EP0126626B1 - Coupleur d'ouverture rayonnant à guide d'ondes résonnant - Google Patents
Coupleur d'ouverture rayonnant à guide d'ondes résonnant Download PDFInfo
- Publication number
- EP0126626B1 EP0126626B1 EP19840303356 EP84303356A EP0126626B1 EP 0126626 B1 EP0126626 B1 EP 0126626B1 EP 19840303356 EP19840303356 EP 19840303356 EP 84303356 A EP84303356 A EP 84303356A EP 0126626 B1 EP0126626 B1 EP 0126626B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- waveguide
- line
- elements
- phase
- radiating
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000012544 monitoring process Methods 0.000 claims description 16
- 230000008878 coupling Effects 0.000 claims description 14
- 238000010168 coupling process Methods 0.000 claims description 14
- 238000005859 coupling reaction Methods 0.000 claims description 14
- 230000001902 propagating effect Effects 0.000 claims description 11
- 230000005540 biological transmission Effects 0.000 claims description 10
- 238000005070 sampling Methods 0.000 claims description 9
- 230000005284 excitation Effects 0.000 claims description 6
- 230000005855 radiation Effects 0.000 claims description 3
- 230000001419 dependent effect Effects 0.000 description 7
- 238000010586 diagram Methods 0.000 description 4
- 238000013461 design Methods 0.000 description 3
- 239000006096 absorbing agent Substances 0.000 description 2
- 239000004020 conductor Substances 0.000 description 2
- 238000010587 phase diagram Methods 0.000 description 2
- 239000000523 sample Substances 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 230000002277 temperature effect Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q3/00—Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
- H01Q3/26—Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
- H01Q3/267—Phased-array testing or checking devices
Definitions
- the invention relates generally to phase-stable manifolds and, in particular, a resonant waveguide for monitoring a scanning beam antenna essentially independent of temperature and frequency over a practical range and for monitoring a scanning beam antenna at a scan angle which is not aligned with the boresight direction of the antenna.
- Slotted waveguides are sometimes used as aperture manifolds which couple to the radiated signal of a phased-array antenna to monitor its performance.
- Such waveguide manifolds are used in Microwave Landing System (MLS) ground systems for producing a signal equivalent to a signal viewed by a receiver at a specific angle within the coverage volume of the ground system.
- MLS Microwave Landing System
- Such waveguide manifolds provide a far-field view of the scanning beam of the ground system and, additionally, measure the antenna insertion phase and amplitude associated with each individual array element.
- Waveguide manifolds used to monitor elevation and azimuth scanning beams of an MLS ground system have been waveguides which propagate travelling waves and, consequently, the phasing characteristics are frequency and temperature dependent. The result is that the scan angle of the beam monitored at the waveguide output is also temperature and frequency dependent. Furthermore, for monitoring MLS azimuth scanning, a travelling wave manifold does not inherently monitor the zero degree course over the MLS operating frequency bandwidth. This is because the beam pointing characteristic of a travelling wave manifold is frequency and temperature dependent.
- monitoring apparatus for coupling to a scanning beam antenna, said antenna comprising an array of radiating elements spaced apart from one another by a given distance and fed with energy in selected varying relative phases to cause the array to radiate a desired radiation pattern and to scan said pattern across a selected angular region, said monitoring apparatus being adapted to monitor said radiating antenna in respect of a predetermined scan angle; said monitoring apparatus characterized by: a transmission line for directing electromagnetic energy in a predetermined frequency range, said line having first and second ends; a first short circuit at the first end of said line; a second short circuit at the second end of said line, whereby said line is a resonant line; a low VSWR transducer coupled to said line between said first and second ends to convert electromagnetic energy, having a frequency within said predetermined frequency range and propagating along the line, into an electrical output signal; a plurality of sampling elements adapted to be coupled to respective individual radiating elements of said phased array, said sampling elements being coupled to said line at spaced apart points along
- US-A-3328800 describes apparatus comprising: a transmission line for directing electromagnetic energy in a predetermined frequency range, said line having first and second ends; means for introducing energy having a frequency within the predetermined frequency range into said transmission line; a first short circuit at the first end of said line; and a second short circuit at the second end of said line, whereby said transmission line is resonant.
- That described apparatus is a radiating antenna whereas the present invention relates to apparatus for monitoring radiated signals such as signals radiated by a radiating antenna.
- an efficient radiating antenna is not suitable for use as monitoring apparatus.
- US-A-3293550 describes the use of a single input waveguide for monitoring the signals present in another waveguide.
- the other waveguide does not radiate, i.e. energy present therein is contained therein and the waveguide is not an antenna whose radiated output is to be monitored.
- the single input waveguide is coupled to the energy waveguide at a single port element.
- a prior art travelling wave manifold 100 made of conductive material is provided with an output transducer such as connector 101 which receives a wave propagating along propagation path 102 which is terminated in absorber 103 or other non-reflecting terminating means at the far end.
- Side 104 functions as a short circuit which reflects waves propagating to the left.
- Side 105 of waveguide 100 is provided with weakly coupled input slots 106, 107, 108, 109, 110, 111, 112 and 113 having spacing d.
- phase relationship between adjacent slots 106 and 107 is given by the following formula: As shown by the formula, the phase of slot 107 ( ⁇ 107) as compared to the phase of slot 106 ( ⁇ 106) is dependent upon the spacing d and the waveguide wavelength ( ⁇ g ). All other adjacent slots have similar phase relationships. Since spacing d is temperature dependent (conductive material such as copper or aluminum expands or contracts with temperature variations) and the waveguide wavelength ⁇ g is frequency dependent, travelling wave manifold 100 is both frequency and temperature dependent.
- the monitored beam pointing angle, ⁇ , for the travelling wave manifold having adjacent slots fed in phase opposition is represented by a corresponding signal at the manifold output connector as a result of excitations imparted at the manifold slots.
- ⁇ arc sin ⁇ (1 - ( ⁇ o f o / ⁇ co f)2 - ⁇ o f o /2df)
- an aperture manifold 4 is associated with the antenna elements of array 1.
- Manifold 4 may be any means for forming a signal provided by output 12 which represents a beam pointing angle of the radiated beam.
- manifold 4 is a highly phase stable waveguide or manifold, such as the invention, coupled to the array 2 and center-fed to avoid inherent frequency (phase) and temperature effects. Center feeding also eliminates first-order dependence on frequency and absolute temperature variations.
- manifold 4 refers to any type of device for sampling signals including a waveguide, a printed circuit network, a coaxial line network or a power combiner.
- a phase stable manifold is, by definition, one in which the beam formed by summing of the slot excitations is insensitive to frequency and temperature changes and is used in combination with a phased array in accordance with this invention to detect error at a specific beam pointing angle.
- Manifold 4 is equivalent in function to a probe located in space at a specific angle with respect to the phased array.
- a manifold in accordance with the present invention may be a slotted waveguide configured to monitor radiated energy such that there is equal, non-zero phase and equal amplitude at all sample points (i.e. slot locations) of the manifold.
- the output 12 of manifold 4 is coupled to means 5, associated with means 3, for controlling the scanning of the radiated beam in response to the output 12 of manifold 4.
- FIG 3 illustrates a resonant waveguide 200 according to the invention.
- Waveguide 200 is provided with a first end 201 terminating in a short circuit such as a conductive sheet of metal perpendicular to the sides of waveguide 200 and a second end 202 terminating in a short circuit.
- Waveguide 200 is center fed by a transducer which converts an electrical signal into electromagnetic energy and vice versa.
- the transducer is any connector well known in the prior art such as output connector 203 which receive waves propagating in both directions along path 204.
- Side 205 of waveguide 200 is provided with slots 206, 207, 208, 209, 210, 211, 212, 213, and 214 for coupling to a radiating antenna.
- Figure 4 illustrates a 180 o degree phase compensating pattern of the coupling slots which will be described below.
- Figures 5 and 6 illustrate preferred rectangular crossections of waveguide 200.
- an incident wave radiated by connector 203 has a constant amplitude A inc along the entire length of waveguide 200. This is because amplitude tapers in the travelling wave caused by the coupling slots is counteracted and eliminated by the resonance of waveguide 200.
- waveguide 200 may be used in either a transmitting or receiving mode.
- connector 203 In the transmitting mode, connector 203 is connected via isolator 215 to a signal source (not shown). The signal is converted by connector 203 to electromagnetic wave energy which propagates along waveguide 200 and is radiated by slots 206-214.
- slots 206-214 are illuminated by electromagnetic wave energy which propagates along waveguide 200 and is converted by connector 203 into an electrical signal.
- the invention has been described in a receiving mode.
- Figure 8 is an illustration of the incident phase ⁇ inc of the wave radiated by connector 203 and illustrates that the phase along waveguide 200 is linearly changing.
- figure 9 illustrates that the amplitude of the reflected wave A ref is constant along the entire length of waveguide 200.
- the phase of the reflected wave ⁇ ref propagating within waveguide 200 is linearly changing with distance.
- the result, as illustrated in figure 11, is a standing wave having a plurality of cells of alternating phase of zero degrees and 180 degrees between spacing d of the slots.
- each slot is located within one of the standing wave cells of waveguide 200 so that the resulting manifold output will be temperature and frequency independent as long as the variations in temperature and frequency are within the range such that there is one and only one slot or group of slots located within each standing wave cell.
- This aperture manifold provides a beam forming capability which is independent of frequency and temperature since the phase within each standing wave cell is constant.
- isolator 215 is located within the line feeding connector 203.
- each slot is located within one of the standing wave cells of waveguide 200.
- the resulting manifold output will have equal phase for each coupling slot and will be temperature and frequency independent as long as the variations in temperature and frequency are within the range such that there is one and only one slot or group of slots located within each standing wave cell.
- the resulting manifold output will approximate an 11.25 o beam pointing angle.
- This aperture manifold provides a beam forming capability which is independent of frequency and temperature since the phase within each standing wave cell is constant.
- isolator 215 is located within the line feeding connector 203.
- the beam pointing angle is generally not 0 o and the beam radiated by manifold 200 is not perpendicular to path 204 because of the nonequal phasing of the groups of slots.
- slots 206-214 may be phased to approximate any beam pointing angle desired.
- the range of the actual beam pointing angles which the slots of a particular manifold may approximate are limited by the physical configuration of the particular manifold. In any case, therefore, the phasing of manifold 200 is independent of frequency and coupling slot spacing over the operational frequency bandwidth.
- input connector 203 is initially matched to waveguide 200 as if each end of waveguide 200 terminated in a non-reflecting absorber as shown in the prior art illustrated in figure 1.
- Such a matched connector 203 is employed with waveguide 200 terminating in short circuits as illustrated in figure 3 thereby resulting in the resonant standing wave as shown in figure 11.
- the required waveguide wavelength ⁇ g is twice the spacing d between coupling slots 206-214.
- This spacing d is determined by the radiating characteristics of the phased array antenna associated with waveguide 200 and is typically slightly larger than 1/2 wavelength.
- ridge loading as shown in Figure 6 is used to obtain this result.
- opposing ridges 250R and 260R are located within waveguide 200R for eliminating odd mode resonance which may disturb the amplitude and phase of the slot excitations.
- the maximum length, L, of a manifold according to the invention is limited by the operational frequency bandwidth of the phased array antenna with which it is associated. To limit the beam distortions caused by amplitude taper at the band edges, length L should not exceed the value given below: L ⁇ ⁇ o f o /2(f max ⁇ (1 - (1 - ⁇ o f o / ⁇ co f max )2) - f min ⁇ (1 - (1 - ⁇ o f o / ⁇ co f min )2))
- two similar manifolds can be interconnected with equal length stable transmission lines.
- Waveguide 300 may be one of a series of parallel waveguides forming the azimuth antenna of a Microwave Landing System (MLS) ground system. Such a ground system requires monitoring to evaluate its performance.
- waveguide 200R functions as a manifold and is associated with each of the parallel waveguides 300. Ridge loading in waveguide 200R in the form of ridges 250R and 260R is used to match the guide wavelength of waveguide 200 to the required spacing of radiating waveguides 300.
- waveguide 300 with polarized radiating slots 301 has a non-polarized opening 302 coupled to slot 208R.
- Other vertical waveguides would be coupled to slots 206R and 207R.
- Figure 13 illustrates another MLS ground system coupling configuration having non-polarized holes 506R, 507R and 508R in broad wall 509R of waveguide 500R and having ridge 510R on broad wall 511R.
- the non-polarized holes are coupled to parallel radiating waveguides such as waveguide 300 by polarized slot 303.
- polarized slot 303 For this configuration the required 180 degree phase reversals between adjacent coupling holes is incorporated in the design of waveguide 300.
- Adjacent waveguides 300 have a 180 o phase reversal at their input wave launchers i.e. slot 303.
- Figure 14 illustrates another MLS ground system coupling configuration wherein slots 206, 206a, 207, 207a, 208, 208a, are coupled to dipole array 400 which may function as an MLS elevation antenna.
- this invention has been particularly described with regard to its function as an elevation manifold, it may be used as an azimuth manifold or other array monitor.
Landscapes
- Waveguide Aerials (AREA)
- Variable-Direction Aerials And Aerial Arrays (AREA)
Claims (12)
- Appareil de contrôle prévu pour le couplage à une antenne à faisceau battant (1), cette antenne comprenant un réseau d'éléments rayonnants (1) mutuellement espacés d'une distance donnée, et alimentés avec de l'énergie correspondant à des phases relatives variables sélectionnées, pour faire en sorte que le réseau rayonne un diagramme de rayonnement désiré, et pour communiquer à ce diagramme un mouvement de balayage sur une région angulaire sélectionnée, cet appareil de contrôle étant conçu pour contrôler l'antenne rayonnante en ce qui concerne un angle de balayage prédéterminé;
cet appareil de contrôle étant caractérisé par :
une ligne de transmission (200) destinée à acheminer de l'énergie électromagnétique dans une gamme de fréquence prédéterminée, cette ligne ayant des première et seconde extrémités;
un premier court-circuit (201) à la première extrémité de la ligne;
un second court-circuit (202) à la seconde extrémité de la ligne, grâce à quoi la ligne est une ligne résonnante;
un transducteur à faible rapport d'onde stationnaire (ROS) (203), couplé à la ligne entre les première et seconde extrémités, pour convertir en un signal de sortie électrique de l'énergie électromagnétique ayant une fréquence comprise dans la gamme de fréquence prédéterminée et se propageant le long de la ligne;
un ensemble d'éléments d'échantillonnage (206-214), conçus pour être couplés à des éléments rayonnants individuels respectifs du réseau à commande par la phase, ces éléments d'échantillonnage étant couplés à la ligne en des points mutuellement espacés le long de la ligne, pour créer, au cours de l'utilisation, une onde stationnaire résonnante ayant un ensemble de cellules avec des phases opposées alternées le long de la ligne; et
chaque élément d'échantillonnage (206-214) ou un groupe de ces éléments d'échantillonnage se trouvant dans l'une respective des cellules, de façon à établir des conditions de phase pratiquement égales pour chaque élément rayonnant, grâce à quoi, pendant l'utilisation, le signal de sortie électrique qui provient du transducteur (203) représente de l'énergie rayonnée par le réseau sous l'angle de balayage prédéterminé. - Appareil selon la revendication 1, dans lequel des éléments adjacents (figure 4A) ont des phases opposées.
- Appareil selon la revendication 1 ou la revendication 2, dans lequel la ligne de transmission (200) consiste en une structure creuse conductrice de l'électricité, et les éléments précités consistent en ouvertures (206-214, 506-508) dans cette structure.
- Appareil selon la revendication 3, dans lequel la structure creuse conductrice de l'électricité est un guide d'ondes rectiligne de section transversale rectangulaire (figures 5 et 6), et les ouvertures précitées consistent en un réseau linéaire de fentes mutuellement espacées d'une distance pratiquement égale à la moitié de la longueur d'onde de guide d'ondes de la structure précitée (figure 3).
- Appareil selon la revendication 4, dans lequel le transducteur consiste en un connecteur (203) qui fait saillie à l'intérieur de la structure précitée.
- Appareil selon la revendication 5, comprenant en outre un circuit (215) qui est destiné à isoler du guide d'ondes toute charge connectée au connecteur.
- Appareil selon l'une quelconque des revendications 4 à 6, dans lequel le premier court-circuit (211) consiste en une première structure conductrice de l'électricité pratiquement perpendiculaire aux côtés du guide d'ondes et fixée à la première extrémité, et le second court-circuit consiste en une seconde structure conductrice de l'électricité pratiquement perpendiculaire aux côtés du guide d'ondes et fixée à la seconde extrémité (figure 3).
- Appareil selon l'une quelconque des revendications 1 à 7, comprenant en outre un dispositif (250, 260) qui est destiné à éliminer une résonance de mode impair, pour réduire ainsi les distorsions d'amplitude et de phase des excitations des éléments.
- Appareil selon la revendication 8, dans lequel le dispositif d'élimination comprend une nervure (250, 260) qui est placée à l'intérieur de la structure précitée.
- Appareil selon l'une quelconque des revendications 1 à 9, comprenant : des groupes (A, B, C, D) d'éléments associés à la ligne, avec une configuration dans laquelle des groupes adjacents ont des phases différentes (figure 4B), chaque groupe ayant N éléments et des éléments adjacents dans chaque groupe ayant des phases différentes, N étant un entier positif pair supérieur à un; grâce à quoi sous l'effet de l'application au transducteur d'un signal électrique ayant une fréquence comprise dans la gamme de fréquence prédéterminée, les éléments rayonnent un faisceau qui n'est pas perpendiculaire à la ligne de transmission.
- Appareil selon la revendication 10, dans lequel les éléments sont des fentes de guide d'ondes ayant une configuration choisie pour définir un angle de pointage de faisceau d'environ 11,25° (figure 4B).
- Appareil selon la revendication 10 ou la revendication 11, dans lequel des groupes d'éléments adjacents (AB, BC, CD) ont des phases opposées, et des éléments adjacents dans chaque groupe ont des phases opposées (figure 4B).
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US06/497,349 US4554550A (en) | 1983-05-23 | 1983-05-23 | Resonant waveguide aperture manifold |
US06/497,350 US4554551A (en) | 1983-05-23 | 1983-05-23 | Asymmetric resonant waveguide aperture manifold |
US497350 | 1995-06-30 | ||
US497349 | 1995-06-30 |
Publications (3)
Publication Number | Publication Date |
---|---|
EP0126626A2 EP0126626A2 (fr) | 1984-11-28 |
EP0126626A3 EP0126626A3 (en) | 1987-02-04 |
EP0126626B1 true EP0126626B1 (fr) | 1993-06-16 |
Family
ID=27052466
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP19840303356 Expired - Lifetime EP0126626B1 (fr) | 1983-05-23 | 1984-05-17 | Coupleur d'ouverture rayonnant à guide d'ondes résonnant |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP0126626B1 (fr) |
AU (1) | AU565039B2 (fr) |
DE (1) | DE3486164T2 (fr) |
NZ (1) | NZ208213A (fr) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7123204B2 (en) | 2002-04-24 | 2006-10-17 | Forster Ian J | Energy source communication employing slot antenna |
Families Citing this family (169)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SE449540B (sv) * | 1985-10-31 | 1987-05-04 | Ericsson Telefon Ab L M | Vagledarelement for en elektriskt styrd radarantenn |
US5111208A (en) * | 1989-02-23 | 1992-05-05 | Hazeltine Corporation | Calibration of plural - channel system |
DE4227857A1 (de) * | 1992-08-22 | 1994-02-24 | Sel Alcatel Ag | Einrichtung zur Gewinnung der Aperturbelegung einer phasengesteuerten Gruppenantenne |
IL107582A (en) * | 1993-11-12 | 1998-02-08 | Ramot Ramatsity Authority For | Slotted waveguide array antennas |
NL9500580A (nl) * | 1995-03-27 | 1996-11-01 | Hollandse Signaalapparaten Bv | Phased array antenne voorzien van een calibratienetwerk. |
US20020130817A1 (en) * | 2001-03-16 | 2002-09-19 | Forster Ian J. | Communicating with stackable objects using an antenna array |
RU2449435C1 (ru) * | 2011-02-07 | 2012-04-27 | Государственное образовательное учреждение высшего профессионального образования Новгородский государственный университет имени Ярослава Мудрого | Плоская решетка антенн дифракционного излучения и делитель мощности, используемый в ней |
US9225048B2 (en) | 2011-02-23 | 2015-12-29 | General Electric Company | Antenna protection device and system |
US10009065B2 (en) | 2012-12-05 | 2018-06-26 | At&T Intellectual Property I, L.P. | Backhaul link for distributed antenna system |
US9113347B2 (en) | 2012-12-05 | 2015-08-18 | At&T Intellectual Property I, Lp | Backhaul link for distributed antenna system |
US9999038B2 (en) | 2013-05-31 | 2018-06-12 | At&T Intellectual Property I, L.P. | Remote distributed antenna system |
US9525524B2 (en) | 2013-05-31 | 2016-12-20 | At&T Intellectual Property I, L.P. | Remote distributed antenna system |
US8897697B1 (en) | 2013-11-06 | 2014-11-25 | At&T Intellectual Property I, Lp | Millimeter-wave surface-wave communications |
US9209902B2 (en) | 2013-12-10 | 2015-12-08 | At&T Intellectual Property I, L.P. | Quasi-optical coupler |
US9692101B2 (en) | 2014-08-26 | 2017-06-27 | At&T Intellectual Property I, L.P. | Guided wave couplers for coupling electromagnetic waves between a waveguide surface and a surface of a wire |
US9768833B2 (en) | 2014-09-15 | 2017-09-19 | At&T Intellectual Property I, L.P. | Method and apparatus for sensing a condition in a transmission medium of electromagnetic waves |
US10063280B2 (en) | 2014-09-17 | 2018-08-28 | At&T Intellectual Property I, L.P. | Monitoring and mitigating conditions in a communication network |
US9628854B2 (en) | 2014-09-29 | 2017-04-18 | At&T Intellectual Property I, L.P. | Method and apparatus for distributing content in a communication network |
US9615269B2 (en) | 2014-10-02 | 2017-04-04 | At&T Intellectual Property I, L.P. | Method and apparatus that provides fault tolerance in a communication network |
US9685992B2 (en) | 2014-10-03 | 2017-06-20 | At&T Intellectual Property I, L.P. | Circuit panel network and methods thereof |
US9503189B2 (en) | 2014-10-10 | 2016-11-22 | At&T Intellectual Property I, L.P. | Method and apparatus for arranging communication sessions in a communication system |
US9973299B2 (en) | 2014-10-14 | 2018-05-15 | At&T Intellectual Property I, L.P. | Method and apparatus for adjusting a mode of communication in a communication network |
US9762289B2 (en) | 2014-10-14 | 2017-09-12 | At&T Intellectual Property I, L.P. | Method and apparatus for transmitting or receiving signals in a transportation system |
US9564947B2 (en) | 2014-10-21 | 2017-02-07 | At&T Intellectual Property I, L.P. | Guided-wave transmission device with diversity and methods for use therewith |
US9312919B1 (en) | 2014-10-21 | 2016-04-12 | At&T Intellectual Property I, Lp | Transmission device with impairment compensation and methods for use therewith |
US9653770B2 (en) | 2014-10-21 | 2017-05-16 | At&T Intellectual Property I, L.P. | Guided wave coupler, coupling module and methods for use therewith |
US9577306B2 (en) | 2014-10-21 | 2017-02-21 | At&T Intellectual Property I, L.P. | Guided-wave transmission device and methods for use therewith |
US9627768B2 (en) | 2014-10-21 | 2017-04-18 | At&T Intellectual Property I, L.P. | Guided-wave transmission device with non-fundamental mode propagation and methods for use therewith |
US9780834B2 (en) | 2014-10-21 | 2017-10-03 | At&T Intellectual Property I, L.P. | Method and apparatus for transmitting electromagnetic waves |
US9769020B2 (en) | 2014-10-21 | 2017-09-19 | At&T Intellectual Property I, L.P. | Method and apparatus for responding to events affecting communications in a communication network |
US9520945B2 (en) | 2014-10-21 | 2016-12-13 | At&T Intellectual Property I, L.P. | Apparatus for providing communication services and methods thereof |
US9680670B2 (en) | 2014-11-20 | 2017-06-13 | At&T Intellectual Property I, L.P. | Transmission device with channel equalization and control and methods for use therewith |
US10009067B2 (en) | 2014-12-04 | 2018-06-26 | At&T Intellectual Property I, L.P. | Method and apparatus for configuring a communication interface |
US9997819B2 (en) | 2015-06-09 | 2018-06-12 | At&T Intellectual Property I, L.P. | Transmission medium and method for facilitating propagation of electromagnetic waves via a core |
US9654173B2 (en) | 2014-11-20 | 2017-05-16 | At&T Intellectual Property I, L.P. | Apparatus for powering a communication device and methods thereof |
US10340573B2 (en) | 2016-10-26 | 2019-07-02 | At&T Intellectual Property I, L.P. | Launcher with cylindrical coupling device and methods for use therewith |
US9800327B2 (en) | 2014-11-20 | 2017-10-24 | At&T Intellectual Property I, L.P. | Apparatus for controlling operations of a communication device and methods thereof |
US10243784B2 (en) | 2014-11-20 | 2019-03-26 | At&T Intellectual Property I, L.P. | System for generating topology information and methods thereof |
US9544006B2 (en) | 2014-11-20 | 2017-01-10 | At&T Intellectual Property I, L.P. | Transmission device with mode division multiplexing and methods for use therewith |
US9954287B2 (en) | 2014-11-20 | 2018-04-24 | At&T Intellectual Property I, L.P. | Apparatus for converting wireless signals and electromagnetic waves and methods thereof |
US9461706B1 (en) | 2015-07-31 | 2016-10-04 | At&T Intellectual Property I, Lp | Method and apparatus for exchanging communication signals |
US9742462B2 (en) | 2014-12-04 | 2017-08-22 | At&T Intellectual Property I, L.P. | Transmission medium and communication interfaces and methods for use therewith |
US10144036B2 (en) | 2015-01-30 | 2018-12-04 | At&T Intellectual Property I, L.P. | Method and apparatus for mitigating interference affecting a propagation of electromagnetic waves guided by a transmission medium |
US9876570B2 (en) | 2015-02-20 | 2018-01-23 | At&T Intellectual Property I, Lp | Guided-wave transmission device with non-fundamental mode propagation and methods for use therewith |
US9749013B2 (en) | 2015-03-17 | 2017-08-29 | At&T Intellectual Property I, L.P. | Method and apparatus for reducing attenuation of electromagnetic waves guided by a transmission medium |
US10224981B2 (en) | 2015-04-24 | 2019-03-05 | At&T Intellectual Property I, Lp | Passive electrical coupling device and methods for use therewith |
US9705561B2 (en) | 2015-04-24 | 2017-07-11 | At&T Intellectual Property I, L.P. | Directional coupling device and methods for use therewith |
US9793954B2 (en) | 2015-04-28 | 2017-10-17 | At&T Intellectual Property I, L.P. | Magnetic coupling device and methods for use therewith |
US9948354B2 (en) | 2015-04-28 | 2018-04-17 | At&T Intellectual Property I, L.P. | Magnetic coupling device with reflective plate and methods for use therewith |
US9871282B2 (en) | 2015-05-14 | 2018-01-16 | At&T Intellectual Property I, L.P. | At least one transmission medium having a dielectric surface that is covered at least in part by a second dielectric |
US9748626B2 (en) | 2015-05-14 | 2017-08-29 | At&T Intellectual Property I, L.P. | Plurality of cables having different cross-sectional shapes which are bundled together to form a transmission medium |
US9490869B1 (en) | 2015-05-14 | 2016-11-08 | At&T Intellectual Property I, L.P. | Transmission medium having multiple cores and methods for use therewith |
US10679767B2 (en) | 2015-05-15 | 2020-06-09 | At&T Intellectual Property I, L.P. | Transmission medium having a conductive material and methods for use therewith |
US10650940B2 (en) | 2015-05-15 | 2020-05-12 | At&T Intellectual Property I, L.P. | Transmission medium having a conductive material and methods for use therewith |
US9917341B2 (en) | 2015-05-27 | 2018-03-13 | At&T Intellectual Property I, L.P. | Apparatus and method for launching electromagnetic waves and for modifying radial dimensions of the propagating electromagnetic waves |
US10103801B2 (en) | 2015-06-03 | 2018-10-16 | At&T Intellectual Property I, L.P. | Host node device and methods for use therewith |
US9866309B2 (en) | 2015-06-03 | 2018-01-09 | At&T Intellectual Property I, Lp | Host node device and methods for use therewith |
US10812174B2 (en) | 2015-06-03 | 2020-10-20 | At&T Intellectual Property I, L.P. | Client node device and methods for use therewith |
US10154493B2 (en) | 2015-06-03 | 2018-12-11 | At&T Intellectual Property I, L.P. | Network termination and methods for use therewith |
US10348391B2 (en) | 2015-06-03 | 2019-07-09 | At&T Intellectual Property I, L.P. | Client node device with frequency conversion and methods for use therewith |
US9912381B2 (en) | 2015-06-03 | 2018-03-06 | At&T Intellectual Property I, Lp | Network termination and methods for use therewith |
US9913139B2 (en) | 2015-06-09 | 2018-03-06 | At&T Intellectual Property I, L.P. | Signal fingerprinting for authentication of communicating devices |
US10142086B2 (en) | 2015-06-11 | 2018-11-27 | At&T Intellectual Property I, L.P. | Repeater and methods for use therewith |
US9608692B2 (en) | 2015-06-11 | 2017-03-28 | At&T Intellectual Property I, L.P. | Repeater and methods for use therewith |
US9820146B2 (en) | 2015-06-12 | 2017-11-14 | At&T Intellectual Property I, L.P. | Method and apparatus for authentication and identity management of communicating devices |
US9667317B2 (en) | 2015-06-15 | 2017-05-30 | At&T Intellectual Property I, L.P. | Method and apparatus for providing security using network traffic adjustments |
US9640850B2 (en) | 2015-06-25 | 2017-05-02 | At&T Intellectual Property I, L.P. | Methods and apparatus for inducing a non-fundamental wave mode on a transmission medium |
US9509415B1 (en) | 2015-06-25 | 2016-11-29 | At&T Intellectual Property I, L.P. | Methods and apparatus for inducing a fundamental wave mode on a transmission medium |
US9865911B2 (en) | 2015-06-25 | 2018-01-09 | At&T Intellectual Property I, L.P. | Waveguide system for slot radiating first electromagnetic waves that are combined into a non-fundamental wave mode second electromagnetic wave on a transmission medium |
US10320586B2 (en) | 2015-07-14 | 2019-06-11 | At&T Intellectual Property I, L.P. | Apparatus and methods for generating non-interfering electromagnetic waves on an insulated transmission medium |
US10170840B2 (en) | 2015-07-14 | 2019-01-01 | At&T Intellectual Property I, L.P. | Apparatus and methods for sending or receiving electromagnetic signals |
US10044409B2 (en) | 2015-07-14 | 2018-08-07 | At&T Intellectual Property I, L.P. | Transmission medium and methods for use therewith |
US10148016B2 (en) | 2015-07-14 | 2018-12-04 | At&T Intellectual Property I, L.P. | Apparatus and methods for communicating utilizing an antenna array |
US9836957B2 (en) | 2015-07-14 | 2017-12-05 | At&T Intellectual Property I, L.P. | Method and apparatus for communicating with premises equipment |
US10033108B2 (en) | 2015-07-14 | 2018-07-24 | At&T Intellectual Property I, L.P. | Apparatus and methods for generating an electromagnetic wave having a wave mode that mitigates interference |
US9722318B2 (en) | 2015-07-14 | 2017-08-01 | At&T Intellectual Property I, L.P. | Method and apparatus for coupling an antenna to a device |
US9847566B2 (en) | 2015-07-14 | 2017-12-19 | At&T Intellectual Property I, L.P. | Method and apparatus for adjusting a field of a signal to mitigate interference |
US10205655B2 (en) | 2015-07-14 | 2019-02-12 | At&T Intellectual Property I, L.P. | Apparatus and methods for communicating utilizing an antenna array and multiple communication paths |
US10033107B2 (en) | 2015-07-14 | 2018-07-24 | At&T Intellectual Property I, L.P. | Method and apparatus for coupling an antenna to a device |
US9882257B2 (en) | 2015-07-14 | 2018-01-30 | At&T Intellectual Property I, L.P. | Method and apparatus for launching a wave mode that mitigates interference |
US9628116B2 (en) | 2015-07-14 | 2017-04-18 | At&T Intellectual Property I, L.P. | Apparatus and methods for transmitting wireless signals |
US10341142B2 (en) | 2015-07-14 | 2019-07-02 | At&T Intellectual Property I, L.P. | Apparatus and methods for generating non-interfering electromagnetic waves on an uninsulated conductor |
US9853342B2 (en) | 2015-07-14 | 2017-12-26 | At&T Intellectual Property I, L.P. | Dielectric transmission medium connector and methods for use therewith |
US10090606B2 (en) | 2015-07-15 | 2018-10-02 | At&T Intellectual Property I, L.P. | Antenna system with dielectric array and methods for use therewith |
US9793951B2 (en) | 2015-07-15 | 2017-10-17 | At&T Intellectual Property I, L.P. | Method and apparatus for launching a wave mode that mitigates interference |
US9608740B2 (en) | 2015-07-15 | 2017-03-28 | At&T Intellectual Property I, L.P. | Method and apparatus for launching a wave mode that mitigates interference |
US9948333B2 (en) | 2015-07-23 | 2018-04-17 | At&T Intellectual Property I, L.P. | Method and apparatus for wireless communications to mitigate interference |
US9871283B2 (en) | 2015-07-23 | 2018-01-16 | At&T Intellectual Property I, Lp | Transmission medium having a dielectric core comprised of plural members connected by a ball and socket configuration |
US10784670B2 (en) | 2015-07-23 | 2020-09-22 | At&T Intellectual Property I, L.P. | Antenna support for aligning an antenna |
US9912027B2 (en) | 2015-07-23 | 2018-03-06 | At&T Intellectual Property I, L.P. | Method and apparatus for exchanging communication signals |
US9749053B2 (en) | 2015-07-23 | 2017-08-29 | At&T Intellectual Property I, L.P. | Node device, repeater and methods for use therewith |
US9967173B2 (en) | 2015-07-31 | 2018-05-08 | At&T Intellectual Property I, L.P. | Method and apparatus for authentication and identity management of communicating devices |
US9735833B2 (en) | 2015-07-31 | 2017-08-15 | At&T Intellectual Property I, L.P. | Method and apparatus for communications management in a neighborhood network |
US10020587B2 (en) | 2015-07-31 | 2018-07-10 | At&T Intellectual Property I, L.P. | Radial antenna and methods for use therewith |
US9904535B2 (en) | 2015-09-14 | 2018-02-27 | At&T Intellectual Property I, L.P. | Method and apparatus for distributing software |
US10136434B2 (en) | 2015-09-16 | 2018-11-20 | At&T Intellectual Property I, L.P. | Method and apparatus for use with a radio distributed antenna system having an ultra-wideband control channel |
US10009063B2 (en) | 2015-09-16 | 2018-06-26 | At&T Intellectual Property I, L.P. | Method and apparatus for use with a radio distributed antenna system having an out-of-band reference signal |
US10079661B2 (en) | 2015-09-16 | 2018-09-18 | At&T Intellectual Property I, L.P. | Method and apparatus for use with a radio distributed antenna system having a clock reference |
US10051629B2 (en) | 2015-09-16 | 2018-08-14 | At&T Intellectual Property I, L.P. | Method and apparatus for use with a radio distributed antenna system having an in-band reference signal |
US10009901B2 (en) | 2015-09-16 | 2018-06-26 | At&T Intellectual Property I, L.P. | Method, apparatus, and computer-readable storage medium for managing utilization of wireless resources between base stations |
US9769128B2 (en) | 2015-09-28 | 2017-09-19 | At&T Intellectual Property I, L.P. | Method and apparatus for encryption of communications over a network |
US9729197B2 (en) | 2015-10-01 | 2017-08-08 | At&T Intellectual Property I, L.P. | Method and apparatus for communicating network management traffic over a network |
US10074890B2 (en) | 2015-10-02 | 2018-09-11 | At&T Intellectual Property I, L.P. | Communication device and antenna with integrated light assembly |
US9882277B2 (en) | 2015-10-02 | 2018-01-30 | At&T Intellectual Property I, Lp | Communication device and antenna assembly with actuated gimbal mount |
US9876264B2 (en) | 2015-10-02 | 2018-01-23 | At&T Intellectual Property I, Lp | Communication system, guided wave switch and methods for use therewith |
US10665942B2 (en) | 2015-10-16 | 2020-05-26 | At&T Intellectual Property I, L.P. | Method and apparatus for adjusting wireless communications |
US10355367B2 (en) | 2015-10-16 | 2019-07-16 | At&T Intellectual Property I, L.P. | Antenna structure for exchanging wireless signals |
US10051483B2 (en) | 2015-10-16 | 2018-08-14 | At&T Intellectual Property I, L.P. | Method and apparatus for directing wireless signals |
US9912419B1 (en) | 2016-08-24 | 2018-03-06 | At&T Intellectual Property I, L.P. | Method and apparatus for managing a fault in a distributed antenna system |
US9860075B1 (en) | 2016-08-26 | 2018-01-02 | At&T Intellectual Property I, L.P. | Method and communication node for broadband distribution |
US10291311B2 (en) | 2016-09-09 | 2019-05-14 | At&T Intellectual Property I, L.P. | Method and apparatus for mitigating a fault in a distributed antenna system |
US11032819B2 (en) | 2016-09-15 | 2021-06-08 | At&T Intellectual Property I, L.P. | Method and apparatus for use with a radio distributed antenna system having a control channel reference signal |
US10135147B2 (en) | 2016-10-18 | 2018-11-20 | At&T Intellectual Property I, L.P. | Apparatus and methods for launching guided waves via an antenna |
US10135146B2 (en) | 2016-10-18 | 2018-11-20 | At&T Intellectual Property I, L.P. | Apparatus and methods for launching guided waves via circuits |
US10340600B2 (en) | 2016-10-18 | 2019-07-02 | At&T Intellectual Property I, L.P. | Apparatus and methods for launching guided waves via plural waveguide systems |
US9991580B2 (en) | 2016-10-21 | 2018-06-05 | At&T Intellectual Property I, L.P. | Launcher and coupling system for guided wave mode cancellation |
US9876605B1 (en) | 2016-10-21 | 2018-01-23 | At&T Intellectual Property I, L.P. | Launcher and coupling system to support desired guided wave mode |
US10374316B2 (en) | 2016-10-21 | 2019-08-06 | At&T Intellectual Property I, L.P. | System and dielectric antenna with non-uniform dielectric |
US10811767B2 (en) | 2016-10-21 | 2020-10-20 | At&T Intellectual Property I, L.P. | System and dielectric antenna with convex dielectric radome |
US10312567B2 (en) | 2016-10-26 | 2019-06-04 | At&T Intellectual Property I, L.P. | Launcher with planar strip antenna and methods for use therewith |
US10498044B2 (en) | 2016-11-03 | 2019-12-03 | At&T Intellectual Property I, L.P. | Apparatus for configuring a surface of an antenna |
US10225025B2 (en) | 2016-11-03 | 2019-03-05 | At&T Intellectual Property I, L.P. | Method and apparatus for detecting a fault in a communication system |
US10224634B2 (en) | 2016-11-03 | 2019-03-05 | At&T Intellectual Property I, L.P. | Methods and apparatus for adjusting an operational characteristic of an antenna |
US10291334B2 (en) | 2016-11-03 | 2019-05-14 | At&T Intellectual Property I, L.P. | System for detecting a fault in a communication system |
US10178445B2 (en) | 2016-11-23 | 2019-01-08 | At&T Intellectual Property I, L.P. | Methods, devices, and systems for load balancing between a plurality of waveguides |
US10090594B2 (en) | 2016-11-23 | 2018-10-02 | At&T Intellectual Property I, L.P. | Antenna system having structural configurations for assembly |
US10340601B2 (en) | 2016-11-23 | 2019-07-02 | At&T Intellectual Property I, L.P. | Multi-antenna system and methods for use therewith |
US10340603B2 (en) | 2016-11-23 | 2019-07-02 | At&T Intellectual Property I, L.P. | Antenna system having shielded structural configurations for assembly |
US10535928B2 (en) | 2016-11-23 | 2020-01-14 | At&T Intellectual Property I, L.P. | Antenna system and methods for use therewith |
US10305190B2 (en) | 2016-12-01 | 2019-05-28 | At&T Intellectual Property I, L.P. | Reflecting dielectric antenna system and methods for use therewith |
US10361489B2 (en) | 2016-12-01 | 2019-07-23 | At&T Intellectual Property I, L.P. | Dielectric dish antenna system and methods for use therewith |
US10694379B2 (en) | 2016-12-06 | 2020-06-23 | At&T Intellectual Property I, L.P. | Waveguide system with device-based authentication and methods for use therewith |
US10819035B2 (en) | 2016-12-06 | 2020-10-27 | At&T Intellectual Property I, L.P. | Launcher with helical antenna and methods for use therewith |
US9927517B1 (en) | 2016-12-06 | 2018-03-27 | At&T Intellectual Property I, L.P. | Apparatus and methods for sensing rainfall |
US10439675B2 (en) | 2016-12-06 | 2019-10-08 | At&T Intellectual Property I, L.P. | Method and apparatus for repeating guided wave communication signals |
US10326494B2 (en) | 2016-12-06 | 2019-06-18 | At&T Intellectual Property I, L.P. | Apparatus for measurement de-embedding and methods for use therewith |
US10755542B2 (en) | 2016-12-06 | 2020-08-25 | At&T Intellectual Property I, L.P. | Method and apparatus for surveillance via guided wave communication |
US10727599B2 (en) | 2016-12-06 | 2020-07-28 | At&T Intellectual Property I, L.P. | Launcher with slot antenna and methods for use therewith |
US10135145B2 (en) | 2016-12-06 | 2018-11-20 | At&T Intellectual Property I, L.P. | Apparatus and methods for generating an electromagnetic wave along a transmission medium |
US10637149B2 (en) | 2016-12-06 | 2020-04-28 | At&T Intellectual Property I, L.P. | Injection molded dielectric antenna and methods for use therewith |
US10382976B2 (en) | 2016-12-06 | 2019-08-13 | At&T Intellectual Property I, L.P. | Method and apparatus for managing wireless communications based on communication paths and network device positions |
US10020844B2 (en) | 2016-12-06 | 2018-07-10 | T&T Intellectual Property I, L.P. | Method and apparatus for broadcast communication via guided waves |
US10359749B2 (en) | 2016-12-07 | 2019-07-23 | At&T Intellectual Property I, L.P. | Method and apparatus for utilities management via guided wave communication |
US9893795B1 (en) | 2016-12-07 | 2018-02-13 | At&T Intellectual Property I, Lp | Method and repeater for broadband distribution |
US10243270B2 (en) | 2016-12-07 | 2019-03-26 | At&T Intellectual Property I, L.P. | Beam adaptive multi-feed dielectric antenna system and methods for use therewith |
US10027397B2 (en) | 2016-12-07 | 2018-07-17 | At&T Intellectual Property I, L.P. | Distributed antenna system and methods for use therewith |
US10139820B2 (en) | 2016-12-07 | 2018-11-27 | At&T Intellectual Property I, L.P. | Method and apparatus for deploying equipment of a communication system |
US10547348B2 (en) | 2016-12-07 | 2020-01-28 | At&T Intellectual Property I, L.P. | Method and apparatus for switching transmission mediums in a communication system |
US10446936B2 (en) | 2016-12-07 | 2019-10-15 | At&T Intellectual Property I, L.P. | Multi-feed dielectric antenna system and methods for use therewith |
US10389029B2 (en) | 2016-12-07 | 2019-08-20 | At&T Intellectual Property I, L.P. | Multi-feed dielectric antenna system with core selection and methods for use therewith |
US10168695B2 (en) | 2016-12-07 | 2019-01-01 | At&T Intellectual Property I, L.P. | Method and apparatus for controlling an unmanned aircraft |
US10326689B2 (en) | 2016-12-08 | 2019-06-18 | At&T Intellectual Property I, L.P. | Method and system for providing alternative communication paths |
US10069535B2 (en) | 2016-12-08 | 2018-09-04 | At&T Intellectual Property I, L.P. | Apparatus and methods for launching electromagnetic waves having a certain electric field structure |
US10601494B2 (en) | 2016-12-08 | 2020-03-24 | At&T Intellectual Property I, L.P. | Dual-band communication device and method for use therewith |
US10777873B2 (en) | 2016-12-08 | 2020-09-15 | At&T Intellectual Property I, L.P. | Method and apparatus for mounting network devices |
US10530505B2 (en) | 2016-12-08 | 2020-01-07 | At&T Intellectual Property I, L.P. | Apparatus and methods for launching electromagnetic waves along a transmission medium |
US10938108B2 (en) | 2016-12-08 | 2021-03-02 | At&T Intellectual Property I, L.P. | Frequency selective multi-feed dielectric antenna system and methods for use therewith |
US9911020B1 (en) | 2016-12-08 | 2018-03-06 | At&T Intellectual Property I, L.P. | Method and apparatus for tracking via a radio frequency identification device |
US10916969B2 (en) | 2016-12-08 | 2021-02-09 | At&T Intellectual Property I, L.P. | Method and apparatus for providing power using an inductive coupling |
US10103422B2 (en) | 2016-12-08 | 2018-10-16 | At&T Intellectual Property I, L.P. | Method and apparatus for mounting network devices |
US10411356B2 (en) | 2016-12-08 | 2019-09-10 | At&T Intellectual Property I, L.P. | Apparatus and methods for selectively targeting communication devices with an antenna array |
US10389037B2 (en) | 2016-12-08 | 2019-08-20 | At&T Intellectual Property I, L.P. | Apparatus and methods for selecting sections of an antenna array and use therewith |
US9998870B1 (en) | 2016-12-08 | 2018-06-12 | At&T Intellectual Property I, L.P. | Method and apparatus for proximity sensing |
US10340983B2 (en) | 2016-12-09 | 2019-07-02 | At&T Intellectual Property I, L.P. | Method and apparatus for surveying remote sites via guided wave communications |
US9838896B1 (en) | 2016-12-09 | 2017-12-05 | At&T Intellectual Property I, L.P. | Method and apparatus for assessing network coverage |
US10264586B2 (en) | 2016-12-09 | 2019-04-16 | At&T Mobility Ii Llc | Cloud-based packet controller and methods for use therewith |
US9973940B1 (en) | 2017-02-27 | 2018-05-15 | At&T Intellectual Property I, L.P. | Apparatus and methods for dynamic impedance matching of a guided wave launcher |
US10298293B2 (en) | 2017-03-13 | 2019-05-21 | At&T Intellectual Property I, L.P. | Apparatus of communication utilizing wireless network devices |
CN111740198A (zh) * | 2020-07-28 | 2020-10-02 | 成都玖信科技有限公司 | 一种超宽带径向合成器 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2905940A (en) * | 1957-05-02 | 1959-09-22 | Edward G Spencer | Electromagnetically steered microwave antenna |
US3293550A (en) * | 1963-07-23 | 1966-12-20 | Rca Corp | Transmit monitor |
US3328800A (en) * | 1964-03-12 | 1967-06-27 | North American Aviation Inc | Slot antenna utilizing variable standing wave pattern for controlling slot excitation |
AU508205B2 (en) * | 1975-12-24 | 1980-03-13 | Commonwealth Scientific And Industrial Research Organization | Monitoring scanning radio beams |
US4536766A (en) * | 1982-09-07 | 1985-08-20 | Hazeltine Corporation | Scanning antenna with automatic beam stabilization |
-
1984
- 1984-05-11 AU AU27924/84A patent/AU565039B2/en not_active Ceased
- 1984-05-17 EP EP19840303356 patent/EP0126626B1/fr not_active Expired - Lifetime
- 1984-05-17 DE DE19843486164 patent/DE3486164T2/de not_active Expired - Fee Related
- 1984-05-18 NZ NZ20821384A patent/NZ208213A/en unknown
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7123204B2 (en) | 2002-04-24 | 2006-10-17 | Forster Ian J | Energy source communication employing slot antenna |
US7755556B2 (en) | 2002-04-24 | 2010-07-13 | Forster Ian J | Energy source communication employing slot antenna |
Also Published As
Publication number | Publication date |
---|---|
AU565039B2 (en) | 1987-09-03 |
NZ208213A (en) | 1987-10-30 |
EP0126626A3 (en) | 1987-02-04 |
EP0126626A2 (fr) | 1984-11-28 |
DE3486164T2 (de) | 1994-01-13 |
AU2792484A (en) | 1984-11-29 |
DE3486164D1 (de) | 1993-07-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0126626B1 (fr) | Coupleur d'ouverture rayonnant à guide d'ondes résonnant | |
EP2908379B1 (fr) | Système de réseau d'antenne pour la production de signaux à double polarisation utilisant un guide d'ondes sinueux | |
US4939527A (en) | Distribution network for phased array antennas | |
JP2585399B2 (ja) | デュアルモード位相アレイアンテナシステム | |
US4021813A (en) | Geometrically derived beam circular antenna array | |
EP0600715A2 (fr) | Réseau d'antennes émettrices à commande de phase du type actif | |
KR0184529B1 (ko) | 슬롯 안테나 및 원편파 에너지 수신 방법 | |
EP0390350B1 (fr) | Source pour ondes à polarisation circulaire à faible polarisation croisée | |
US4595926A (en) | Dual space fed parallel plate lens antenna beamforming system | |
EP0506838B1 (fr) | Reseau d'antennes en phase circulaire a large bande | |
US3977006A (en) | Compensated traveling wave slotted waveguide feed for cophasal arrays | |
GB1594988A (en) | Antenna coupling network with element pattern shift | |
EP0427470B1 (fr) | Antenne réseau à balayage à largeur de faisceau constante | |
US4554551A (en) | Asymmetric resonant waveguide aperture manifold | |
US4500882A (en) | Antenna system | |
US4675681A (en) | Rotating planar array antenna | |
US4554550A (en) | Resonant waveguide aperture manifold | |
US6222492B1 (en) | Dual coaxial feed for tracking antenna | |
Derneryd et al. | Novel slotted waveguide antenna with polarimetric capabilities | |
GB2191044A (en) | Antenna arrangement | |
Rotman et al. | The sandwich wire antenna: A new type of microwave line source radiator | |
Solbach | Below-resonant-length slot radiators for traveling-wave-array antennas | |
US10403982B2 (en) | Dual-mode antenna array system | |
US3276026A (en) | Doppler array with plural slotted waveguides and feed switching | |
GB1597099A (en) | Radar antenna systems |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): DE FR GB IT NL SE Designated state(s): DE FR GB IT NL SE |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): DE FR GB IT NL SE |
|
17P | Request for examination filed |
Effective date: 19870730 |
|
17Q | First examination report despatched |
Effective date: 19890725 |
|
RAP3 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: HAZELTINE CORPORATION |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE FR GB IT NL SE |
|
ITF | It: translation for a ep patent filed | ||
REF | Corresponds to: |
Ref document number: 3486164 Country of ref document: DE Date of ref document: 19930722 |
|
ET | Fr: translation filed | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Effective date: 19940518 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 19940531 Year of fee payment: 11 |
|
26N | No opposition filed | ||
EUG | Se: european patent has lapsed |
Ref document number: 84303356.4 Effective date: 19941210 |
|
EUG | Se: european patent has lapsed |
Ref document number: 84303356.4 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Effective date: 19951201 |
|
NLV4 | Nl: lapsed or anulled due to non-payment of the annual fee |
Effective date: 19951201 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 19990318 Year of fee payment: 16 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 19990325 Year of fee payment: 16 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 19990603 Year of fee payment: 16 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20000517 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20000517 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20010131 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20010301 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |