

Dans un mode de réalisation particulier de l'invention, les éléments de commutation sont constitués par des thyristors.In a particular embodiment of the invention, the switching elements are constituted by thyristors.

De préférence, le dispositif selon l'invention comprend également un circuit de régulation automatique commandant le découpage pour compenser les variations lentes de la tension aux bornes de l'inductance primaire dues aux variations de la tension du réseau d'alimentation.Preferably, the device according to the invention also comprises an automatic regulation circuit controlling the chopping to compensate for the slow variations in the voltage across the terminals of the primary inductor due to variations in the voltage of the supply network.

Ce circuit de régulation comporte un circuit magnétique auxiliaire de faible puissance connecté en parallèle sur l'inductance primaire et dont la charge est constante, la tension aux bornes de ladite charge étant utilisée comme tension d'asservissement de la commande de découpage.This regulation circuit comprises an auxiliary magnetic circuit of low power connected in parallel on the primary inductor and the charge of which is constant, the voltage across said charge being used as the control voltage of the switching control.

Le procédé selon l'invention peut également s'appliquer avantageusement au cas où l'inductance primaire et l'inductance secondaire sont combinées en une seule inductance dite de filtrage. Il existe en effet de nombreuses structures dans lesquelles la fonction filtrage est obtenue au moyen d'une cellule comportant une inductance et un condensateur. Or, si la tension de sortie est très fluctuante, l'inductance de filtrage risque de se saturer, ce qui diminue évidemment l'efficacité du filtrage.The method according to the invention can also advantageously be applied to the case where the primary inductor and the secondary inductor are combined into a single inductor called filtering. There are indeed many structures in which the filtering function is obtained by means of a cell comprising an inductance and a capacitor. However, if the output voltage is very fluctuating, the filtering inductance may become saturated, which obviously reduces the filtering efficiency.

Conformément à l'invention, la valeur de l'inductance de filtrage est automatiquement adaptée en fonction de la valeur de la tension aux bornes de la charge pendant les phases de restitution de l'énergie magnétique.In accordance with the invention, the value of the filtering inductance is automatically adapted as a function of the value of the voltage across the terminals of the load during the phases of restitution of the magnetic energy.

A cet effet, on utilise un certain nombre d'éléments de commutation unidirectionnels, avantageusement constitués par des thyristors, connectés à l'une des différentes prises intermédiaires de l'inductance de filtrage et placés en parallèle sur la charge pendant la phase de restitution de l'énergie magnétique.To this end, a number of unidirectional switching elements are used, advantageously constituted by thyristors, connected to one of the different intermediate taps of the filtering inductor and placed in parallel on the load during the phase of restitution of magnetic energy.

Plusieurs formes d'exécution de l'invention sont décrites ci-après à titre d'exemples, en réf- érénce aux dessins annexés dans lesquels:

  • - la figure 1 est le schéma d'un alimentation à découpage conforme à l'invention, destinée à l'alimentation d'une lampe à arc du type flash;
  • - les figures 2a à 2c représentent respectivement l'allure du courant primaire, l'allure du courant secondaire et l'allure de la tension de commande d'un thyristor, pour une période de la fréquence de découpage;
  • - la figure 3 répresente l'allure du courant primaire avec une tension d'alimentation sinusoïdale;
  • - la figure 4 représente l'allure de la tension de charge du condensateur de stockage d'énergie;
  • - la figure 5 est le schéma du circuit de régulation destiné à compenser les variations lentes de la tension d'alimentation; et
  • - la figure 6 est le schéma d'une autre application de l'invention à la fonction de filtrage.
Several embodiments of the invention are described below by way of examples, with reference to the accompanying drawings in which:
  • - Figure 1 is a diagram of a switching power supply according to the invention, for supplying a flash type arc lamp;
  • - Figures 2a to 2c respectively represent the shape of the primary current, the shape of the secondary current and the shape of the control voltage of a thyristor, for a period of the switching frequency;
  • - Figure 3 shows the shape of the primary current with a sinusoidal supply voltage;
  • - Figure 4 shows the shape of the charging voltage of the energy storage capacitor;
  • - Figure 5 is the diagram of the regulation circuit intended to compensate for the slow variations of the supply voltage; and
  • - Figure 6 is the diagram of another application of the invention to the filtering function.

L'alimentation à découpage représentée sur la figure 1 comprend tout d'abord un ciurcuit magnétique avec une inductance primaire Lp couplée à une inductance secondaire Ls. De façon connue en soi, un transistor de découpage Tr, commandé par un découpeur K, est inséré dans le circuit primaire. Ce circuit est alimenté à partir du réseau alternatif par l'intermédiaire d'un pont de redressement à diodes, mais sans aucun filtrage.The switching power supply shown in FIG. 1 firstly comprises a magnetic circuit with a primary inductance Lp coupled to a secondary inductance Ls. In a manner known per se, a cutting transistor Tr, controlled by a cutter K, is inserted in the primary circuit. This circuit is supplied from the AC network via a diode rectifier bridge, but without any filtering.

Les impulsions de commande engendrées par le decoupleur K sur la base du transistor de découpage Tr sont à fréquence élevée, par exemple 25kHz, afin de limiter les dimensions des bobinages du circuit magnétique.The control pulses generated by the decoupler K on the basis of the chopping transistor Tr are at high frequency, for example 25 kHz, in order to limit the dimensions of the windings of the magnetic circuit.

Lorsque le transistor conduit, le courant primaire Ip a l'allure représentée sur le diagramme de la figure 2a. Il s'agit d'une impulsion de courant de durée T, T étant la durée de conduction du transistor. Lorsque le transistor ne conduit plus, une impulsion de courant de durée T-T est restituée au secondaire, T étant la période de la fréquence de découpage. Le courant secondaire Is a ainsi l'allure représentée sur le diagramme de la figure 2b.When the transistor conducts, the current primary Ip has the shape shown in the diagram of FIG. 2a. It is a current pulse of duration T , T being the conduction duration of the transistor. When the transistor no longer conducts, a current pulse of duration T- T is restored to the secondary, T being the period of the switching frequency. The secondary current Is thus has the appearance shown in the diagram in FIG. 2b.

Dans l'application envisagée ici, l'alimentation à découpage est destinée à alimenter une lampe à arc au xénon X du type flash, c'est-à-dire une lampe à décharge rapide en régime récurrent. Ce type de lampe nécessite, pour sa mise en oeuvre, la charge préalable d'un condensateur C de forte valeur pendant l'intervalle de temps entre chaque ionisation provoquée de la lampe. Le déclenchement de la lampe est assuré ici par une source basse fréquence BF.In the application envisaged here, the switching power supply is intended to supply a xenon arc lamp X of the flash type, that is to say a rapid discharge lamp in recurrent regime. This type of lamp requires, for its implementation, the prior charge of a capacitor C of high value during the time interval between each induced ionization of the lamp. The lamp is triggered here by a low frequency LF source.

Le procédé conforme à l'invention consiste à adapter automatiquement la valeur de l'inductance secondaire Ls en fonction de la tension Us aux bornes de la charge, tension qui est évidement extrêmement variable dans le cas d'une lampe de type flash, afin d'assurer un transfert total de l'énergie magnétique pour chaque période de la fréquence de découpage et d'obtenir ainsi une démagnétisation complète du circuit.The method according to the invention consists in automatically adapting the value of the secondary inductance Ls as a function of the voltage Us at the terminals of the load, which voltage is obviously extremely variable in the case of a flash type lamp, in order to '' ensure a total transfer of magnetic energy for each period of the switching frequency and thus obtain complete demagnetization of the circuit.

Le transfer d'énergie par période de la fréquence de découpage s'exprime par:

Figure imgb0001
Figure imgb0002
The energy transfer per period of the switching frequency is expressed by:
Figure imgb0001
Figure imgb0002

Lorsque l'énergie est restituée au secondaire, la tension sur ce dernier est imposée pendant la durée T-T par la constante de temps élevée de la charge. Le temps de démagnétisation est donc défini par la loi de Lenz, soit

Figure imgb0003
Figure imgb0004
When the energy is restored to the secondary, the voltage on the latter is imposed for the duration T- T by the high time constant of the load. The demagnetization time is therefore defined by Lenz's law, i.e.
Figure imgb0003
Figure imgb0004

De la relation de transfert d'énergie, on déduit

Figure imgb0005
d'où
Figure imgb0006
From the energy transfer relation, we deduce
Figure imgb0005
from where
Figure imgb0006

Si l'on suppose maintenant T constant, on peut poser

Figure imgb0007
de sorte que l'on obtient en définitive la relation suivante: Ls = k Us2.If we now assume T constant, we can pose
Figure imgb0007
so that we finally obtain the following relation: Ls = k Us 2 .

La mise en oeuvre du procédé de l'invention consiste donc à commuter la valeur de l'inductance secondaire Ls au moyen d'un dispositif de commande comprenant plusieurs seuils de tension échelonnés par rapport à la tension secondaire Us, chaque seuil provoquant la commande de la valeur d'une inductance propre à satisfaire la relation: Ls = k Us2. Bien entendu, comme il s'agit d'une commande par sauts d'inductance, cette relation sera maintenue à une valeur limite, afin d'obtenir la démagnétisation complète du circuit.The implementation of the method of the invention therefore consists in switching the value of the secondary inductance Ls by means of a control device comprising several voltage thresholds staggered with respect to the secondary voltage Us, each threshold causing the control of the value of an inductance suitable for satisfying the relation: Ls = k Us 2 . Of course, as it is a control by inductance jumps, this relation will be maintained at a limit value, in order to obtain the complete demagnetization of the circuit.

A cet effet, on prévoit sur l'inductance secondaire Ls un certain nombre de prises intermédiaires qui sont reliées à la charge par l'intermédiaire d'éléments de commutation de puissance unidirectionnels ne pouvant admettre de courant que lorsque le transistor de découpage Tr ne conduit plus, c'est-à-dire pendant la phase de restitution de l'énergie magnétique.For this purpose, a number of intermediate sockets are provided on the secondary inductance Ls which are connected to the load by means of unidirectional power switching elements which can only admit current when the switching transistor Tr does not conduct plus, that is to say during the phase of restitution of magnetic energy.

Dans l'exemple de réalisation particulier décrit ici, les éléments de commutation sont au nombre de trois. Les deux premiers sont constitués par des thyristors Th, et Th2, tandis que le troisième est constitué par une simple diode D. Les gachettes des deux thyristors sont reliées à un dispositif de commande COM à seuils de tension, sensible à la tension de sortie Us aux bornes de la lampe X.In the particular embodiment described here, there are three switching elements. The first two are constituted by thyristors Th, and Th 2 , while the third is constituted by a simple diode D. The triggers of the two thyristors are connected to a control device COM with voltage thresholds, sensitive to the output voltage Us at the terminals of lamp X.

Pour une faible valeur de la tension de sortie Us, seule la diode D est en service et assure la démagétisation du circuit dans le temps (T-T). Ensuite, pour une valeur supérieure de la tension Us, le thyristor Th, est déclenché au moyen d'une impulsion de tension engendrée sur sa gachette par le dispositif à seuils COM. Cette impulsion a l'allure représentée sur le diagramme de la figure 2c et elle est synchronisée sur la fréquence de découpage, grâce à une liaison de synchronisation S prévue entre le découpeur K et le dispositif à seuils COM. On notera que lorsque le thyristor Th, conduit, la diode D est automatiquement soumise à un potentiel inverse qui ne lui permet plus de conduire.For a low value of the output voltage Us, only the diode D is in service and ensures the demagetization of the circuit over time (T- T ). Then, for a higher value of the voltage Us, the thyristor Th, is triggered by means of a voltage pulse generated on its trigger by the threshold device COM. This pulse has the appearance shown in the diagram of FIG. 2c and it is synchronized on the switching frequency, thanks to a synchronization link S provided between the cutter K and the device with thresholds COM. It will be noted that when the thyristor Th, conducts, the diode D is automatically subjected to an inverse potential which no longer allows it to conduct.

Pour une valeur encore supérieure de la tension Us, le thyristor Th2 est déclenché par le dispositif à seuils COM. La diode D et le thyristor Th, sont alors polarisés en inverse et ne peuvent plus conduire, même si la commande de gachette est maintenue sur Thi, ceci étant la conséquence directe de la répartition des potentiels aux bornes de l'inductance secondaire.For an even higher value of the voltage Us, the thyristor Th 2 is triggered by the threshold device COM. Diode D and thyristor Th are then reverse biased and can no longer drive, even if the trigger control is maintained on Th i , this being the direct consequence of the distribution of the potentials at the terminals of the secondary inductance.

L'application rigoureuse du procédé de démagnétisation selon l'invention permet à l'inductance primaire Lp de réaliser à chaque impulsion un prélèvement d'énergie proportionnel à la tension du réseau, sans boucle d'asservissement principale. Il s'agit d'une automodulation d'énergie instantanée liée à la tension sinusoïdale du réseau d'alimentation, et ceci malgré la très forte variation de la tension aux bornes de la charge, qui peut être facilement dans un rapport de dix.The rigorous application of the demagnetization method according to the invention allows the primary inductance Lp to carry out each pulse an energy draw proportional to the network voltage, without main control loop. It is an instantaneous self-modulation of energy linked to the sinusoidal voltage of the supply network, and this despite the very large variation of the voltage across the load, which can be easily in a ratio of ten.

Par suite, le réseau de distribution d'énergie n'est pas dégradé, le courant sur celui-ci étant prélevé selon une loi sinusoïdale et en phase avec la tension du réseau, comme illustré par le diagramme de la figure 3.As a result, the energy distribution network is not degraded, the current thereon being drawn according to a sinusoidal law and in phase with the network voltage, as illustrated by the diagram in FIG. 3.

De même, la puissance prélevée sur le réseau est constante, la charge sur le condensateur C répondant à cette condition puisqu'elle est de la forme Uc = Vt, comme illustré par le diagramme de la figure 4. L'enveloppe du courant sinusoïdal est donc constante.Likewise, the power taken from the network is constant, the charge on the capacitor C meeting this condition since it is of the form Uc = Vt, as illustrated by the diagram in FIG. 4. The envelope of the sinusoidal current is therefore constant.

Cependant, il arrive souvent que le réseau ne soit pas parfait. Dans ce cas, et pour s'affranchir des variations lentes du secteur, on peut prévoir un circuit de régulation REG permettant d'obtenir une information proportionnelle à l'énergie transférée sur la charge.However, it often happens that the network is not perfect. In this case, and to overcome slow variations in the sector, it is possible to provide a regulation circuit REG making it possible to obtain information proportional to the energy transferred to the load.

Ce circuit REG est représenté en détail sur la figure 5 et se compose essentiellement d'un circuit magnétique de faible puissance comportant une inductance primaire L, couplée à une inductance secondaire L2. L'inductance L, est connectée en parallèle sur l'inductance primaire Lp du circuit magnétique principal par l'intermédiaire d'une diode Di, tandis que l'inductance L2 est branchée sur une charge constante constituée de deux résistances R1 et R2, par l'intermédiaire d'une diode D2 et d'un condensateur C,.This REG circuit is shown in detail in FIG. 5 and essentially consists of a low power magnetic circuit comprising a primary inductance L, coupled to a secondary inductance L 2 . The inductance L, is connected in parallel to the primary inductance Lp of the main magnetic circuit by means of a diode D i , while the inductance L 2 is connected to a constant load made up of two resistors R 1 and R 2 , via a diode D 2 and a capacitor C ,.

Ainsi, le même transistor de découpage Tr commande les deux circuits magnétiques, la diode D, ayant pour but de rendre la restitution d'énergie du circuit magnétique auxiliaire L,/L2 indépendante de l'état de charge du condensateur C destiné à alimenter la lampe flash X.Thus, the same switching transistor Tr controls the two magnetic circuits, the diode D, whose purpose is to make the energy return from the auxiliary magnetic circuit L, / L 2 independent of the state of charge of the capacitor C intended to supply the flash lamp X.

L'inductance L2 restitue son énergie accumulée pendant la durée (T-T) par la diode D2 et l'intégrateur C1, R1 + R2. La charge R1 + R2 étant constante, la tension aux bornes de R2 est l'image de la tension moyenne UR issue du redressement secteur pour T constant. Cette tension aux bornes de R2 est donc appliquée au circuit de contre- réaction du découpeur K afin de modifier la durée T en fonction des fluctuations du secteur et d'assurer ainsi un transfert d'énergie constant vers le condensateur C. Par suite, celui-ci sera toujours chargé à la même valeur à l'instant précédant la décharge.The inductance L 2 restores its energy accumulated over time (T- T ) by the diode D 2 and the integrator C 1 , R 1 + R 2 . The load R 1 + R 2 being constant, the voltage across R 2 is the image of the average voltage U R resulting from the mains rectification for T constant. This voltage at the terminals of R 2 is therefore applied to the feedback circuit of the cutter K in order to modify the duration T as a function of fluctuations in the sector and thus to ensure a constant transfer of energy to the capacitor C. Consequently, it will always be charged at the same value at the instant before discharge.

Le procédé de démagnétisation selon l'invention peut également s'appliquer avantageusement à la fonction de filtrage. Il existe en effet de nombreuses structures dans lesquelles la fonction de filtrage est obtenue au moyen d'une cellule comportant une inductance L et un condensateur C, comme dans l'exemple représenté sur la figure 6.The demagnetization method according to the invention can also advantageously be applied to the filtering function. There are indeed many structures in which the filtering function is obtained by means of a cell comprising an inductance L and a capacitor C, as in the example shown in FIG. 6.

Dans cette application, la fonction de l'inductance de filtrage L est double. Le même enroulement sert à limiter le courant dans la phase de conduction du transistor de découpage Tr, commandé par le découpeur K1, puis restitue son énergie lorsque celui-ci est bloqué.In this application, the function of the filter inductor L is twofold. The same winding is used to limit the current in the conduction phase of the cutting transistor Tr, controlled by the cutter K 1 , then restores its energy when the latter is blocked.

Or, pour les applications où la tension de sortie aux bornes de la charge P est très fluctuante, et peut notamment être sensiblement inférieure à la tension nominale, l'inductance de filtrage nécessite une période de démagnetisation relativement longue, ce qui la conduit à saturation.However, for applications where the output voltage at the terminals of the load P is very fluctuating, and can in particular be significantly lower than the nominal voltage, the filtering inductor requires a relatively long demagnetization period, which leads to saturation. .

Conformément à l'invention, et comme dans l'exemple décrit plus haut, une diode D et deux thyristors Th1 et Th2 commandés par un dispositif à seuils de tension COM sont connectés à des prises intermédiaires de l'inductance de filtrage L. Le dispositif à seuils COM, en relation avec la tension de sortie, adapte la valeur de l'inductance dans la phase de restitution, de manière à conserver un temps de démagnétisation constant. On évite ainsi à l'inductance de subir le passage d'une composante continue excessive en courant, risquant de la saturer, ce qui permet de maintenir l'efficacité du filtre malgré des variations importantes de courant.According to the invention, and as in the example described above, a diode D and two thyristors Th 1 and Th 2 controlled by a device with voltage thresholds COM are connected to intermediate taps of the filtering inductance L. The COM threshold device, in relation to the output voltage, adapts the value of the inductance in the restitution phase, so as to maintain a constant demagnetization time. This avoids the inductance from undergoing the passage of an excessive DC component in current, risking saturating it, which makes it possible to maintain the efficiency of the filter despite significant variations in current.

Claims (8)

1. A process for controlling a chopped power supply connected to a supply network and comprising a primary inductance (Lp) coupled through a common magnetic circuit to a secondary inductance (Ls) and supplying a load (X) to which a capacitor (C) is connected in parallel, said process consisting in completely demagnetizing the magnetic circuit for each period of the chopping, characterized in that, to this end, the value of the secondary inductance (Ls) is automatically adapted as a function of the value of the voltage (Us) at the terminals of the load (X).
2. A device for implementing the process according to claim 1, characterized in that it comprises a number of unidirectional switching elements (D, Th1, Th2), each being connected in series between the load (X) and one of the different intermediate tappings of the secondary inductance (Ls), and a voltage threshold control circuit (COM) for controlling successively said switching elements as a function of the value of voltage at the terminals of the load (X).
3. The device according to claim 2, characterized in that the switching elements are formed by thyristors (Th1, Th2).
4. The device according to claim 2 or 3, characterized in that it further comprises an automatic regulation circuit (REG) controlling the chopping to compensate for the slow variations in the voltage at the terminals of the primary inductance (Lp), caused by the variations in the voltage of the supply network.
5. The device according to claim 4, characterized in that the regulation circuit (REG) comprises an auxiliary low power magnetic circuit (L1, L2) connected in parallel to the primary inductance and the load (R1 + R2) of which is constant, the voltage at the terminals of said load being used as voltage for driving the chopping control.
6. A process for controlling a chopped power supply comprising a so-called smoothing inductance (L) and supplying a load (P) to which a capacitor (C) is connected in parallel, said process consisting in completely demagnetizing the magnetic circuit for each period of the chopping, characterized in that, to this end, the value of the smoothing inductance (L) is automatically adapted as a function of the value of the voltage at the terminals of the load (P) during the phases of restoration of the magnetic energy.
7. A device for implementing the process according to claim 6, characterized in that it comprises a number of unidirectional switching elements (D, Th1, Th2) connected to one of the different intermediate tappings of the smoothing inductance (L) and mounted in parallel on the load (P) during the phase of restoration of the magnetic energy.
8. The device according to claim 7, characterized in that the switching elements are formed by thyristors (Th1, Th2).
EP83401229A 1983-06-15 1983-06-15 Method and device for eliminating interferences due to load variation in switched-mode power supplies Expired EP0128988B1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
AT83401229T ATE29353T1 (en) 1983-06-15 1983-06-15 METHOD AND DEVICE FOR ELIMINATING DISTURBANCES RELATED TO LOAD VARIATIONS IN SWITCHING POWER SUPPLIES.
EP83401229A EP0128988B1 (en) 1983-06-15 1983-06-15 Method and device for eliminating interferences due to load variation in switched-mode power supplies
DE8383401229T DE3373388D1 (en) 1983-06-15 1983-06-15 Method and device for eliminating interferences due to load variation in switched-mode power supplies

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP83401229A EP0128988B1 (en) 1983-06-15 1983-06-15 Method and device for eliminating interferences due to load variation in switched-mode power supplies

Publications (2)

Publication Number Publication Date
EP0128988A1 EP0128988A1 (en) 1984-12-27
EP0128988B1 true EP0128988B1 (en) 1987-09-02

Family

ID=8191408

Family Applications (1)

Application Number Title Priority Date Filing Date
EP83401229A Expired EP0128988B1 (en) 1983-06-15 1983-06-15 Method and device for eliminating interferences due to load variation in switched-mode power supplies

Country Status (3)

Country Link
EP (1) EP0128988B1 (en)
AT (1) ATE29353T1 (en)
DE (1) DE3373388D1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3782711B1 (en) 2019-08-19 2022-04-27 Alfa Laval Moatti Filtering unit with improved cover assembly

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52204B2 (en) * 1972-08-14 1977-01-06
GB2069256B (en) * 1980-01-02 1983-07-13 Gould Advance Ltd Power supply apparatus
DE3025405C2 (en) * 1980-07-04 1983-01-20 Siemens Ag, 1000 Berlin Und 8000 Muenchen Method for achieving a sinusoidal power consumption of a direct current consumer with a charging capacitor connected in parallel

Also Published As

Publication number Publication date
DE3373388D1 (en) 1987-10-08
ATE29353T1 (en) 1987-09-15
EP0128988A1 (en) 1984-12-27

Similar Documents

Publication Publication Date Title
EP0362014B1 (en) High energy ignition generator, especially for a gas turbine
EP0066481A1 (en) Electronic supply apparatus for discharge lamps
EP0340049A1 (en) Supplying device for a luminescent tube
FR2577743A1 (en) DEVICE FOR LIMITING OVERCURRENTS IN A DIRECT CURRENT POWERED INCANDESCENT LAMP
EP0815635B1 (en) Power supply circuit with a storage capacitor
EP0128988B1 (en) Method and device for eliminating interferences due to load variation in switched-mode power supplies
EP0567408B1 (en) Device for supplying discharge lamps and automotive headlamp containing such a device
EP0043761B1 (en) Switching transistor control circuit in a static converter, and converter comprising it
EP0465903A1 (en) Magnetic control method of energy transfer in a static converter
EP0022380B1 (en) Switched-mode power supply combined with a television receiver's line deflection circuit and controlled by variable phase-shifting
FR2523741A1 (en) Switching regulator circuit for variable load - uses thyristors to switch different voltage levels to load circuit
EP0033678B1 (en) Maintenance method for an electrical oscillating circuit and horizontal deflection device for a cathode ray tube using this method
EP0967842B1 (en) Setpoint signal emission on an AC network power line
FR2689795A1 (en) Control circuit for a welding apparatus.
FR2519485A1 (en) CUTTING REGULATED SUPPLY DEVICE, IN PARTICULAR FOR A DISPLAY APPARATUS AND APPARATUS HAVING THE SAME
FR2524244A1 (en) DEVICE FOR SUPPLYING FLUORESCENT TUBES BY A CONTINUOUS SOURCE
FR2542522A1 (en) Chopped supply device providing a plurality of stabilised DC voltages
EP0096642B1 (en) Power supply switching converter
EP0179680B1 (en) Power supply circuit for an x-ray source for use in radiology
CA2033030C (en) Electrical power circuit for a charge such a magnetron
FR2476143A1 (en) Thermochemical treatment of workpieces by ion bombardment - such as ion nitriding, where AC voltages are employed to prevent local damage to workpiece surfaces
WO2021259649A1 (en) Electronic controller
EP0195713A1 (en) Switching aid device for a switch and free-wheel diode
EP0270450B1 (en) Low voltage power supply circuit without a step-down voltage network transformer
EP0176425A1 (en) Forced-commutation device for an inverter and supply device of an ozonizer therefor

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT BE CH DE GB IT LI LU NL SE

17P Request for examination filed

Effective date: 19850413

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE GB IT LI LU NL SE

REF Corresponds to:

Ref document number: 29353

Country of ref document: AT

Date of ref document: 19870915

Kind code of ref document: T

ITF It: translation for a ep patent filed

Owner name: STUDIO CONS. BREVETTUALE S.R.L.

REF Corresponds to:

Ref document number: 3373388

Country of ref document: DE

Date of ref document: 19871008

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: COMPAGNIE DE SIGNAUX ET D'EQUIPEMENTS ELECTRONIQUE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PFA

Free format text: COMPAGNIE DE SIGNAUX ET D'EQUIPEMENTS ELECTRONIQUES

BECN Be: change of holder's name

Effective date: 19870902

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19900523

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19900611

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19900623

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19900628

Year of fee payment: 8

ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19900630

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19900828

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19910615

Ref country code: AT

Effective date: 19910615

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19910616

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 19910621

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19910630

Ref country code: CH

Effective date: 19910630

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19910715

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19920101

EPTA Lu: last paid annual fee
GBPC Gb: european patent ceased through non-payment of renewal fee
NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19920401

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19920615

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19920630

BERE Be: lapsed

Owner name: CIE DE SIGNAUX ET D'EQUIPEMENTS ELECTRONIQUES

Effective date: 19920630

EUG Se: european patent has lapsed

Ref document number: 83401229.6

Effective date: 19920109