EP0116302A2 - Converter - Google Patents

Converter Download PDF

Info

Publication number
EP0116302A2
EP0116302A2 EP84100334A EP84100334A EP0116302A2 EP 0116302 A2 EP0116302 A2 EP 0116302A2 EP 84100334 A EP84100334 A EP 84100334A EP 84100334 A EP84100334 A EP 84100334A EP 0116302 A2 EP0116302 A2 EP 0116302A2
Authority
EP
European Patent Office
Prior art keywords
charging
capacitor
voltage
inverter
switch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP84100334A
Other languages
German (de)
French (fr)
Other versions
EP0116302A3 (en
EP0116302B1 (en
Inventor
Manfred Dipl.-Ing. Klamt
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to AT84100334T priority Critical patent/ATE36108T1/en
Publication of EP0116302A2 publication Critical patent/EP0116302A2/en
Publication of EP0116302A3 publication Critical patent/EP0116302A3/en
Application granted granted Critical
Publication of EP0116302B1 publication Critical patent/EP0116302B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/14Circuit arrangements
    • H05B41/26Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc
    • H05B41/28Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters
    • H05B41/295Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters with semiconductor devices and specially adapted for lamps with preheating electrodes, e.g. for fluorescent lamps
    • H05B41/298Arrangements for protecting lamps or circuits against abnormal operating conditions
    • H05B41/2981Arrangements for protecting lamps or circuits against abnormal operating conditions for protecting the circuit against abnormal operating conditions
    • H05B41/2985Arrangements for protecting lamps or circuits against abnormal operating conditions for protecting the circuit against abnormal operating conditions against abnormal lamp operating conditions
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/14Circuit arrangements
    • H05B41/26Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc
    • H05B41/28Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S315/00Electric lamp and discharge devices: systems
    • Y10S315/07Starting and control circuits for gas discharge lamp using transistors

Definitions

  • the invention relates to a converter according to the preamble of claim 1.
  • the synchronous control of the charging switch depending on the voltage at one of the switches of the inverter according to the main patent, has the major advantage that the operating state of the step-up converter is automatically based on that of the inverter: for example, if the inverter connected to it is switched off in the event of a fault , the step-up converter automatically stops working and no more energy is pumped into the inverter. Conversely, the step-up converter starts automatically when the inverter starts to swing.
  • the current flow duration via the charging switch also depends on the voltage at the charging capacitor, the power supplied by the step-up converter changes automatically when the output voltage of the inverter is varied, for example to change the lamp power.
  • the inverter it is therefore sufficient to intervene in the inverter, for example to change its operating frequency or, in the case of a constant operating frequency, to change the control times of the switches of the inverter.
  • the converter can also be operated with DC voltage without any switchover, with all of the advantages listed remaining.
  • the invention has for its object to reduce the cost of components even further.
  • the solution to this problem is characterized in claim 1.
  • the saturation transformer Tr has two secondary windings L31, L32 and a monitoring winding L33; the secondary windings L31, L32 are connected to the control circuits of the primary and secondary transistors T1, T3 in such a way that they are alternately turned on during the remagnetization time of the saturation transformer.
  • the saturation transformer is dimensioned such that the operating frequency of the inverter determined by it is slightly above the resonance frequency of the Series resonant circuit is: This creates gaps between successive sleeves für tenu p, so that simultaneous conduction of primary and Sekundärtansistor and therefore a short circuit is the voltage on the charging capacitor C excluded.
  • Reverse current diodes D1, D2 are provided in parallel with each of the transistors for current conduction during the simultaneous blocking of both transistors.
  • the voltage of the charging capacitor C is applied to the load branch and leads to a charging of the switching capacitor C1 with the polarity indicated in the figure.
  • the current continues to flow through the load branch, driven by the choke L2 of the series resonant circuit, via the reverse current diode D2 until T3 turns on: Then the reversing capacitor C1 discharges via T3 and the load branch until T3 blocks again. The load current then continues to flow in the same direction via the charging capacitor C and the reverse current diode D1 until T1 is switched through again.
  • the step-up converter to the left of the dash-dotted line works with a power MOS transistor T2.1, the control of which is considerably simplified: its control electrode is in fact connected to a capacitor C5 via a resistor, which in series with a capacitor C7 is a voltage divider in parallel with the primary transistor T1 of the inverter.
  • the voltage at C5 is limited by a Zener diode D6.
  • This voltage divider, and in particular C7 is dimensioned such that the current flowing when blocking primary transistor T1 via C7 is sufficient to quickly charge both C5 and the capacitance of the control path of transistor T2.1 and thereby to control T2.1.
  • This power transistor then remains on until its control voltage is eliminated. This is the case at the latest when the primary transistor T1 is conductive again, since the capacitance of the control path is then discharged from T2.1 via C7 and T1.
  • T2.1 will block earlier, namely if transistor T8, which lies in parallel with capacitor C5, turns on and this transistor discharges the capacitance of the control path from T2.1. This is the case when the voltage across a delay capacitor C6 has reached a limit value given by a zener diode D3.
  • the charging of C6 is dependent on the voltage at the charging capacitor C, to which the delay capacitor C6 is connected in parallel via a resistor R62.
  • This resistor is also connected in series with a capacitor C4 and a resistor R1: in this way, the charging of C6 is also dependent on the AC component of the voltage on the charging capacitor C.
  • C6 is AC. is not connected to the charging capacitor C, but via a resistor R1 'to a voltage divider with the capacitors C4''andC', shown in dashed lines, which is connected in parallel to the rectifier G.
  • the charging capacitor C can also be included in this voltage divider, that is, C 'connected to the positive connection of C: this reduces the effort for the voltage divider. This is such that it is essentially only at twice the frequency of the network voltage is effective and essentially represents a short circuit for higher-frequency interference voltages, such as those generated by the step-up converter itself. This applies regardless of the type of step-up converter characterized in claim 1.
  • the delay capacitor C6 is also connected in parallel to the primary transistor T1 via a diode D8: it is therefore always discharged when T1 is conductive and begins charging at the moment when T1 is blocking, i.e. also simultaneously with the control of T2.1.
  • T2.1 is thus controlled synchronously with the inverter, its current flow time depending on the charging of the delay capacitor.
  • the reversing inverter and thus the step-up converter only start to work when the voltage at a starting capacitor C8 has reached such a value that its energy is switched to the control path of the primary transistor T1 via a trigger diode D13 and the latter is thus switched on.
  • the ignition capacitor C8 is connected to the charging capacitor C and via the resistors R2, R4 and an electrode of the lamp E.
  • a stop thyristor T4 is provided, to which a monitoring winding L33 of the saturation transformer Tr is connected in parallel via diodes D11, D12 and the ignition capacitor C8 via R2 and which has its holding current via the electrode of the discharge lamp adjacent to the charging capacitor C and a series resistor R4 receives-.
  • An RC element R3, C9 is also connected in parallel to the monitoring winding L33 via the diode D11, which in turn is connected in parallel to the control path of the stop thyristor T4 via a trigger diode D14.
  • the function and dimensioning of this circuit is based on the fact that the amplitude of the current flowing through the load branch with the discharge lamp and detected by the monitoring winding L33 is significantly greater when the lamp is not ignited (resonance case) than when the lamp is ignited (damped resonance circuit): after a through the designable number of unsuccessful start attempts has charged C9 to such an extent that the stop thyristor T4 ignites via the trigger diode D14 and short-circuits the monitoring winding L33.
  • the step-up converter Due to the synchronous control of the step-up converter depending on the square-wave voltage at the switches of the inverter, the step-up converter is automatically switched off with the inverter and switched on again when the inverter starts.
  • the inverter remains switched off until the holding current of the stop thyristor T4 is interrupted and it can therefore go back into the blocking state.
  • the AC mains voltage can be switched off, for example.
  • a shutdown is the result of a defective lamp that is replaced without switching off the mains voltage. Since the holding circuit is passed through an electrode of the lamp, the holding current is also interrupted automatically when the lamp is changed, so that the converter automatically starts up again after a new lamp is inserted.

Landscapes

  • Inverter Devices (AREA)
  • Audible-Bandwidth Dynamoelectric Transducers Other Than Pickups (AREA)
  • Polarising Elements (AREA)
  • Road Paving Structures (AREA)
  • Circuit Arrangements For Discharge Lamps (AREA)
  • Amplifiers (AREA)
  • Reinforced Plastic Materials (AREA)
  • Toys (AREA)
  • Cleaning Implements For Floors, Carpets, Furniture, Walls, And The Like (AREA)

Abstract

An autoconverter comprises a step-up regulating unit and following inverter so that a charging switch of the step-up regulating unit is synchronously controlled as a function of the voltage at one of the switches of the inverter. With the invention, a particularly simple synchronous control of the charging switch designed as a MOS power transistor is provided.

Description

Die Erfindung betrifft'einen Umrichter gemäß Oberbegriff von Anspruch 1.The invention relates to a converter according to the preamble of claim 1.

Die synchrone Steuerung des Ladeschalters, abhängig von der Spannung an einem der Schalter des Wechselrichters gemäß Hauptpatent hat vor allem den großen Vorteil, daß sich der Betriebszustand des Hochsetzstellers automatisch nach dem des Wechselrichters richtet: Wird dieser beispielsweise bei einer Störung des an ihn angeschlossenen Verbrauchers abgeschaltet, so hört automatisch auch der Hochsetzsteller auf zu arbeiten und es wird kein Energie mehr in den Wechselrichter gepumpt. Umgekehrt startet der Hochsetzsteller automatisch mit dem Anschwingen des Wechselrichters.The synchronous control of the charging switch, depending on the voltage at one of the switches of the inverter according to the main patent, has the major advantage that the operating state of the step-up converter is automatically based on that of the inverter: for example, if the inverter connected to it is switched off in the event of a fault , the step-up converter automatically stops working and no more energy is pumped into the inverter. Conversely, the step-up converter starts automatically when the inverter starts to swing.

Da beim Gegenstand des Hauptpatentes die Stromflußdauer über den Ladeschalter auch von der Spannung an dem Ladekondensator abhängig ist, ändert sich automatisch die vom Hochsetzsteller gelieferte Leistung, wenn die Ausgangsspannung des Wechselrichters, beispielsweise zur Veränderung der Lampenleistung, variiert wird. Zur Änderung der Lampenleistung genügt es somit, in den Wechselrichter einzugreifen, beispielsweise dessen Betriebsfrequenz oder - bei konstanter Betriebsfrequenz - die Durchsteuerzeiten der Schalter des Wechselrichters zu verändern.Since the subject of the main patent, the current flow duration via the charging switch also depends on the voltage at the charging capacitor, the power supplied by the step-up converter changes automatically when the output voltage of the inverter is varied, for example to change the lamp power. To change the lamp power, it is therefore sufficient to intervene in the inverter, for example to change its operating frequency or, in the case of a constant operating frequency, to change the control times of the switches of the inverter.

Schließlich ist der Umrichter ohne jede Umschaltung auch mit Gleichspannung betreibbar, wobei alle aufgezählten Vorteile bestehen bleiben.Finally, the converter can also be operated with DC voltage without any switchover, with all of the advantages listed remaining.

Der Erfindung liegt die Aufgabe zugrunde, den Aufwand an Bauelementen noch weiter zu verringern. Die Lösung dieser Aufgabe ist in Anspruch 1 gekennzeichnet.The invention has for its object to reduce the cost of components even further. The solution to this problem is characterized in claim 1.

Ein Ausführungsbeispiel der Erfindung wird anhand der Figur näher erläutert:

  • Ein Gleichrichter G in Zweiwegschaltung ist eingangsseitig über ein nicht dargestelltes Filter an ein Wechselspannungsnetz (220 Volt / 50 Hertz) angeschlossen und speist ausgangsseitig über eine Ladedrossel L und eine Ladediode D einen Ladekondensator C. Parallel zu diesem ist die Reihenschaltung aus zwei abwechselnd durchschaltenden Transistoren eines Wechselrichters angeschlossen; der der Ladediode D benachbarte Transistor T3 wird im folgenden als Sekundärtransistor und der andere Transistor T1 als Primärtransistor bezeichnet. Parallel zu dem Sekundärtransistor T3 liegt ein Lastzweig mit einer Entladungslampe E, einem Serienresonanzkreis C2, L2, einem Umschwingkondensator C1 und der Primärwicklung L30 eines Sättigungstransformators Tr in Reihenschaltung, wobei der Kondensator C2 des Serienresonanzkreises zwischen den beiden vorheizbaren Elektroden der Entladungslampe E liegt, die mit einer Elektrode direkt an den Ladekondensator C angeschlossen ist.
An embodiment of the invention is explained in more detail with reference to the figure:
  • A rectifier G in a two-way circuit is connected on the input side to an AC voltage network (220 volts / 50 Hertz) via a filter (not shown) and on the output side feeds a charging capacitor C via a charging inductor L and a charging diode D. Inverter connected; the transistor T3 adjacent to the charging diode D is referred to below as the secondary transistor and the other transistor T1 as the primary transistor. In parallel with the secondary transistor T3 is a load branch with a discharge lamp E, a series resonance circuit C2, L2, a swinging capacitor C1 and the primary winding L30 of a saturation transformer Tr in series connection, the capacitor C2 of the series resonance circuit being between the two preheatable electrodes of the discharge lamp E, which is connected to an electrode is connected directly to the charging capacitor C.

Der Sättigungstransformator Tr weist zwei Sekundärwicklungen L31, L32 sowie eine Überwachung`swicklung L33 auf; die Sekundärwicklungen L31, L32 sind derart in die Steuerkreise von Primär- und Sekundärtransistor T1, T3 geschaltet, daß diese jeweils während der Ummagnetisierungszeit des Sättigungstransformators abwechselnd durchgesteuert werden. Hierbei ist der Sättigungstransformator so bemessen, daß die durch ihn bestimmte Betriebsfrequenz des Wechselrichters etwas über der Resonanzfrequenz des Serienresonanzkreises liegt: Dadurch entstehen Lücken zwischen aufeinanderfolgenden Durchsteuerimpulsen, so daß ein gleichzeitiges Leiten von Primär- und Sekundärtansistor und damit ein Kurzschluß der Spannung an dem Ladekondensator C ausgeschlossen ist. Für die Stromführung während der gleichzeitigen Sperrung beider Transistoren sind Rückstromdioden D1, D2 parallel zu jedem der Transistoren vorgesehen. Während der Durchschaltzeit des Primärtransistors T1 liegt die Spannung des Ladekondensators C an dem Lastzweig und führt zu einer Aufladung des Umschwingkondensators C1 mit der in der Figur angegebenen Polarität. Nach dem Sperren von T1 fließt der Strom über den Lastzweig, getrieben durch die Drossel L2 des Serienresonanzkreises, über die Rückstromdiode D2 weiter, bis T3 durchschaltet: Dann entlädt sich der Umschwingkondensator C1 über T3 und den Lastzweig, bis T3 wieder sperrt. Danach fließt der Laststrom in der gleichen Richtung über den Ladekondensator C und Rückstromdiode D1 bis zur erneuten Durchschaltung von T1 weiter.The saturation transformer Tr has two secondary windings L31, L32 and a monitoring winding L33; the secondary windings L31, L32 are connected to the control circuits of the primary and secondary transistors T1, T3 in such a way that they are alternately turned on during the remagnetization time of the saturation transformer. Here, the saturation transformer is dimensioned such that the operating frequency of the inverter determined by it is slightly above the resonance frequency of the Series resonant circuit is: This creates gaps between successive sleeves Durchsteuerim p, so that simultaneous conduction of primary and Sekundärtansistor and therefore a short circuit is the voltage on the charging capacitor C excluded. Reverse current diodes D1, D2 are provided in parallel with each of the transistors for current conduction during the simultaneous blocking of both transistors. During the switching time of the primary transistor T1, the voltage of the charging capacitor C is applied to the load branch and leads to a charging of the switching capacitor C1 with the polarity indicated in the figure. After blocking T1, the current continues to flow through the load branch, driven by the choke L2 of the series resonant circuit, via the reverse current diode D2 until T3 turns on: Then the reversing capacitor C1 discharges via T3 and the load branch until T3 blocks again. The load current then continues to flow in the same direction via the charging capacitor C and the reverse current diode D1 until T1 is switched through again.

Der Hochsetzsteller links der strichpunktierten Linie arbeitet mit einem Leistungs-MOS-Transistors T2.1, dessen Ansteuerung wesentlich vereinfacht ist: Seine Steuerelektrode liegt nämlich über einen Widerstand an einem Kondensator C5, der in Reihe mit einem Kondensator C7 einen Spannungsteiler parallel zu dem Primärtransistor T1 des Wechselrichters bildet. Die Spannung an C5 ist durch eine Zenerdiode D6 begrenzt. Dieser Spannungsteiler, und insbesondere C7, ist so bemessen, daß der beim Sperren von Primärtransistor T1 über C7 fließende Strom ausreicht, um sowohl C5 als auch die Kapazität der Steuerstrecke des Transistors T2.1 schnell aufzuladen und dadurch T2.1 durchzusteuern. Dieser Leistungstransistor bleibt dann durchgesteuert, bis seine Steuerspannung entfällt. Dies ist spätestens der Fall, wenn der Primärtransistor T1 wieder leitend ist, da sich dann die Kapazität der Steuerstrecke von T2.1 über C7 und T1 entlädt.The step-up converter to the left of the dash-dotted line works with a power MOS transistor T2.1, the control of which is considerably simplified: its control electrode is in fact connected to a capacitor C5 via a resistor, which in series with a capacitor C7 is a voltage divider in parallel with the primary transistor T1 of the inverter. The voltage at C5 is limited by a Zener diode D6. This voltage divider, and in particular C7, is dimensioned such that the current flowing when blocking primary transistor T1 via C7 is sufficient to quickly charge both C5 and the capacitance of the control path of transistor T2.1 and thereby to control T2.1. This power transistor then remains on until its control voltage is eliminated. This is the case at the latest when the primary transistor T1 is conductive again, since the capacitance of the control path is then discharged from T2.1 via C7 and T1.

In der Regel wird jedoch T2.1 früher sperren, nämlich wenn Transistor T8, der dem Kondensator C5 parallel liegt, durchsteuert und dieser Transistor die Kapazität der Steuerstrecke von T2.1 entlädt. Dies ist dann der Fall, wenn die Spannung an einem Verzögerungskondensator C6 einen durch eine Zenerdiode D3 gegebenen Grenzwert erreicht hat.As a rule, however, T2.1 will block earlier, namely if transistor T8, which lies in parallel with capacitor C5, turns on and this transistor discharges the capacitance of the control path from T2.1. This is the case when the voltage across a delay capacitor C6 has reached a limit value given by a zener diode D3.

Die Aufladung von C6 ist abhängig von der Spannung am Ladekondensator C, dem der Verzögerungskondensator C6 über einen Widerstand R62 parallel geschaltet ist. Diesem Widerstand liegt ferner die Reihenschaltung eines Kondensators C4 und eines Widerstandes R1 parallel: Auf diese Weise ist die Aufladung von C6 auch von der Wechselspannungskomponente der Spannung an dem Ladekondensator C abhängig.The charging of C6 is dependent on the voltage at the charging capacitor C, to which the delay capacitor C6 is connected in parallel via a resistor R62. This resistor is also connected in series with a capacitor C4 and a resistor R1: in this way, the charging of C6 is also dependent on the AC component of the voltage on the charging capacitor C.

Die zusätzliche Aufladung von C6 über C4 und R1 führt zu einer Verkürzung der Stromflußzeit des Transistors T2.1 bei zunehmender Amplitude der Halbwellenspannung des Gleichrichters G und damit zu einer besseren Sinusform des Netzstromes. Noch bessere Ergebnisse in dieser Hinsicht lassen sich erzielen, wenn C6 wechselspannungsmäßig. nicht an den Ladekondensator C, sondern über einen Widerstand R1' an einen - gestrichelt gezeichneten - Spannungsteiler mit den Kondensatoren C4''und C' angeschlossen wird, der parallel zu dem Gleichrichter G liegt. Dabei kann der Ladekondensator C auch in diesen Spannungsteiler einbezogen, C' also an den positiven Anschluß von C angeschlossen sein: Dadurch reduziert sich der Aufwand für den Spannungsteiler. Dieser ist so bemessen, daß er im wesentlichen nur bei der doppelten Frequenz der Netzspannung wirksam ist und für höherfrequente Störspannungen, wie sie auch der Hochsetzsteller selbst erzeugt, im wesentlichen einen Kurzschluß darstellt. Das gilt unabhängig von der in Anspruch 1 gekennzeichneten Art des Hochsetzstellers.The additional charging of C6 via C4 and R1 leads to a shortening of the current flow time of the transistor T2.1 with increasing amplitude of the half-wave voltage of the rectifier G and thus to a better sinusoidal form of the mains current. Even better results in this regard can be achieved if C6 is AC. is not connected to the charging capacitor C, but via a resistor R1 'to a voltage divider with the capacitors C4''andC', shown in dashed lines, which is connected in parallel to the rectifier G. The charging capacitor C can also be included in this voltage divider, that is, C 'connected to the positive connection of C: this reduces the effort for the voltage divider. This is such that it is essentially only at twice the frequency of the network voltage is effective and essentially represents a short circuit for higher-frequency interference voltages, such as those generated by the step-up converter itself. This applies regardless of the type of step-up converter characterized in claim 1.

Der Verzögerungskondensator C6 liegt ferner über eine Diode D8 parallel zu dem Primärtransistor T1: Er wird somit stets entladen, wenn T1 leitend ist und beginnt mit der Aufladung im Augenblick, da T1 sperrt, d.h. also auch gleichzeitig mit dem Durchsteuern von T2.1.The delay capacitor C6 is also connected in parallel to the primary transistor T1 via a diode D8: it is therefore always discharged when T1 is conductive and begins charging at the moment when T1 is blocking, i.e. also simultaneously with the control of T2.1.

Somit wird T2.1 synchron zu dem Wechselrichter gesteuert, wobei seine Stromflußzeit von der Aufladung des Verzögerungskondensators abhängt.T2.1 is thus controlled synchronously with the inverter, its current flow time depending on the charging of the delay capacitor.

Der Umschwingwechselrichter und damit zugleich der Hochsetzsteller beginnen erst zu arbeiten, wenn die Spannung an einem Startkondensator C8 einen solchen Wert erreicht hat, daß seine Energie über eine Trigger-Diode D13 auf die Steuerstrecke des Primärtransistors T1 geschaltet wird und dieser damit durchschaltet. Der Zündkondensator C8 liegt hierzu einerseits über Widerstände R2, R4 und eine Elektrode der Lampe-E an dem Ladekondensator C und . andererseits über eine Diode D10 parallel zur Schaltstrecke des Primärtransistors T1: Nach dem Anlegen der Netzwechselspannung an den Gleichrichter lädt sich der Ladekondensator C über Ladedrossel und Ladediode und damit auch der Zündkondensator C8 auf, bis der Primärtransistor T1 durchgezündet wird; dann wird zugleich der Zündkondensator über D10 wieder entladen, so daß diese Startschaltung während des periodischen-Schwingens des Wechselrichters nicht mehr eingreifen kann.The reversing inverter and thus the step-up converter only start to work when the voltage at a starting capacitor C8 has reached such a value that its energy is switched to the control path of the primary transistor T1 via a trigger diode D13 and the latter is thus switched on. For this purpose, the ignition capacitor C8 is connected to the charging capacitor C and via the resistors R2, R4 and an electrode of the lamp E. on the other hand, via a diode D10 parallel to the switching path of the primary transistor T1: after the AC line voltage has been applied to the rectifier, the charging capacitor C charges via the charging choke and charging diode and thus also the ignition capacitor C8 until the primary transistor T1 is ignited; then at the same time the ignition capacitor is discharged again via D10, so that this starting circuit can no longer intervene during the periodic oscillation of the inverter.

Beim Betrieb des Umrichters mit einer Entladungslampe E ist für eine Abschaltung des Umrichters zu sorgen, wenn die Entladungslampe dauernd startunwillig ist, also es nur zu wiederholten, erfolglosen Startversuchen kommt. Zu diesem Zweck ist ein Stop-Thyristor T4 vorgesehen, dem eine Uberwachungswicklung L33 des Sättigungstransformators Tr über Dioden D11, D12 und der Zündkondensator C8 über R2 parallel geschaltet ist und der seinen Haltestrom über die dem Ladekondensator C benachbarte Elektrode der Entladungslampe und einen Vorwiderstand-R4 erhält-.When operating the converter with a discharge lamp E The converter must be switched off if the discharge lamp is constantly unwilling to start, i.e. there are only repeated unsuccessful start attempts. For this purpose, a stop thyristor T4 is provided, to which a monitoring winding L33 of the saturation transformer Tr is connected in parallel via diodes D11, D12 and the ignition capacitor C8 via R2 and which has its holding current via the electrode of the discharge lamp adjacent to the charging capacitor C and a series resistor R4 receives-.

An die Überwachungswicklung L33 ist über die Diode D11 auch ein RC-Glied R3, C9 in Parallelschaltung angeschlossen, das wiederum über eine Trigger-Diode D14 der Steuerstrecke des Stop-Thyristors T4 parallel liegt. Die Funktion und Bemessung dieser Schaltung basiert auf der Tatsache, daß die Amplitude des über den Lastzweig mit der Entladungslampe fließende und von der Überwachungswicklung L33 erfaßte Strom bei ungezündeter Lampe (Resonanzfall) wesentlich größer ist als bei gezündeter Lampe (gedämpfter Resonanzkreis): Nach einer durch die Bemessung vorgebbaren Anzahl vergeblicher-Startversuche hat sich C9 soweit aufgeladen, daß der Stop-Thyristor T4 über die Trigger-Diode D14 durchzündet und die Uberwachungswicklung L33 kurzschließt. Damit entfallen die Steuerspannungen für die Transistoren des Wechselrichters und der Betrieb des Wechselrichters ist unterbrochen. Zu einer.solchen Abschaltung führen jedoch weder die normalen Zündversuche noch der normale Lampenstrom, da hierbei die Spannung an C9 nicht den zur Durchsteuerung der Trigger-Diode D14 erforderlichen Wert erreicht.An RC element R3, C9 is also connected in parallel to the monitoring winding L33 via the diode D11, which in turn is connected in parallel to the control path of the stop thyristor T4 via a trigger diode D14. The function and dimensioning of this circuit is based on the fact that the amplitude of the current flowing through the load branch with the discharge lamp and detected by the monitoring winding L33 is significantly greater when the lamp is not ignited (resonance case) than when the lamp is ignited (damped resonance circuit): after a through the designable number of unsuccessful start attempts has charged C9 to such an extent that the stop thyristor T4 ignites via the trigger diode D14 and short-circuits the monitoring winding L33. This eliminates the control voltages for the transistors of the inverter and the operation of the inverter is interrupted. However, neither the normal ignition attempts nor the normal lamp current lead to such a switch-off, since the voltage at C9 does not reach the value required for triggering the trigger diode D14.

Wegen der Synchronsteuerung des Hochsetzstellers abhängig von der Rechteckspannung an den Schaltern des Wechselrichters, wird der Hochsetzsteller automatisch mit dem Wechselrichter ab- und mit Start des Wechselrichters wieder eingeschaltet.Due to the synchronous control of the step-up converter depending on the square-wave voltage at the switches of the inverter, the step-up converter is automatically switched off with the inverter and switched on again when the inverter starts.

Der Wechselrichter bleibt abgeschaltet, bis der Haltestrom des Stop Thyristors T4 unterbrochen und dieser daher wieder in den Sperrzustand übergehen kann. Hierzu kann beispielsweise die Netzwechselspannung abgeschaltet werden. Sehr häufig ist jedoch eine Abschaltung das Resultat einer schadhaften Lampe, die ohne Abschaltung der Netzspannung gewechselt wird. Da der Haltestromkreis über eine Elektrode der Lampe geführt ist, wird der Haltestrom auch beim Lampenwechsel automatisch unterbrochen, so daß der Umrichter nach dem Einsetzen einer neuen Lampe automatisch wieder anschwingt.The inverter remains switched off until the holding current of the stop thyristor T4 is interrupted and it can therefore go back into the blocking state. For this purpose, the AC mains voltage can be switched off, for example. Very often, however, a shutdown is the result of a defective lamp that is replaced without switching off the mains voltage. Since the holding circuit is passed through an electrode of the lamp, the holding current is also interrupted automatically when the lamp is changed, so that the converter automatically starts up again after a new lamp is inserted.

Claims (4)

1. Umrichter mit einem Hochsetzsteller, der einen über eine Ladediode (D) und eine Ladedrossel (L) an eine Gleichspannungsquelle (G) angeschlossenen Ladekondensator (C) sowie einen Ladeschalter (T2.1) aufweist, der durch einen Steuerteil periodisch mit von einer Steuergröße abhängigem Tastverhältnis (V) geschlossen wird und dadurch die Ladedrossel (L) an die Gleichspannungsquelle (G) schaltet, und mit einem von dem Ladekondensator (C) gespeisten Wechselrichter mit zwei abwechselnd durchgesteuerten Schaltern (T1, T3), die in Reihenschaltung parallel zu dem Ladekondensator (C) liegen, wobei der Steuerteil für den Ladeschalter durch die Rechteckspannung an einem der Schalter (T1, T3) des Wechselrichters derart synchronisiert ist, daß der Ladeschalter (T2.1) beim Öffnen dieses Schalters (T1) geschlossen und nach einer durch die Ladung eines Verzögerungspeichers (C6) auf einen Ansprechwert bestimmten.Zeit (TL) öffnet, und wobei der Entladekreis des Verzögerungsspeichers (C6) über denselben Schalter (T1) des Wechselrichters geführt ist, dadurch gekennzeichnet , daß der Ladeschalter ein Leistungs-MOS-Transistor (T2.1) ist, dessen Steuerstrecke einerseits parallel zu einem steuerbaren Schalter (T8) liegt und andererseits mit einem Kondensator (C7) eine Reihenschaltung bildet, die dem Schalter (T1) des Wechselrichters parallel liegt, der auch im Entladekreis des Verzögerungsspeichers (C6) angeordnet ist, und daß der steuerbare Schalter (T8) abhängig von der Spannung am Verzögerungskondensator (C6) über ein Schwellwertglied (D3) in die Schließstellung gesteuert wird.1.Inverter with a step-up converter, which has a charging capacitor (C) connected to a DC voltage source (G) via a charging diode (D) and a charging choke (L) and a charging switch (T2.1), which is periodically controlled by a control part with a Control variable dependent duty cycle (V) is closed and thereby switches the charging choke (L) to the DC voltage source (G), and with an inverter powered by the charging capacitor (C) with two alternately controlled switches (T1, T3), which are connected in series in parallel the charging capacitor (C), the control part for the charging switch being synchronized by the square-wave voltage at one of the switches (T1, T3) of the inverter such that the charging switch (T2.1) is closed when this switch (T1) is opened and after one determined by the charging of a delay memory (C6) to a response value. Time (T L ) opens, and the discharge circuit of the delay memory (C6) over the same n Switch (T1) of the inverter is guided, characterized in that the charging switch is a power MOS transistor (T2.1), the control path of which is on the one hand parallel to a controllable switch (T8) and on the other hand with a capacitor (C7) Forms a series circuit that is parallel to the switch (T1) of the inverter, which is also arranged in the discharge circuit of the delay memory (C6), and that the controllable switch (T8) depends on the voltage at the delay capacitor (C6) via a threshold element (D3) in the closed position is controlled. 2. Umrichter nach Anspruch 1, dadurch gekennzeichnet , daß der Kondensator (C7) zur Ansteuerung des MOS-Leistungstransistors (T2.1) so bemessen ist, daß eine ausreichend schnelle Aufladung der Kapazität der Steuerstrecke des MOS-Transistors gewährleistet ist.2. Converter according to claim 1, characterized in that the capacitor (C7) for driving the MOS power transistor (T2.1) dimensioned so sen is that a sufficiently fast charging of the capacitance of the control path of the MOS transistor is guaranteed. 3. Umrichter nach Anspruch 1 oder 2, wobei die Gleichspannungsquelle (G) ein von einem Wechselspannungsnetz gespeister Gleichrichter ist, der eine ungeglättete Halbwellenspannung liefert, und wobei das Tastverhältnis von der Spannung.am Ladekondensator (C) und - zur Erzeugung eines sinusförmigen Netzstromes - von einer von der Halbwellenspannung des Gleichrichters (G) abgeleiteten Korrekturgröße abhängig ist, dadurch gekennzeichnet , daß der Verzögerungsspeicher (C6) über einen Widerstand (R1') parallel zu einem Kondensator (C') liegt, der zusammen mit einem weiteren Kondensator (C4') einen Spannungsteiler bildet, der parallel zu dem Gleichrichter (G) liegt und so bemessen ist, daß er.im wesentlichen bei der zweifachen Frequenz der den Gleichrichter speisenden Wechselspannung wirksam ist und für höherfrequente Störspannungen einen Kurzschluß darstellt.3. Converter according to claim 1 or 2, wherein the DC voltage source (G) is a rectifier fed by an AC voltage supply, which supplies an unsmoothed half-wave voltage, and wherein the duty cycle of the voltage on the charging capacitor (C) and - to generate a sinusoidal mains current - is dependent on a correction variable derived from the half-wave voltage of the rectifier (G), characterized in that the delay memory (C6) is connected via a resistor (R1 ') in parallel to a capacitor (C') which, together with another capacitor (C4 ' ) forms a voltage divider, which is parallel to the rectifier (G) and is dimensioned such that it is effective at essentially twice the frequency of the AC voltage feeding the rectifier and represents a short circuit for higher-frequency interference voltages. 4. Umrichter nach Anspruch 3, dadurch gekennzeichnet , daß der Ladekondensator (C) in dem Spannungsteiler liegt.4. Converter according to claim 3, characterized in that the charging capacitor (C) is in the voltage divider.
EP84100334A 1983-01-19 1984-01-13 Converter Expired EP0116302B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT84100334T ATE36108T1 (en) 1983-01-19 1984-01-13 INVERTER.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19833301632 DE3301632A1 (en) 1983-01-19 1983-01-19 INVERTER
DE3301632 1983-01-19

Publications (3)

Publication Number Publication Date
EP0116302A2 true EP0116302A2 (en) 1984-08-22
EP0116302A3 EP0116302A3 (en) 1986-02-12
EP0116302B1 EP0116302B1 (en) 1988-07-27

Family

ID=6188637

Family Applications (1)

Application Number Title Priority Date Filing Date
EP84100334A Expired EP0116302B1 (en) 1983-01-19 1984-01-13 Converter

Country Status (8)

Country Link
US (1) US4562527A (en)
EP (1) EP0116302B1 (en)
JP (1) JPS59139875A (en)
AT (1) ATE36108T1 (en)
BR (1) BR8400197A (en)
DE (2) DE3301632A1 (en)
FI (1) FI79634C (en)
ZA (1) ZA84369B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0553923A1 (en) * 1992-01-28 1993-08-04 Matsushita Electric Works, Ltd. Inverter device
DE19619745A1 (en) * 1996-05-15 1997-11-20 Tridonic Bauelemente Circuit arrangement for operating a load and electronic ballast with such a circuit arrangement for operating a lamp

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3437514A1 (en) * 1984-10-12 1986-04-17 Siemens AG, 1000 Berlin und 8000 München Luminaire having a discharge lamp and an electronic ballast unit
DE3541308C1 (en) * 1985-11-22 1987-02-05 Philips Patentverwaltung DC power supply generator e.g. for gas discharge lamp - obtains regulated DC from mains supply giving sinusoidal input to filter and rectifier
DE3541307C1 (en) * 1985-11-22 1987-02-05 Philips Patentverwaltung DC power supply generator e.g. for gas discharge lamp - obtains regulated DC voltage from mains supply giving sinusoidal input to filter and rectifier
US4882663A (en) * 1985-12-23 1989-11-21 Nilssen Ole K MOSFET flyback converter
JPS62293292A (en) * 1986-06-13 1987-12-19 キヤノン株式会社 El driving circuit
DE3623749A1 (en) * 1986-07-14 1988-01-21 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh CIRCUIT ARRANGEMENT FOR OPERATING LOW-PRESSURE DISCHARGE LAMPS
US4873616A (en) * 1987-04-16 1989-10-10 Camera Platforms International, Inc. Power supply for arc lamps
US4873617A (en) * 1987-04-16 1989-10-10 Camera Platforms International, Inc. Power supply for arc lamps
US4984148A (en) * 1990-05-29 1991-01-08 Westinghouse Electric Corp. Two-phase bang-bang current control synchronizer
JP3294343B2 (en) * 1992-11-13 2002-06-24 松下電工株式会社 Power supply
DE4425823A1 (en) * 1994-07-08 1996-01-11 Omnitronix Inc Electronic ballast for low-pressure discharge lamp

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1803486A1 (en) * 1968-10-17 1970-05-21 Siemens Ag Circuit arrangement for operating a self-controlled transistor inverter
WO1981003102A1 (en) * 1980-04-15 1981-10-29 Siemens Ag Ballast for connecting a discharge lamp
WO1983000587A1 (en) * 1981-07-31 1983-02-17 Kerscher, Max Converter

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4251752A (en) * 1979-05-07 1981-02-17 Synergetics, Inc. Solid state electronic ballast system for fluorescent lamps
US4264949A (en) * 1979-09-04 1981-04-28 Litton Systems, Inc. DC to DC power supply
US4481460A (en) * 1982-02-08 1984-11-06 Siemens Aktiengesellschaft Inverter with charging regulator having a variable keying ratio

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1803486A1 (en) * 1968-10-17 1970-05-21 Siemens Ag Circuit arrangement for operating a self-controlled transistor inverter
WO1981003102A1 (en) * 1980-04-15 1981-10-29 Siemens Ag Ballast for connecting a discharge lamp
WO1983000587A1 (en) * 1981-07-31 1983-02-17 Kerscher, Max Converter

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0553923A1 (en) * 1992-01-28 1993-08-04 Matsushita Electric Works, Ltd. Inverter device
DE19619745A1 (en) * 1996-05-15 1997-11-20 Tridonic Bauelemente Circuit arrangement for operating a load and electronic ballast with such a circuit arrangement for operating a lamp

Also Published As

Publication number Publication date
EP0116302A3 (en) 1986-02-12
FI840190A (en) 1984-07-20
DE3301632A1 (en) 1984-07-26
FI840190A0 (en) 1984-01-18
JPS59139875A (en) 1984-08-10
ATE36108T1 (en) 1988-08-15
US4562527A (en) 1985-12-31
FI79634C (en) 1990-01-10
FI79634B (en) 1989-09-29
ZA84369B (en) 1984-08-29
DE3473111D1 (en) 1988-09-01
EP0116302B1 (en) 1988-07-27
BR8400197A (en) 1984-08-21

Similar Documents

Publication Publication Date Title
EP0113451B1 (en) Inverter with a load circuit comprising a series resonant circuit and a discharge lamp
EP0127101B1 (en) Inverter for feeding discharge lamps
EP0146683B1 (en) Dc-ac conventer
EP0116302B1 (en) Converter
EP0062276B1 (en) Ballast circuit for the operation of low-pressure discharge lamps
DE3245112A1 (en) POWER SUPPLY
DE2827693A1 (en) INVERTER AND ITS USE IN A BATTERY CHARGER
DE4010435A1 (en) Mains connection device for fluorescent lamp - has inverse regulator for prodn. of constant operating voltage, and electronic switch in series branch to load in series with diode
DE102004016927A1 (en) Method for current and voltage regulation for a switching power supply
EP0085073B1 (en) Converter
EP0331157B1 (en) Switching power supply
DE3338464A1 (en) High-frequency brightness control for fluorescent lamps
DE2056847A1 (en) Inverter circuit
DE3626209A1 (en) Ballast for at least one discharge lamp
DE2445032C2 (en) Circuit arrangement for generating a switch-on voltage for the control part of a medium-frequency converter
EP0050131B1 (en) Ballast for a discharge lamp
DE2703284C2 (en) Soft start circuit for electric motors
DE2527086A1 (en) BURNER IGNITION ARRANGEMENT
EP0120258B1 (en) Energy economising circuit
DE3343930A1 (en) CIRCUIT ARRANGEMENT FOR OPERATING FLUORESCENT OR ULTRAVIOLET LOW-VOLTAGE DISCHARGE LAMPS
DE3112281C2 (en) Ballast with a boost converter and several inverters, each feeding a discharge lamp
DE2445073A1 (en) FEED CIRCUIT
DE3690071C2 (en)
CH619626A5 (en) Power supply circuitry for a welding unit
DE2262629C3 (en) Circuit arrangement for constant control of the brightness of a pulse-operated gas discharge lamp

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

RHK1 Main classification (correction)

Ipc: H05B 41/29

17P Request for examination filed

Effective date: 19860307

17Q First examination report despatched

Effective date: 19871211

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

REF Corresponds to:

Ref document number: 36108

Country of ref document: AT

Date of ref document: 19880815

Kind code of ref document: T

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
REF Corresponds to:

Ref document number: 3473111

Country of ref document: DE

Date of ref document: 19880901

ET Fr: translation filed
ITF It: translation for a ep patent filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19890131

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19890131

Year of fee payment: 9

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19900423

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19901217

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19901219

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19910121

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19910124

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19910125

Year of fee payment: 8

ITTA It: last paid annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19910131

Ref country code: CH

Effective date: 19910131

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19920113

Ref country code: AT

Effective date: 19920113

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19920114

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19920131

BERE Be: lapsed

Owner name: SIEMENS A.G. BERLIN UND MUNCHEN

Effective date: 19920131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19920801

GBPC Gb: european patent ceased through non-payment of renewal fee
NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19920930

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

EUG Se: european patent has lapsed

Ref document number: 84100334.6

Effective date: 19920806

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20020318

Year of fee payment: 19

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030801