EP0124395B1 - Electron gun for microwave generators - Google Patents

Electron gun for microwave generators Download PDF

Info

Publication number
EP0124395B1
EP0124395B1 EP84400614A EP84400614A EP0124395B1 EP 0124395 B1 EP0124395 B1 EP 0124395B1 EP 84400614 A EP84400614 A EP 84400614A EP 84400614 A EP84400614 A EP 84400614A EP 0124395 B1 EP0124395 B1 EP 0124395B1
Authority
EP
European Patent Office
Prior art keywords
electron
cathode
electrodes
base electrode
anode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP84400614A
Other languages
German (de)
French (fr)
Other versions
EP0124395A1 (en
Inventor
Georges Mourier
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thales SA
Original Assignee
Thomson CSF SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thomson CSF SA filed Critical Thomson CSF SA
Publication of EP0124395A1 publication Critical patent/EP0124395A1/en
Application granted granted Critical
Publication of EP0124395B1 publication Critical patent/EP0124395B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J23/00Details of transit-time tubes of the types covered by group H01J25/00
    • H01J23/02Electrodes; Magnetic control means; Screens
    • H01J23/06Electron or ion guns
    • H01J23/075Magnetron injection guns

Definitions

  • the present invention relates to an electron gun for generators of radio waves for microwaves. It relates more particularly to an electron gun providing an electron beam propagating along cycloidal paths intended for use in microwave generators of the masers type with cyclotron resonance.
  • cyclotronic resonance masers such as gyrotrons
  • a beam of electrons coming from an electron gun propagates along helical paths while being guided by a uniform magnetic field directed along the axis of the helix.
  • the beam then crosses an electromagnetic cavity resonating at a frequency f o close to a multiple of the cyclotronic frequency, cavity in which the transverse speed components of the electrons interact with a transverse electric field component of the wave to give them their energy.
  • the beam propagates essentially parallel to the magnetic field. Now the interaction taking place with the transverse velocity component vL of the electrons, the parallel velocity component v // therefore corresponds to an unused energy.
  • electron guns of the type comprising a conical cathode, and a conical axial anode subjected to an axial magnetic field, used in cyclotron resonance masers such as gyrotrons, are not suitable.
  • the object of the present invention is to provide a new type of electron gun capable of providing an electron beam propagating along a cycloidal trajectory in a transverse magnetic field under the effect of a drift speed due to a continuous electric field. with specific characteristics.
  • an electron gun for generators of radio waves for microwave frequencies of the type comprising a so-called sole electrode being at a negative or zero potential and an anode, produced by plates facing each other and brought to two different potentials of so as to create between them a continuous electric field as well as a cathode positioned in the extension of the hearth and brought to the same potential as the latter, the cathode injecting an electron beam into the space between the hearth and the anode, the assembly being subjected to a magnetic field transverse to the directions of the beam and of the electric field characterized in that, in the plane perpendicular to the magnetic field, at least one of the electrodes has a divergent profile relative to the other electrode so the distance between electrodes is increasing from the catode to the outside of the barrel so as to provide an electron beam propagating along a cyclic path o ⁇ dal whose arches tighten under the effect of a speed of drift of the electrons lower than the speed of rotation.
  • the electron gun according to the present invention is constituted by a cathode 1 and by two electrodes 2, 3 brought to different potentials so as to create between these two electrodes 2, 3 a continuous electric field E c .
  • the electrode 2 called the sole is brought to a negative or zero potential while the electrode 3 called the anode is brought to a positive potential V.
  • the cathode 1 is located in the extension of the sole 2 and is brought to the same potential as this electrode.
  • This cathode 1 comprises for example a filament 4 connected to a voltage so as to obtain, during the heating of the cathode, the emission of electrons.
  • one of the electrodes namely the anode 3 in the embodiment of Figure 1
  • the two electrodes can be produced using copper plates, one of which has been suitably profiled.
  • the profile of the curved electrode is chosen so that the angle a formed by said profile with the median plane of the electrodes is such that the distance between the two electrodes varies little over a length corresponding to twice the radius of Larmor r L.
  • the whole of the electron gun is subjected to a uniform magnetic field B perpendicular to the plane of the figure, of which a few lines of force are represented by crosses.
  • This magnetic field is created, for example, from two superconductive coils positioned on either side of the electrodes 2, 3 according to the Helmholz control. For the purpose of simplification, these coils have not been shown in the drawing.
  • the anode 3 must therefore have, relative to the cathode, a potential at least 4 times greater than the energy of rotation of the electrons which is usable in the cyclotronic interaction.
  • FIG. 2 shows another embodiment of the electron gun of the present invention.
  • the sole 2 ' has a curved profile symmetrical to that of the anode 3 with respect to the median plane. This particular shape gives a drift in a constant direction along the median plane.
  • FIG. 3 represents an alternative embodiment of FIGS. 1 and 2.
  • the cathode 1 is positioned in the extension of the sole 2 but in a plane forming an angle between -45 ° and -180 ° relative to the plane sole 2.
  • the anode is then extended by a curved profile so as to cover the cathode.
  • the starting speed of the electrons is in the opposite direction to the drift speed, which makes it possible to reduce the potential difference to be applied between the anode 3 and the cathode 1.
  • the electron guns according to the present invention can be used not only in the new types of cyclotron resonance masers mentioned in the introduction but also in microwave tubes requiring injection of an electron beam according to a cycloidal trajectory.

Landscapes

  • Microwave Tubes (AREA)
  • Particle Accelerators (AREA)

Description

La présente invention concerne un canon à électrons pour générateurs d'ondes radioelectri- ques pour hyperfréquences. Elle concerne plus particulièrement un canon à électrons fournissant un faisceau d'électrons se propageant selon des trajets cycloïdaux destiné à être utilisé dans des générateurs hyperfréquences du type masers à résonnance cyclotronique.The present invention relates to an electron gun for generators of radio waves for microwaves. It relates more particularly to an electron gun providing an electron beam propagating along cycloidal paths intended for use in microwave generators of the masers type with cyclotron resonance.

Dans les générateurs appelés masers à résonnance cyclotronique tels que les gyrotrons, un faisceau d'électrons provenant d'un canon à électrons se propage selon des trajets hélicoïdaux en étant guidé par un champ magnétique uniforme dirigé suivant l'axe de l'hélice. Le faisceau traverse alors une cavité électromagnétique résonnant à une fréquence fo voisine d'un multiple de la fréquence cyclotronique, cavité dans laquelle les composantes de vitesse transversales des électrons interagissent avec une composante de champ électrique transversale de l'onde pour lui céder leur énergie. Dans ce cas, le faisceau se propage essentiellement parallèlement au champ magnétique. Or l'interaction ayant lieu avec la composante de vitesse transversale v-L des électrons, la composante de vitesse parallèle v// correspond donc à une énergie inutilisée. On cherche donc à éliminer cette vitesse parallèle en proposant un nouveau type de masers à résonnance cyclotronique utilisant la même interaction entre les électrons tournant dans un champ magnétique et une cavité résonnante que celle utilisée dans les masers de l'art antérieur mais caractérisé par le fait que la vitesse des électrons parallèlement au champ magnétique est nulle ou sensiblement nulle dans tout le maser tandis qu'il existe une vitesse de dérive perpendiculaire au champ magnétique due à un champ électrique continu régnant dans le canon à électrons et la structure résonnante.In generators called cyclotronic resonance masers such as gyrotrons, a beam of electrons coming from an electron gun propagates along helical paths while being guided by a uniform magnetic field directed along the axis of the helix. The beam then crosses an electromagnetic cavity resonating at a frequency f o close to a multiple of the cyclotronic frequency, cavity in which the transverse speed components of the electrons interact with a transverse electric field component of the wave to give them their energy. . In this case, the beam propagates essentially parallel to the magnetic field. Now the interaction taking place with the transverse velocity component vL of the electrons, the parallel velocity component v // therefore corresponds to an unused energy. We therefore seek to eliminate this parallel speed by proposing a new type of cyclotronic resonance masers using the same interaction between the electrons rotating in a magnetic field and a resonant cavity as that used in the masers of the prior art but characterized by the fact that the speed of the electrons parallel to the magnetic field is zero or substantially zero throughout the maser while there is a drift speed perpendicular to the magnetic field due to a continuous electric field prevailing in the electron gun and the resonant structure.

Dans ce cas, cependant, les canons à électrons du type comprenant une cathode conique, et une anode axiale conique soumises à un champ magnétique axial, utilisés dans les masers à résonnance cyclotronique tels que les gyrotrons, ne conviennent pas.In this case, however, electron guns of the type comprising a conical cathode, and a conical axial anode subjected to an axial magnetic field, used in cyclotron resonance masers such as gyrotrons, are not suitable.

Or on connait aussi par le brevet français 984020, un tube à ondes progressives. Dans ce cas, la cathode envoie un faisceau d'électrons entre une ligne à retard et une électrode portée à un potentiel négatif par rapport à la ligne à retard, les électrons cédant leur énergie à l'onde électromagnétique se propageant dans la ligne à retard. Dans ce cas, le faisceau suit une trajectoire cycloïdale mais à point de rebroussement avec une amplitude invariable. D'autre part, l'hélice reçoit un pas progressivement décroissant dans la direction du faisceau afin de réduire la vitesse de l'onde au fur et à mesure que la vitesse du faisceau diminue.However, we also know from French patent 984020, a traveling wave tube. In this case, the cathode sends an electron beam between a delay line and an electrode brought to a negative potential compared to the delay line, the electrons yielding their energy to the electromagnetic wave propagating in the delay line. . In this case, the beam follows a cycloidal trajectory but at a turning point with an invariable amplitude. On the other hand, the propeller receives a progressively decreasing pitch in the direction of the beam in order to reduce the speed of the wave as the speed of the beam decreases.

La présente invention a pour but de fournir un nouveau type de canon à électrons susceptibles de fournir un faisceau d'électrons se propageant selon une trajectoire cycloïdale dans un champ magnétique transversal sous l'effet d'une vitesse de dérive due à un champ électrique continu présentant des caractéristiques spécifiques.The object of the present invention is to provide a new type of electron gun capable of providing an electron beam propagating along a cycloidal trajectory in a transverse magnetic field under the effect of a drift speed due to a continuous electric field. with specific characteristics.

Elle a donc pour objet un canon à électrons pour générateurs d'ondes radioélectriques pour hyperfréquences du type comportant une électrode dite sole se trouvant à un potentiel négatif ou nul et une anode, réalisées par des plaques se faisant face et portées à deux potentiels différents de manière à créer entre elles un champ électrique continu ainsi qu'une cathode positionnée dans le prolongement de la sole et portée au même potentiel que celle-ci, la cathode injectant un faisceau d'électrons dans l'espace compris entre la sole et l'anode, l'ensemble étant soumis à un champ magnétique transversal aux directions du faisceau et du champ électrique caractérisé en ce que, dans le plan perpendiculaire au champ magnétique, au moins une des électrodes présente un profil divergent relativement à l'autre électrode de sorte que la distance entre électrodes soit croissante de la catode vers l'extérieur du canon de manière à fournir un faisceau d'électrons se propageant selon une trajectoire cycloïdale dont les arceaux se resserrent sous l'effet d'une vitesse de dérive des électrons inférieure à la vitesse de rotation.It therefore relates to an electron gun for generators of radio waves for microwave frequencies of the type comprising a so-called sole electrode being at a negative or zero potential and an anode, produced by plates facing each other and brought to two different potentials of so as to create between them a continuous electric field as well as a cathode positioned in the extension of the hearth and brought to the same potential as the latter, the cathode injecting an electron beam into the space between the hearth and the anode, the assembly being subjected to a magnetic field transverse to the directions of the beam and of the electric field characterized in that, in the plane perpendicular to the magnetic field, at least one of the electrodes has a divergent profile relative to the other electrode so the distance between electrodes is increasing from the catode to the outside of the barrel so as to provide an electron beam propagating along a cyclic path oïdal whose arches tighten under the effect of a speed of drift of the electrons lower than the speed of rotation.

D'autres caractéristiques et avantages de la présente invention apparaîtront à la lecture de la description de divers modes de réalisation faite ci-après avec référence au dessin ci-annexé dans lequel:

  • - la figure 1 est une vue en coupe axiale schématique, dans le plan perpendiculaire au champ magnétique, d'un premier mode de réalisation d'un canon à électrons conforme à la présente invention;
  • - la figure 2 est une vue semblable à celle de figure 1 d'un deuxième mode de réalisation d'un canon à électrons conforme à la présente invention;
  • - la figure 3 est une vue semblable à celle de figure 1 d'un troisième mode de réalisation d'un canon à électrons conforme à la présente invention;
  • - la figure 4 représente schématiquement la trajectoire d'un électron soumis à un champ électrique Ec continu et à un champ magnétique B.
Other characteristics and advantages of the present invention will appear on reading the description of various embodiments made below with reference to the attached drawing in which:
  • - Figure 1 is a schematic axial sectional view, in the plane perpendicular to the magnetic field, of a first embodiment of an electron gun according to the present invention;
  • - Figure 2 is a view similar to that of Figure 1 of a second embodiment of an electron gun according to the present invention;
  • - Figure 3 is a view similar to that of Figure 1 of a third embodiment of an electron gun according to the present invention;
  • - Figure 4 shows schematically the trajectory of an electron subjected to a continuous electric field E c and a magnetic field B.

Dans les figures, les mêmes références désignent les mêmes éléments mais pour des raisons de clarté, les cotes et proportions n'ont pas été respectées.In the figures, the same references designate the same elements but for reasons of clarity, the dimensions and proportions have not been respected.

Comme représenté sur la figure 1, le canon à électrons conforme à la présente invention est constitué par une cathode 1 et par deux électrodes 2, 3 portées à des potentiels différents de manière à créer entre ces deux électrodes 2, 3 un champ électrique continu Ec. De manière plus spécifique, l'électrode 2 appelée sole est portée à un potentiel négatif ou nul tandis que l'électrode 3 appelée anode est portée à un potentiel positif V. D'autre part, la cathode 1 est située dans le prolongement de la sole 2 et est portée au même potentiel que cette électrode. Cette cathode 1 comporte par exemple un filament 4 relié à une tension de manière à obtenir lors du chauffage de la cathode, l'émission d'électrons.As shown in FIG. 1, the electron gun according to the present invention is constituted by a cathode 1 and by two electrodes 2, 3 brought to different potentials so as to create between these two electrodes 2, 3 a continuous electric field E c . More specifically, the electrode 2 called the sole is brought to a negative or zero potential while the electrode 3 called the anode is brought to a positive potential V. On the other hand, the cathode 1 is located in the extension of the sole 2 and is brought to the same potential as this electrode. This cathode 1 comprises for example a filament 4 connected to a voltage so as to obtain, during the heating of the cathode, the emission of electrons.

Conformément à la présente invention, l'une des électrodes, à savoir l'anode 3 dans le mode de réalisation de la figure 1, présente un profil incurvé de sorte que la distance entre électrodes 2, 3 soit croissante de la cathode 1 vers l'extérieur du canon, à savoir selon la direction x. Les deux électrodes peuvent être réalisées à l'aide de plaques en cuivre dont l'une a été profilée convenablement. Comme expliqué ci-après de manière plus détaillée, de préférence, le profil de l'électrode incurvée est choisi de manière que l'angle a que forme ledit profil avec le plan médian des électrodes soit tel que la distance entre les deux électrodes varie peu sur une longueur correspondant au double du rayon de Larmor rL. D'autre part, l'ensemble du canon à électrons est soumis à un champ magnétique uniforme B perpendiculaire au plan de la figure dont on a représente quelques lignes de force par des croix. Ce champ magnétique est créé, par exemple, à partir de deux bobines supraconductrices positionnées de part et d'autre des électrodes 2, 3 selon la régie de Helmholz. Dans un but de simplification, ces bobines n'ont pas été représentées sur le dessin.According to the present invention, one of the electrodes, namely the anode 3 in the embodiment of Figure 1, has a curved profile so that the distance between electrodes 2, 3 is increasing from the cathode 1 towards the outside of the barrel, namely in the direction x. The two electrodes can be produced using copper plates, one of which has been suitably profiled. As explained below in more detail, preferably, the profile of the curved electrode is chosen so that the angle a formed by said profile with the median plane of the electrodes is such that the distance between the two electrodes varies little over a length corresponding to twice the radius of Larmor r L. On the other hand, the whole of the electron gun is subjected to a uniform magnetic field B perpendicular to the plane of the figure, of which a few lines of force are represented by crosses. This magnetic field is created, for example, from two superconductive coils positioned on either side of the electrodes 2, 3 according to the Helmholz control. For the purpose of simplification, these coils have not been shown in the drawing.

Comme expliqué de manière plus détaillée ci-après, sous l'action combinée du champ électrique continu E c décroissant progressivement de la cathode vers l'extérieur du canon par suite du profil des électrodes, et du champ magnétique transversal et uniforme B, les électrons émis par la cathode 1 sont amenés à suivre une trajectoire cycloïdale 5 avec une vitesse de dérive vd telle queAs explained in more detail below, under the combined action of the DC electric field E vs progressively decreasing from the cathode towards the outside of the barrel as a result of the profile of the electrodes, and of the transverse and uniform magnetic field B, the electrons emitted by cathode 1 are brought to follow a cycloidal trajectory 5 with a drift speed v d such than

Figure imgb0001
Figure imgb0001

On sait en effet qu'un électron mobile dans un champ magnétique B et soumis à l'action d'un champ électrique E subit une force F donnée par la formule de Lorentz, à savoir l'équation vectorielle suivante:

Figure imgb0002
Considérons alors une vitesse vd telle que
Figure imgb0003
We know indeed that a mobile electron in a magnetic field B and subjected to the action of an electric field E undergoes a force F given by the Lorentz formula, namely the following vector equation:
Figure imgb0002
Then consider a speed v d such that
Figure imgb0003

Ainsi, dans un nouveau système de référence relatif à v d, l'électron n'est plus soumis qu'au champ magnétique B et sa trajectoire est donc un cercle. Ce raisonnement effectué en mécanique classique reste valable en mécanique relativiste, en particulier dans le cas où v2/c2≤1.So in a new reference system relating to v d , the electron is only subjected to the magnetic field B and its trajectory is therefore a circle. This reasoning carried out in classical mechanics remains valid in relativistic mechanics, in particular in the case where v 2 / c 2≤1.

En conséquence, lorsqu'un électron est soumis à un champ électrique E et à un champ magnétique B, la trajectoire d'un électron est sensiblement équivalente à la superposition d'une rotation avec une vitesse angulaire donnée par l'équation

Figure imgb0004

  • avec e = la charge de l'électron
  • m = la masse de l'électron

et d'une vitesse de dérive Vd donnée par l'équation vectorielle
Figure imgb0005
comme représenté sur la figure 4.Consequently, when an electron is subjected to an electric field E and to a magnetic field B, the trajectory of an electron is substantially equivalent to the superposition of a rotation with an angular speed given by the equation
Figure imgb0004
  • with e = the charge of the electron
  • m = mass of the electron

and a drift speed Vd given by the vector equation
Figure imgb0005
as shown in figure 4.

De plus, dans le cas de la présente invention puisque les électrons sont issus d'une cathode 1 sans avoir de vitesse d'injection, la vitesse de rotation est égale à la vitesse de dérive et on obtient les équations suivantes:

Figure imgb0006

  • avec V: la différence de potentiel entre des électrodes 2, 3
  • Comme Vd = vr
Figure imgb0007
In addition, in the case of the present invention since the electrons come from a cathode 1 without having an injection speed, the speed of rotation is equal to the drift speed and the following equations are obtained:
Figure imgb0006
  • with V: the potential difference between electrodes 2, 3
  • As Vd = v r
Figure imgb0007

Normalement, d'après cette équation si Ec diminue rL diminue en conséquence puisque B est constant dans l'invention. Toutefois, Ec étant un champ électrique continu on montre que si la distance d entre les deux électrodes varie peu sur la longueur correspondant à une rotation, on se trouve alors dans un régime dit «adiabatique» pour lequel le moment de l'électron m = k B rL 2 = Cste. Dans ce cas, le rayon de Larmor rL reste constant. Comme la vitesse de dérive vd diminue en même temps que le champ électrique Ec, les électrons se déplacent sur des cercles de plus en plus ressérés comme représenté sur la figure 1, les équations (1) et (2) restant valable localement.Normally, according to this equation if E c decreases r L decreases accordingly since B is constant in the invention. However, E c being a continuous electric field it is shown that if the distance d between the two electrodes varies little over the length corresponding to a rotation, then we are in a regime called "adiabatic" for which the moment of the electron m = k B r L 2 = Cste. In this case, the radius of Larmor r L remains constant. As the speed of drift v d decreases at the same time as the electric field E c , the electrons move on more and more tightened circles as represented on figure 1, equations (1) and (2) remaining valid locally.

On obtient donc avec le canon à électrons de la présente invention, la trajectoire cycloïdale demandée par le nouveau type de maser cyclotronique.We therefore obtain with the electron gun of the present invention, the cycloidal trajectory required by the new type of cyclotronic maser.

De plus, si l'on compare ce système avec le système à injection axiale actuellement utilisé dans les gyrotrons, on voit que la vitesse de dérive Vd joue un rôle identique à la vitesse parallèle dans ledit système axial.In addition, if we compare this system with the axial injection system currently used in gyrotrons, we see that the drift speed Vd plays an identical role to the parallel speed in said axial system.

Si l'on veut par exemple obtenir la relation

Figure imgb0008
2 à l'extrémité aval du canon, il faudra réduire vd dans un rapport 2 le long de la trajectoire du canon, ce que l'on obtiendra en augmentant progressivement la distance entre les électrodes 2, 3 dans un rapport 2.If, for example, we want to obtain the relation
Figure imgb0008
2 at the downstream end of the barrel, it will be necessary to reduce v d in a ratio 2 along the trajectory of the barrel, which will be obtained by gradually increasing the distance between the electrodes 2, 3 in a ratio 2.

D'autre part l'anode 3 doit être placée au-dessus du sommet de la trajectoire des électrons. Il en résulte que le potentiel minimum Vmin est donné par l'équation

Figure imgb0009
Or l'énergie cinétique continue dans le mouvement de rotation
Figure imgb0010
Eco étant le champ électrique devant la cathode.On the other hand the anode 3 must be placed above the top of the electron trajectory. It follows that the minimum potential Vmin is given by the equation
Figure imgb0009
Now the kinetic energy continues in the rotational movement
Figure imgb0010
E co being the electric field in front of the cathode.

Il en résulte que l'anode 3 doit donc avoir par rapport à la cathode un potentiel au moins 4 fois supérieur à l'énergie de rotation des électrons qui est utilisable dans l'interaction cyclotronique.As a result, the anode 3 must therefore have, relative to the cathode, a potential at least 4 times greater than the energy of rotation of the electrons which is usable in the cyclotronic interaction.

On a représenté sur la figure 2, un autre mode de réalisation du canon à électrons de la présente invention. Dans ce mode de réalisation la sole 2' présente un profil incurvé symétrique de celui de l'anode 3 par rapport au plan médian. Cette forme particulière donne une dérive selon une direction constante suivant le plan médian.FIG. 2 shows another embodiment of the electron gun of the present invention. In this embodiment the sole 2 'has a curved profile symmetrical to that of the anode 3 with respect to the median plane. This particular shape gives a drift in a constant direction along the median plane.

La figure 3 représente une variante de réalisation des figures 1 et 2. Dans ce cas, la cathode 1 est positionnée dans le prolongement de la sole 2 mais dans un plan formant un angle compris entre -45° et -180° par rapport au plan de la sole 2. L'anode se prolonge alors par un profil incurvé de manière à recouvrir la cathode. Dans ce cas, la vitesse de départ des électrons est de sens opposé à la vitesse de dérive, ce qui permet de diminuer la différence de potentiel à appliquer entre l'anode 3 et la cathode 1.FIG. 3 represents an alternative embodiment of FIGS. 1 and 2. In this case, the cathode 1 is positioned in the extension of the sole 2 but in a plane forming an angle between -45 ° and -180 ° relative to the plane sole 2. The anode is then extended by a curved profile so as to cover the cathode. In this case, the starting speed of the electrons is in the opposite direction to the drift speed, which makes it possible to reduce the potential difference to be applied between the anode 3 and the cathode 1.

Les canons à électrons décrits ci-dessus présentent un certain nombre d'avantages.

  • - On peut modifier la vitesse de dérive des électrons sans modifier le champ magnétique B mais en modifiant seulement le champ électrique Ec.
  • - Les électrons ne peuvent pas revenir dans la région du canon s'ils sont réfléchis en aval par le reste du dispositif, car la vitesse de dérive Vd est indépendante en grandeur et en signe de la forme de la trajectoire.
  • - La dimension des électrodes et de la cathode selon le champ magnétique B n'est pas limitée. Il en résulte que l'on peut produire des courants électroniques très élevés avec ce type de canon.
The electron guns described above have a number of advantages.
  • - One can modify the speed of drift of the electrons without modifying the magnetic field B but by modifying only the electric field E c .
  • - The electrons cannot return to the region of the barrel if they are reflected downstream by the rest of the device, because the speed of drift V d is independent in magnitude and as a sign of the shape of the trajectory.
  • - The size of the electrodes and the cathode according to the magnetic field B is not limited. As a result, very high electronic currents can be produced with this type of gun.

De plus, les canons à électrons conforme à la présente invention peuvent être utilisés, non seulement dans les nouveaux types de masers à résonnance cyclotronique mentionnées dans l'introduction mais aussi dans des tubes hyperfréquences demandant une injection d'un faisceau d'électrons selon une trajectoire cycloïdale.In addition, the electron guns according to the present invention can be used not only in the new types of cyclotron resonance masers mentioned in the introduction but also in microwave tubes requiring injection of an electron beam according to a cycloidal trajectory.

Claims (4)

1. An electron gun for microwave generators, comprising a base elektrode (2) carrying a negative or zero potential, and an anode (3), these electrodes being constituted by plates facing each other and carrying distinct potentials such that a continous electric field is established there-between, and comprising a cathode (1) located in the prolongation of the base electrode (2) and carrying the same potential as the latter, the cathode injecting an electron beam into the interspace between the base electrode and the anode, the unit being submitted to a magnetic field which is transversal to the directions of the beam and of the electric field, characterized in that at least one (3) of the electrodes presents a diverging profile with regard to the other electrode such that the distance between the electrodes increases from the cathode (1) to the outside of the gun, in order to obtain an electron beam which propagates along a cycloid trajectory, the arches thereof becoming narrower under the effect of an electron drift speed which is lower than the rotation speed.
2. An electron gun according to claim 1, characterized in that the base electrode (2) and the anode (3) are symmetrically arranged with respect to their middle plane.
3. An electron gun according to anyone of claims 1 to 2, characterized in that the product between the potential difference AV to which the two electrodes (2,3; 2'(3) are submitted, and the electron charge e is at least four times larger than the rotation energy Wr of the electrons, expressed in electron volts.
4. An electron gun according to anyone of claims 1 and 2, characterized in that the anode (3) is located above the base electrode and the cathode (1) is positioned in prolongation of the base electrode (2) downwards along a plane making an angle of between -45° and -180° with regard to the plane of the base electrode (2) such that an initial speed is communicated to the electrons which is opposed to the drift speed.
EP84400614A 1983-04-06 1984-03-27 Electron gun for microwave generators Expired EP0124395B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8305603A FR2544127B1 (en) 1983-04-06 1983-04-06 ELECTRON CANON FOR RADIO WAVES GENERATORS FOR MICROWAVE
FR8305603 1983-04-06

Publications (2)

Publication Number Publication Date
EP0124395A1 EP0124395A1 (en) 1984-11-07
EP0124395B1 true EP0124395B1 (en) 1988-01-27

Family

ID=9287566

Family Applications (1)

Application Number Title Priority Date Filing Date
EP84400614A Expired EP0124395B1 (en) 1983-04-06 1984-03-27 Electron gun for microwave generators

Country Status (5)

Country Link
US (1) US4563615A (en)
EP (1) EP0124395B1 (en)
JP (1) JPS6041734A (en)
DE (1) DE3469101D1 (en)
FR (1) FR2544127B1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2519184A (en) * 1983-03-21 1984-09-27 Miles Laboratories Inc. Microdroplet dispensing apparatus
FR2625836B1 (en) * 1988-01-13 1996-01-26 Thomson Csf ELECTRON COLLECTOR FOR ELECTRONIC TUBE
JP2893457B2 (en) * 1989-07-11 1999-05-24 栄胤 池上 High brightness electron beam generation method
FR2672730B1 (en) * 1991-02-12 1993-04-23 Thomson Tubes Electroniques MODEL CONVERTER DEVICE AND POWER DIVIDER FOR MICROWAVE TUBE AND MICROWAVE TUBE COMPRISING SUCH A DEVICE.
JP4900620B2 (en) * 2006-11-30 2012-03-21 株式会社光子発生技術研究所 RF electron gun
US8581526B1 (en) * 2010-08-28 2013-11-12 Jefferson Science Associates, Llc Unbalanced field RF electron gun

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR984020A (en) * 1949-02-04 1951-07-02 Csf Transverse magnetic field wave propagation tube whose critical value is variable along the delay line
FR1034831A (en) * 1951-03-29 1953-08-03 Csf Large gain transverse magnetic field wave propagation tube
FR1037956A (en) * 1951-05-31 1953-09-24 Csf Electron gun for cross electric and magnetic field discharge tube
US2890037A (en) * 1954-11-10 1959-06-09 United States Steel Corp Method and apparatus for continuously cooling metal strips
US2924741A (en) * 1954-11-27 1960-02-09 Alfven Hannes Olof Gosta High frequency electron tube device
US2890372A (en) * 1956-02-23 1959-06-09 Raytheon Mfg Co Traveling wave amplifiers
US3189785A (en) * 1960-04-25 1965-06-15 Bell Telephone Labor Inc Pre-interaction cycloidal beam deflection in crossed-field tube
US3271618A (en) * 1963-10-28 1966-09-06 Litton Prec Products Inc Depressed collectors for crossed field travelling wave tubes
JPS4921458B1 (en) * 1963-10-29 1974-06-01
US3378718A (en) * 1966-06-02 1968-04-16 Raytheon Co Crossed-field traveling wave electron reaction device employing cyclotron mode interaction
US3504222A (en) * 1966-10-07 1970-03-31 Hitachi Ltd Slow-wave circuit including meander line and shielding therefor
US3694689A (en) * 1971-02-24 1972-09-26 Tektronix Inc Electron beam deflection apparatus
GB1364531A (en) * 1971-09-07 1974-08-21 Khotina A V Av and others electron beam generator
US4207495A (en) * 1978-08-30 1980-06-10 The United States Of America As Represented By The Secretary Of The Air Force Means for improving the collector efficiency of an emitting sole crossed field amplifier

Also Published As

Publication number Publication date
FR2544127A1 (en) 1984-10-12
US4563615A (en) 1986-01-07
EP0124395A1 (en) 1984-11-07
JPS6041734A (en) 1985-03-05
DE3469101D1 (en) 1988-03-03
JPH0443371B2 (en) 1992-07-16
FR2544127B1 (en) 1985-12-13

Similar Documents

Publication Publication Date Title
EP0013242B1 (en) Generator for very high frequency electromagnetic waves
CH623182A5 (en)
FR2485863A1 (en) VACUUM ARC PLASMA DEVICE
FR2616032A1 (en) COAXIAL CAVITY ELECTRON ACCELERATOR
EP0124395B1 (en) Electron gun for microwave generators
EP0000309B1 (en) Hollow-beam generator producing monokinetic electrons along helicoidal paths
FR2599554A1 (en) MULTI-BEAM KLYSTRON OPERATING AT MODE TM02
EP1488443A1 (en) Device for confinement of a plasma within a volume
EP2873306B1 (en) Coaxial microwave applicator for plasma production
FR2760127A1 (en) ELECTRON CANON AND KLYSTRON COMPRISING THE SAME
EP0239466A1 (en) Klystron output circuit, and klystron comprising it
EP0049198B1 (en) Electrons accelerator, and millimeter and infra-millimeter waves generator including the same
EP0124396B1 (en) Electron beam injection device for a microwave generator
EP0000672A1 (en) Meter or decimeter waves generator formed by a resonant structure coupled to a hollow electron beam.
EP0038249A1 (en) Multi-stage depressed collector for a microwave tube
EP0353153A1 (en) Magnetic oscillation and guiding device for charged particles for the amplification of an electromagnetic emission
EP2936537A1 (en) Microwave generator with oscillating virtual cathode and open reflectors
EP0115731A2 (en) Scanning X-ray tube
EP0122186B1 (en) Microwave generator
FR2530075A1 (en) ELECTRONIC TUBE WITH TRANSVERSAL INTERACTION OF CYCLOTRON TYPE
FR2518803A1 (en) FREQUENCY MULTIPLIER
CA2044633A1 (en) Electron gun capable of firing groups of electrons in short duration pulses
FR2642584A1 (en) AMPLIFIER OR OSCILLATOR DEVICE OPERATING IN HYPERFREQUENCY
EP0401066A1 (en) Permanent magnet helical wiggler for free-electron lasers
EP0720788B1 (en) High efficiency electrostatic motor

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): CH DE GB LI

17P Request for examination filed

Effective date: 19841115

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE GB LI

REF Corresponds to:

Ref document number: 3469101

Country of ref document: DE

Date of ref document: 19880303

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19920210

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19920220

Year of fee payment: 9

Ref country code: DE

Payment date: 19920220

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19930327

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19930331

Ref country code: CH

Effective date: 19930331

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19930327

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19931201