EP0117821B1 - Compression sealing of tubes within shell and tube heat exchangers - Google Patents
Compression sealing of tubes within shell and tube heat exchangers Download PDFInfo
- Publication number
- EP0117821B1 EP0117821B1 EP84400378A EP84400378A EP0117821B1 EP 0117821 B1 EP0117821 B1 EP 0117821B1 EP 84400378 A EP84400378 A EP 84400378A EP 84400378 A EP84400378 A EP 84400378A EP 0117821 B1 EP0117821 B1 EP 0117821B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- shell
- tube
- heat exchanger
- gasket
- tubes
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F9/00—Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
- F28F9/02—Header boxes; End plates
- F28F9/04—Arrangements for sealing elements into header boxes or end plates
- F28F9/06—Arrangements for sealing elements into header boxes or end plates by dismountable joints
- F28F9/14—Arrangements for sealing elements into header boxes or end plates by dismountable joints by force-joining
Definitions
- brazing, welding or roller-expansion has been used to seal the tube to tube sheet joints and tube sheet to shell joints in a typical shell and tube heat exchanger.
- the disadvantages of these sealing methods are : 1) that the individual tubes cannot be easily removed, 2) the shell side cannot be cleaned mechanically, and 3) any use of plastic baffles in the shell would melt during brazing, or welding.
- the present invention relates to a shell and tube heat exchanger comprising an extension shell and inner shell, a plurality of tubes and a sealing means, so that fluid flowing within the tubes and within the shell cannot mix, which comprises flanged gasket sealing means to seal the shell from outside atmosphere, said flanged gasket sealing means being compressed between two shell flanges and two tube sheets by means of bolts inserted through the flanges, and a tube sealing means to seal the tubes from the inner shell of said heat exchanger, said tube sealing means being compressed between said tube sheets, according to the preamble of claim 1.
- a shell and tube heat exchanger of this type is disclosed in US-A-2 762 611, as illustrated at figure 6 thereof.
- the tube sealing means used as part of this exchanger are a plurality of deformable packing ring elements mounted onto each one of said tubes, these ring elements bearing against an associated annular shoulder.
- Another embodiment is illustrated at figure 7 of this patent, comprising specific sealing means 85 and 99 :
- Such sealing means involve a lot of components, and furthermore make difficult to obtain regular compression forces on each of the tubes, mainly due to tolerances of both the deformable annuli and the tapered edge of corresponding aperture of adjacent tube sheets.
- the invention intends to solve this technical problem by providing sealing means which involve a small number of components, and ensure that proper compression forces are exerted on the internal tubes.
- a shell and tube exchanger of the above type wherein the tube sealing means is a full-face gasket and is contained around its periphery by a retaining structure to prevent outward radial expansion of said full-face gasket, said retaining structure including a peripheral ring which is mechanically adjustable in peripheral length and diameter and abuts on the peripheral edge of the two tube sheets, so that proper compression forces are exerted on the plurality of tubes by the expanding full-face gasket, according to the characterizing portion of claim 1.
- Figure 1 is an isometric cut-away view of the sealing means on a typical shell and tube heat exchanger.
- Figure 2 shows a cross-sectional view of the sealing means, which also incorporates a clamp ring gasket retaining assembly.
- Figure 3 shows an isometric view of the clamp ring gasket retaining assembly of the sealing means.
- a typical shell and tube heat exchanger 1 consisting of a shell 2 and a plurality of tubes 3 located within the shell, preferably in a symmetrical or evenly-spaced pattern within the shell 2. Any fluid flowing with the tubes 3 enters the tubes or leaves the tubes through a conduit tube side connection 31. Fluid flowing counter to the fluid within the tubes and outside the tubes but within the shell 2 enters or leaves the shell and tube heat exchanger 1 through the annulus conduit connection 30. Only one side or one end of the typical shell and tube heat exchanger is shown in Figure 1, but our sealing means would similarly apply to the other end of the shell and tube heat exchanger which is not shown.
- a flange portion 4 on the end of the shell 2.
- This flange portion is usually welded onto the end of the shell and is an annulus type flange having a typical overlap.
- Adjacent the flange 4 is a flange gasket 5.
- the flange gasket merely fits around the face of flange 4 and has an annular clear central portion so that the tubes 3 can pass therethrough.
- the tube sheet Adjacent the flange gasket 5 is a tube sheet 6.
- the tube sheet is made of any metal typically steel, brass, or stainless steel or can be made of other non-compressible materials such as plastics or reinforced plastics.
- the tube sheet 6 is of a preferably circular design and has individual holes 50 therethrough corresponding to and in alignment with the individual tubes 3, which holes are of a slightly larger diameter than the outer diameter of the tubes 3 so that the tube-ends can pass through the holes, and the tube sheets can exert a maximum clamping force to compress the gasket to a maximum to prevent tube seal leaks.
- a full-face gasket 7 Adjacent the metal tube sheet 6 is a full-face gasket 7.
- This gasket is circular and is solid- faced except for individual holes 51 and 15 therein, which holes again line up with the tubes 3 and bolt holes for flanges 4 and tube sheets 8.
- the diameter of these holes 51 is slightly smaller than the outside diameter of the tubes in order to maximize the gasket clamping force when compressing the full-face gasket 7 over the smooth ends of the tubes 3.
- gasket 7 Next to the gasket 7 is another metal tube sheet 8 with holes 52 and 15 therein, similar to those described for the metal tube sheet 6.
- the primary tube bundle assembly composed of tubes 53, segmental support baffles 54 and baffle spacer rods 55. It can be readily seen that this entire assembly of 53, 54, and 55 components can be removed from shell 2 after the flanges, gaskets, tube sheets, and outer shell 32 are removed, since there are no lugs internal to shell 2 to prevent removal.
- Flange gasket 9 Adjacent the metal tube sheet 8 rests flange gasket 9 which fits against the annular circular flange 10.
- Flange gasket 9 is similar to flange gasket 5 previously described. The entire series of flange gaskets and metal tube sheets are then adjacent to flange 10 which is located at the end of extension shell 32.
- Extension shell 32 is an extension or continuation of shell 2 and is fitted with a tube side connection 31 through which fluid flowing within the tubes enters or leaves. Extension shell 32 is also preferably fitted with flange 33 on its other closure end (when contrasted with flange 10) so that the extension shell 32 of the shell 2 can be sealed off from the outside atmosphere. This is accomplished by having end closure flange 33 part of the extension shell 32 and having adjacent flange 33, an annular flange gasket 34 similar to gaskets 5 and 9 and finally having an end plate or end closure 35 sealing the end of the extension shell 32 of the shell and tube heat exchanger 1.
- flange gaskets 9 and 5 and the main center gasket 7 in addition to flange gasket 34 can be made of any sealable and flexible material particularly rubber or any type of elastomeric material which would not tend to corrode or decompose in the presence of the fluid used in the shell and tube heat exchangers.
- the tube sheets 6, 8 and blind or end flange 35 are made of non-compressible material and preferably of metal such as steel, brass or stainless steel.
- the entire sealing means is compressed by any means but particularly by the use of bolts 40 which fit through holes 11 in the flange 4 and correspondingly fit through singly aligned holes 12 in flange gasket 5, holes 13 in the tube sheet 6, holes 14 in the center gasket 7, holes 15 in the tube sheet 8, holes 16 in the flange gasket 9 and finally holes 17 in the flange 10.
- nuts 41 can be screwed onto the threaded portion 42 of bolts 40 and the entire ensemble tightened to thus force the flanges and tube sheets to compress the flange gaskets 5 and 9 and main center gasket 7 and thus effectively seal the shell and tube heat exchanger.
- the end of the extension shell 32 can be sealed from the atmosphere by means of compressing the end closure 35 to flange 33 to thus compress the flange gasket 34.
- bolts 43 can be inserted through holes 38 in flange 33 and correspondingly slipped through aligned holes 37 in flange gasket 34 and extend through holes 36 in end closure 35. Also, the bolts can go in reverse order. Typically one would screw nut 44 on the threaded portion of bolt 43 and tighten the entire outer sealing means.
- the holes through which the bolts pass can be equally spaced around the entire annulus of the flanges which extend above the outer diameter of the shell 2 or shell extension 32. Typically there would be about 20 holes of about 1/2 inch (12,7 mm) diameter on a flange being on an 8 inch (203 mm) diameter shell.
- Figures 2 and 3 a clamping structure to prevent outward expansion of gaskets.
- this illustrates the relationship between inner shell 2, extension shell 32, flange bolts 40, ring gaskets 5 and 9, metal tube sheets 6 and 8, gasket 7 and tubes 3.
- outer clamp ring 45 with clamp ring flange 46 and clamp ring bolt 47.
- Figures 2 and 3 illustrate an arrangement or functional relationship that exists for the outer clamp ring which provides an entrapment to prevent outward radial expansion of gaskets when assembly clamp bolts 40 are tightened. This assures that proper compression forces are exerted on the internal tubes 3 by the expanding full gasket 7 to allow use of the described invention for application to higher internal pressure duties.
- this component can be employed to increase the range of application to higher internal design pressures than that possible with some older designs wherein standard non-clamp ringed versions were limited to lower pressure duty.
- the clamp ring flanges 46 move closer together, making the ring tighten to a smaller diameter which then braces the outer edges of the gasket(s) 5, 7 and 9 to prevent their outward expansion when subsequently tightening bolts 40 to perform the heretofore described sealing of tubes and shell.
- outer shell end closure 35, gasket 34 and bolts 43 of Figure 1 represent the preferred mechanical arrangement to allow the most ideal accessibility for maintenance and repair or reassembly of all internal components
- an alternate variation, potentially lower cost and/or more leak- free concept employing a welded end cap to completely close the outer end of the extension shell 32 may be employed to perform the required closure of the outer end of the extension shell 32, eliminating the need for flange 33, gasket 34, bolts 43, nuts 44 and utilizing an end-plate or end closure without holes, merely welded all around the periphery thereof to the shell 32.
- this will preclude the ability to clean the interior of tubes, unless inlet and piping connections are dismantled and compression seal bolts removed.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
- Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)
- Thermal Insulation (AREA)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AT84400378T ATE30768T1 (de) | 1983-02-28 | 1984-02-24 | Druckfixierung von roehren in roehren-im-mantelw|rmetauschern. |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US47080683A | 1983-02-28 | 1983-02-28 | |
US470806 | 1983-02-28 |
Publications (3)
Publication Number | Publication Date |
---|---|
EP0117821A2 EP0117821A2 (en) | 1984-09-05 |
EP0117821A3 EP0117821A3 (en) | 1985-01-23 |
EP0117821B1 true EP0117821B1 (en) | 1987-11-11 |
Family
ID=23869122
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP84400378A Expired EP0117821B1 (en) | 1983-02-28 | 1984-02-24 | Compression sealing of tubes within shell and tube heat exchangers |
Country Status (10)
Country | Link |
---|---|
EP (1) | EP0117821B1 (da) |
JP (1) | JPS59164894A (da) |
AT (1) | ATE30768T1 (da) |
AU (1) | AU2507484A (da) |
BR (1) | BR8304341A (da) |
DE (1) | DE3467398D1 (da) |
DK (1) | DK104984A (da) |
GR (1) | GR79820B (da) |
NZ (1) | NZ207207A (da) |
ZA (1) | ZA841420B (da) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013149230A1 (en) * | 2012-03-30 | 2013-10-03 | Newage Industries, Inc. | Single use wall pass-through system |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA1253850A (en) * | 1984-09-05 | 1989-05-09 | Katherine K. Flamm | Compression sealing of tubes within shell and tube heat exchangers |
WO1993019340A1 (en) * | 1992-03-25 | 1993-09-30 | Air Blast Radiators Ltd. | Sealing means |
CN105651099B (zh) * | 2010-05-06 | 2017-11-21 | 热矩阵集团有限公司 | 热交换器管板、热交换器以及制造热交换器管板的方法 |
US10113670B2 (en) | 2012-03-30 | 2018-10-30 | Newage Industries, Inc. | Single use wall pass-through system |
US9302205B1 (en) * | 2014-10-14 | 2016-04-05 | Neptune-Benson, Llc | Multi-segmented tube sheet |
CN108387121B (zh) * | 2018-04-15 | 2024-02-06 | 山西阳煤化工机械(集团)有限公司 | 用于低温烟气余热回收的玻璃管换热器 |
CN108317885B (zh) * | 2018-04-15 | 2024-02-06 | 山西阳煤化工机械(集团)有限公司 | 换热管与管板的密封连接结构 |
CN108709440A (zh) * | 2018-06-26 | 2018-10-26 | 孙菊萍 | 一种环保型管壳式热交换器 |
CN111678375A (zh) * | 2020-03-19 | 2020-09-18 | 东方电气集团东方锅炉股份有限公司 | 一种换热器壳侧终接焊缝坡口结构及制造方法 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2762611A (en) * | 1952-02-28 | 1956-09-11 | Pfaudler Co Inc | Tubular heat exchangers |
US2766903A (en) * | 1953-02-17 | 1956-10-16 | Griscom Russell Co | Head closure construction for heat exchangers |
DE1064966B (de) * | 1953-12-23 | 1959-09-10 | Zellwolle Lenzing Ag | Roehrenwaermeaustauscher mit Rohrboeden, bestehend aus einer elastischen Platte und beiderseits anliegenden starren Platten |
FR2158722A5 (en) * | 1971-10-29 | 1973-06-15 | Gedes Gie | Gas tight tube sheet - suitable for use as partition in multi-flash evaporator for sea-water |
FR2235345B1 (da) * | 1973-06-26 | 1976-12-24 | Takayasu Kiyotelu | |
US3863713A (en) * | 1973-08-27 | 1975-02-04 | Stewart Warner Corp | Heat exchanger |
CH630719A5 (de) * | 1978-02-13 | 1982-06-30 | Agresto Ag International Sa | Rohrbuendelwaermeaustauscher. |
-
1983
- 1983-08-12 BR BR8304341A patent/BR8304341A/pt unknown
-
1984
- 1984-02-20 NZ NZ207207A patent/NZ207207A/en unknown
- 1984-02-22 GR GR73894A patent/GR79820B/el unknown
- 1984-02-24 EP EP84400378A patent/EP0117821B1/en not_active Expired
- 1984-02-24 AT AT84400378T patent/ATE30768T1/de not_active IP Right Cessation
- 1984-02-24 DE DE8484400378T patent/DE3467398D1/de not_active Expired
- 1984-02-27 DK DK104984A patent/DK104984A/da not_active Application Discontinuation
- 1984-02-27 ZA ZA841420A patent/ZA841420B/xx unknown
- 1984-02-27 AU AU25074/84A patent/AU2507484A/en not_active Abandoned
- 1984-02-28 JP JP59035480A patent/JPS59164894A/ja active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013149230A1 (en) * | 2012-03-30 | 2013-10-03 | Newage Industries, Inc. | Single use wall pass-through system |
Also Published As
Publication number | Publication date |
---|---|
DK104984A (da) | 1984-08-29 |
BR8304341A (pt) | 1984-11-06 |
EP0117821A2 (en) | 1984-09-05 |
DK104984D0 (da) | 1984-02-27 |
DE3467398D1 (en) | 1987-12-17 |
NZ207207A (en) | 1986-12-05 |
EP0117821A3 (en) | 1985-01-23 |
GR79820B (da) | 1984-10-31 |
JPS59164894A (ja) | 1984-09-18 |
ZA841420B (en) | 1985-10-30 |
ATE30768T1 (de) | 1987-11-15 |
AU2507484A (en) | 1984-09-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5435383A (en) | Plate heat exchanger assembly | |
EP0117821B1 (en) | Compression sealing of tubes within shell and tube heat exchangers | |
US6206086B1 (en) | Multi-pass tube side heat exchanger with removable bundle | |
US2520755A (en) | Multiple tube heat exchanger | |
US4244423A (en) | Heat exchanger | |
US4691769A (en) | Compression sealing of tubes within shell and tube heat exchanger | |
US6131648A (en) | High pressure corrugated plate-type heat exchanger | |
US20030000688A1 (en) | Shell and plate heat exchanger | |
US5845386A (en) | Method for connecting a multiple-piece elbow assembly | |
US20070170660A1 (en) | Heat exchanger seal | |
US4927182A (en) | Pipeline repair clamp | |
AU702645B2 (en) | Heat pipe heat exchanger tube sheet | |
CA1253850A (en) | Compression sealing of tubes within shell and tube heat exchangers | |
EP0561514B1 (en) | Method of making a pipe connection | |
US20040069450A1 (en) | Component for supporting a filter member, a device including a tubular filter member and said component, a plate heat exchanger including a tubular filter member and said component | |
GB2041191A (en) | Heat exchanger | |
US3593782A (en) | Heat exchanger | |
EP0310369A1 (en) | Connecting device | |
US2061980A (en) | Heat exchanger | |
US4557322A (en) | Heat exchanger closure system | |
GB2164738A (en) | Heat exchanger | |
GB2025555A (en) | Conduit connector | |
WO1996007072A1 (en) | A cover round a plate heat exchanger | |
IE57153B1 (en) | Shell and tube heat exchanger sealing means | |
JPH0245653Y2 (da) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Designated state(s): AT BE CH DE FR GB IT LI LU NL SE |
|
ITCL | It: translation for ep claims filed |
Representative=s name: SOCIETA' ITALIANA BREVETTI S.P.A. |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Designated state(s): AT BE CH DE FR GB IT LI LU NL SE |
|
17P | Request for examination filed |
Effective date: 19850624 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE CH DE FR GB IT LI LU NL SE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Effective date: 19871111 Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED. Effective date: 19871111 Ref country code: FR Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY Effective date: 19871111 Ref country code: CH Effective date: 19871111 Ref country code: BE Effective date: 19871111 Ref country code: AT Effective date: 19871111 |
|
REF | Corresponds to: |
Ref document number: 30768 Country of ref document: AT Date of ref document: 19871115 Kind code of ref document: T |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Effective date: 19871130 |
|
REF | Corresponds to: |
Ref document number: 3467398 Country of ref document: DE Date of ref document: 19871217 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19880229 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
EN | Fr: translation not filed | ||
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Effective date: 19880901 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
NLV4 | Nl: lapsed or anulled due to non-payment of the annual fee | ||
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Effective date: 19881101 |
|
26N | No opposition filed | ||
GBPC | Gb: european patent ceased through non-payment of renewal fee | ||
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19881122 |