EP0114592B1 - Process for treating metals by using dies - Google Patents

Process for treating metals by using dies Download PDF

Info

Publication number
EP0114592B1
EP0114592B1 EP83890233A EP83890233A EP0114592B1 EP 0114592 B1 EP0114592 B1 EP 0114592B1 EP 83890233 A EP83890233 A EP 83890233A EP 83890233 A EP83890233 A EP 83890233A EP 0114592 B1 EP0114592 B1 EP 0114592B1
Authority
EP
European Patent Office
Prior art keywords
tube
process according
jacket tube
alloy
compressed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP83890233A
Other languages
German (de)
French (fr)
Other versions
EP0114592A1 (en
Inventor
Manfred Gstettner
Bruno Dipl.-Ing. Hribernik
Alexander Kohnhauser
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Voest-Alpine Stahl AG Te Linz Ad
Original Assignee
Vereinigte Edelstahlwerke AG
Voestalpine Stahl GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=3567024&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0114592(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Vereinigte Edelstahlwerke AG, Voestalpine Stahl GmbH filed Critical Vereinigte Edelstahlwerke AG
Publication of EP0114592A1 publication Critical patent/EP0114592A1/en
Application granted granted Critical
Publication of EP0114592B1 publication Critical patent/EP0114592B1/en
Expired legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/1208Containers or coating used therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/06Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools
    • B22F7/062Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools involving the connection or repairing of preformed parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/06Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools
    • B22F7/08Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools with one or more parts not made from powder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41AFUNCTIONAL FEATURES OR DETAILS COMMON TO BOTH SMALLARMS AND ORDNANCE, e.g. CANNONS; MOUNTINGS FOR SMALLARMS OR ORDNANCE
    • F41A21/00Barrels; Gun tubes; Muzzle attachments; Barrel mounting means
    • F41A21/02Composite barrels, i.e. barrels having multiple layers, e.g. of different materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12014All metal or with adjacent metals having metal particles
    • Y10T428/12028Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, etc.]
    • Y10T428/12063Nonparticulate metal component
    • Y10T428/12097Nonparticulate component encloses particles

Definitions

  • the invention relates to a method for metal processing using matrices which have a shaping inner part and at least one shell part partially encasing this, made of different, metallic materials.
  • Matrices be they extrusion dies for pipes made of high-alloy steels, copper, plastic, drawing dies for wires, cold-forming dies for screws, dies for hot or cold forming of plastic masses are subject to a double load.
  • the shaping parts are subjected to a highly abrasive stress, which is directly attributable to the deformation of the material to be molded, and, on the other hand, a compressive stress occurs because the material to be molded offers resistance to deformation. This resistance causes pressure and tensile stress on the die.
  • matrices are also manufactured in several parts, with an inner part that is used for shaping being produced from a different material than a part surrounding this part, which is intended to absorb forces. Precondition that a tool divided in this way can bring the desired advantage is precise manufacture, since only then can the shaping part be prevented from breaking.
  • a method is described which is suitable for lining cavities, including pipes.
  • a gap is created in a casing tube, for example made of steel, by introducing a thin-walled metal part, into which metal powder is filled, the gap is then evacuated and then the body with the metal part and powder contained therein at approx. 1150 ° C. and 103 N / mm 2 is compressed. A final post-processing is possible.
  • No. 4,327,154 shows a method for producing tubular parts, a composite part being produced by applying a powder component to a tubular metal shell using hot isostatic pressing between 1000 ° and 1400 ° C. and pressures from 10 to 1000 bar.
  • the invention has for its object to provide a method for metal processing using dies, which allows a die to be used which is constructed from two different materials, and a combination of material pairs can be used.
  • the method according to the invention essentially consists in that the die is manufactured in such a way that a filling made of a powdery, highly wear-resistant or corrosion-resistant material and having a bulk density of at least 60% of the density of the compact material is inserted into a casing tube made of a tough alloy is inserted with a recess in a central hollow area of the casing tube, the hollow area being cut out by a filler made of free-cutting steel, then compressed and closed at the ends of the casing tube, whereupon the pipe is closed and evacuated at 900 ° C, but below the melting point of the metallic materials and a pressure of at least 900 bar is pressed, and that the composite body thus obtained, which has a full-surface mechanical bond between the casing tube and the compressed material, before its shaping further processing into a die of a hot deformation with an at least subjected to at least 1.3-fold deformation, processed to give shape.
  • a tube can also be used as a packing, in which case e.g. over a mandrel that can be forged.
  • a sleeve tube made of an alloy of the following composition in wt .-% C 0.36, Si 1.1, Cr 5.0, Mo 1.1, V 0.40 and remainder iron with an outer diameter of 120 mm and an inner diameter of 60 mm and a length of 1200 mm.
  • Degassing was carried out at 360 ° C., whereupon an upper cover with a suction opening was welded onto the capsule tube. Then it was evacuated and the suction opening was closed.
  • the encapsulated body was hot-isostatically pressed for 3 hours in an argon atmosphere at 1150 ° C. and at a pressure of 1020 bar.
  • This composite body was then forged on a long forging machine to an outer diameter of approximately 80 mm, which corresponds to approximately 2.5 times the deformation. After the forging, annealing was carried out, after which an extrusion die for the production of copper pipes was produced by mechanical processing, cutting to length, turning.
  • a hollow cylinder made of steel with the following composition C 0.03, Mo 5.0, Ni 18.5, Co 9 , 0, Ti 0.6 introduced with an outer diameter of 210 mm and an inner diameter of 120 mm and a length of 500 mm.
  • a cylindrical rod made of free-cutting steel with an outside diameter of 100 mm and a length of 500 mm was inserted in the center of the casing tube.
  • the hollow cylindrical space was filled with a powder of a cobalt-based alloy of the following composition in% by weight C 0.25, Cr 28.0, Mo 5.4, Ni 3.0, rest Co, a density of 6.8 g being obtained by shaking / cm 3 was reached.
  • Degassing was carried out at 360 ° C., whereupon an upper cover with suction openings was welded on. It was then evacuated and hot-isostatically pressed according to Example 2.
  • the composite body thus obtained was forged on a long forging machine with a fourfold deformation. Further processing was carried out after solution annealing as in Example 2 to give a hot-drawing die.
  • a 100 mm long sleeve tube of 70 mm outside diameter and a wall of 20 mm made of the material 25CrMo4 was made entirely of a spherical alloy powder of the composition in% by weight 0.9 C to produce a cold impact die for gate screws.
  • the hot isostatic pressing was carried out at 1050 ° C. and a gas pressure of 1100 bar for three hours.
  • the recess intended for the specified purpose and corresponding to the screw shape was produced by EDM machining.
  • the sleeve tube can also be welded directly to the lids, since in some cases no pressure can act on the powder in the radial direction due to the material thickness of the sleeve tube.
  • the core can also be formed by a hollow cylinder, in which case a mandrel can be used for forging.
  • a cladding tube can also be used which has an inner coating, e.g. Electrolytically deposited from nickel or the like., which can occur as an adhesion promoter between the material of the cladding tube and the powder.
  • an inner coating e.g. Electrolytically deposited from nickel or the like., which can occur as an adhesion promoter between the material of the cladding tube and the powder.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Forging (AREA)
  • Powder Metallurgy (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)
  • Preventing Corrosion Or Incrustation Of Metals (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Coating With Molten Metal (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Semiconductor Lasers (AREA)
  • Glass Compositions (AREA)

Abstract

The weapon barrel comprises a liner and at least one jacket tube. The liner is made of a highly wear-resistant material, like a cobalt or nickel base alloy, and the jacket tube is made of a tough alloy, like steel. In the manufacturing process the liner material is packed into the jacket tube in the form of a powdery material which may be pre-pressed or pre-sintered. The packing is arranged such as to leave a central free space in the jacket tube, and the jacket tube may be surrounded by an encapsulating tube. The jacket tube or the encapsulating tube is closed either before or after evacuation, and the closed tube arrangement is subjected to a combined heat and pressure treatment at temperatures of at least 900 DEG C., but below the melting point of the relevant materials and at pressures of at least 900 bar. The compound body thus obtained is formed with a full-area metallic bond between the liner and the jacket tube. After eventual heat treatment the compound body is further machined and a rifling is worked thereinto as, for example, by forging.

Description

Die Erfindung bezieht sich auf ein Verfahren zur Metallverarbeitung unter Verwendung von Matrizen, die einen formgebenden Innenteil und zumindest einen diesen teilweise umhüllenden Hüllenteil aus unterschiedlichen, metallischen Werkstoffen aufweisen.The invention relates to a method for metal processing using matrices which have a shaping inner part and at least one shell part partially encasing this, made of different, metallic materials.

Matrizen, seien es Strangpressmatrizen für Rohre aus hochlegierten Stählen, Kupfer, Kunststoff, Ziehmatrizen für Drähte, Kaltschlagmatrizen für Schrauben, Matrizen für die Warm- bzw. Kaltverformung von plastischen Massen, unterliegen einer zweifachen Beanspruchung. Einerseits werden die formgebenden Teile einer stark abrasiven Beanspruchung unterworfen, welche unmittelbar auf die Verformung des zu formenden Materials zurückzuführen ist, und andererseits tritt eine Druckbeanspruchung auf, da das zu formende Material einen Formänderungswiderstand entgegenbringt. Dieser Widerstand bewirkt eine Druck- und auch Zugbeanspruchung der Matrize. Matrizen werden deswegen auch mehrteilig hergestellt, wobei ein innerer Teil, der zur Formgebung Verwendung findet, aus einem anderen Material erzeugt wird, als ein diesen Teil umgebender Teil, welcher Kräfte aufnehmen soll. Voraussetzung, dass ein derartig geteiltes Werkzeug den erwünschten Vorteil erbringen kann, ist eine genaue Fertigung, da nur dann ein Bruch des formgebenden Teils verhindert werden kann.Matrices, be they extrusion dies for pipes made of high-alloy steels, copper, plastic, drawing dies for wires, cold-forming dies for screws, dies for hot or cold forming of plastic masses are subject to a double load. On the one hand, the shaping parts are subjected to a highly abrasive stress, which is directly attributable to the deformation of the material to be molded, and, on the other hand, a compressive stress occurs because the material to be molded offers resistance to deformation. This resistance causes pressure and tensile stress on the die. For this reason, matrices are also manufactured in several parts, with an inner part that is used for shaping being produced from a different material than a part surrounding this part, which is intended to absorb forces. Precondition that a tool divided in this way can bring the desired advantage is precise manufacture, since only then can the shaping part be prevented from breaking.

Nach DE-3114659 ist ein Verfahren beschrieben, das zum Auskleiden von Hohlräumen geeignet ist, worunter auch Rohre fallen. Dabei wird in einem Hüllenrohr, z.B. aus Stahl, ein Spalt durch Einbringen eines dünnwandigen Metallteiles erstellt, in den Metallpulver gefüllt wird, der Spalt sodann evakuiert und anschliessend der Körper mit dem darin enthaltenen Metallteil und Pulver bei ca. 1150°C und 103 N/mm2 verdichtet wird. Eine abschliessende Nachbearbeitung ist möglich.According to DE-3114659, a method is described which is suitable for lining cavities, including pipes. In this case, a gap is created in a casing tube, for example made of steel, by introducing a thin-walled metal part, into which metal powder is filled, the gap is then evacuated and then the body with the metal part and powder contained therein at approx. 1150 ° C. and 103 N / mm 2 is compressed. A final post-processing is possible.

Aus US-4 327 154 ist ein Verfahren zur Herstellung von rohrförmigen Teilen zu entnehmen, wobei ein Verbundteil durch Aufbringen einer Pulverkomponente auf eine rohrförmige Metallschale mit heissisostatischem Verpressen zwischen 1000° bis 1400°C und Drücken von 10 bis 1000 bar erzeugt wird.No. 4,327,154 shows a method for producing tubular parts, a composite part being produced by applying a powder component to a tubular metal shell using hot isostatic pressing between 1000 ° and 1400 ° C. and pressures from 10 to 1000 bar.

Ferner ist aus US-3 752 704 bekannt, durch isostatisches Pressen hergestellte Verbundrohre vor der mechanischen Weiterverarbeitung einer Warmverformung durch Heissextrudieren zu unterwerfen.Furthermore, it is known from US Pat. No. 3,752,704 to subject composite pipes produced by isostatic pressing to hot deformation by hot extrusion prior to further mechanical processing.

Die Erfindung hat sich die Aufgabe gestellt, ein Verfahren zur Metallverarbeitung unter Verwendung von Matrizen zu schaffen, welches es erlaubt, eine Matrize einzusetzen, die aus zwei unterschiedlichen Materialien aufgebaut ist, und wobei eine Kombination von Werkstoffpaarungen zum Einsatz kommen kann.The invention has for its object to provide a method for metal processing using dies, which allows a die to be used which is constructed from two different materials, and a combination of material pairs can be used.

Das erfindungsgemässe Verfahren besteht im wesentlichen darin, dass die Matrize in der Weise gefertigt wird, dass ein in ein Hüllenrohr aus einer zähfesten Legierung eine Füllung aus einem eine Schüttdichte von zumindest 60% der Dichte des kompakten Werkstoffes aufweisenden, pulverförmigen, hochverschleissfesten oder korrosionsbeständigen Werkstoff und unter Aussparung eines zentralen Hohlbereiches des Hüllenrohres eingebracht wird, wobei der Hohlbereich durch einen Füllkörper aus Automatenstahl ausgespart wird, sodann verdichtet und an den Hüllenrohrenden verschlossen wird, worauf evakuiert und das so verschlossene Rohr bei 900°C, jedoch unterhalb der Schmelzpunkte der metallischen Werkstoffe und einem Druck von zumindest 900 bar verpresst wird, und dass der so erhaltene Verbundkörper, welcher einen vollflächigen mechanischen Verbund zwischen Hüllenrohr und verdichtetem Werkstoff aufweist, vor seiner formgebenden Weiterverarbeitung zu einer Matrize einer Warmverformung mit einer zumindest 1,3-fachen Verformung unterworfen, formgebend bearbeitet wird.The method according to the invention essentially consists in that the die is manufactured in such a way that a filling made of a powdery, highly wear-resistant or corrosion-resistant material and having a bulk density of at least 60% of the density of the compact material is inserted into a casing tube made of a tough alloy is inserted with a recess in a central hollow area of the casing tube, the hollow area being cut out by a filler made of free-cutting steel, then compressed and closed at the ends of the casing tube, whereupon the pipe is closed and evacuated at 900 ° C, but below the melting point of the metallic materials and a pressure of at least 900 bar is pressed, and that the composite body thus obtained, which has a full-surface mechanical bond between the casing tube and the compressed material, before its shaping further processing into a die of a hot deformation with an at least subjected to at least 1.3-fold deformation, processed to give shape.

Als Füllkörper kann auch ein Rohr Verwendung finden, wobei dann, z.B. über einen Dorn, geschmiedet werden kann.A tube can also be used as a packing, in which case e.g. over a mandrel that can be forged.

Anhand einiger Beispiele sei die Erfindung näher erläutert.The invention is explained in more detail with the aid of a few examples.

Beispiel 1:Example 1:

In ein Kapselrohr mit einem Bodenblech aus unlegiertem Baustahl mit einem Aussendurchmesser von 125 mm, einem Innendurchmesser von 123 mm und einer Länge von 1200 mm wurde ein Hüllenrohr aus einer Legierung folgender Zusammensetzung in Gew.-% C 0,36, Si 1,1, Cr 5,0, Mo 1,1, V 0,40 und Rest Eisen mit einem Aussendurchmesser von 120 mm und einem Innendurchmesser von 60 mm und einer Länge von 1200 mm eingebracht. In dieses Rohr wurde ein Pulver einer Kobaltbasislegierung folgender Zusammensetzung in Gew.-% C 1,17, Si 1,1, Cr 28,0, W 4,0, Fe max. 0,5 und Rest Co gefüllt, wobei durch Rütteln eine Dichte von 6,6 g/cm3 erreicht wurde. Bei 360 °C wurde entgast, worauf ein oberer Deckel mit Absaugöffnung an das Kapselrohr angeschweisst wurde. Sodann wurde evakuiert und die Absaugöffnung verschlossen. Der eingekapselte Körper wurde in einer Argonatmosphäre bei 1150 °C und bei einem Druck von 1020 bar 3 Stunden lang heiss-isostatisch verpresst. Dieser Verbundkörper wurde sodann auf einer Langschmiedemaschine auf einen Aussendurchmesser von ca. 80 mm geschmiedet, was einer ca. 2,5fachen Verformung entspricht. Nach dem Schmieden wurde geglüht, worauf durch mechanische Bearbeitung, Ablängen, Drehen, eine Strangpressmatrize für die Herstellung von Cu-Rohren gefertigt wurde.In a capsule tube with a base plate made of unalloyed structural steel with an outer diameter of 125 mm, an inner diameter of 123 mm and a length of 1200 mm, a sleeve tube made of an alloy of the following composition in wt .-% C 0.36, Si 1.1, Cr 5.0, Mo 1.1, V 0.40 and remainder iron with an outer diameter of 120 mm and an inner diameter of 60 mm and a length of 1200 mm. A powder of a cobalt-based alloy with the following composition in% by weight of C 1.17, Si 1.1, Cr 28.0, W 4.0, Fe max. 0.5 and the rest Co filled, whereby a density of 6.6 g / cm 3 was achieved by shaking. Degassing was carried out at 360 ° C., whereupon an upper cover with a suction opening was welded onto the capsule tube. Then it was evacuated and the suction opening was closed. The encapsulated body was hot-isostatically pressed for 3 hours in an argon atmosphere at 1150 ° C. and at a pressure of 1020 bar. This composite body was then forged on a long forging machine to an outer diameter of approximately 80 mm, which corresponds to approximately 2.5 times the deformation. After the forging, annealing was carried out, after which an extrusion die for the production of copper pipes was produced by mechanical processing, cutting to length, turning.

Beispiel 2:Example 2:

Ähnlich wie im Beispiel 1 wurde eine Pressmatrize zur Herstellung von Schleifkörperscheiben aus einem Hüllenrohr (Werkstoff St 37) von 150 mm Aussendurchmesser und 100 mm Innendurchmesser nach Füllung mit einem Pulver folgender Zusammensetzung in Gew.-% 2,2 C, 0,28 Si, 0,37 Mn, 12,6 Cr, 0,98 Mo, 4,1 V, Rest im wesentlichen Fe gefüllt, wobei jedoch vor dem Füllen ein Innenrohr aus Baustahl mit 60 mm Aussendurchmesser und 4 mm Wandstärke zentrisch eingesetzt worden war. Zur Ausbildung eines gasdichten Verschlusses nach dem Verdichten des Pulvermetallurgie-Werkstoffes wurden an Stelle von dem Aussendurchmesser des Hüllenrohres etwa entsprechenden runden Blechscheiben bis zum Innenrohr reichende Blechringscheiben an den Rohrenden aufgeschweisst und das isostatische Heisspressen sowie die Weiterbearbeitung analog wie in Beispiel 1 durchgeführt.Similar to Example 1, a press die for the production of grinding wheel discs from a casing tube (material St 37) of 150 mm outside diameter and 100 mm inside diameter after filling with a powder of the following composition in wt.% 2.2 C, 0.28 Si, 0.37 Mn, 12.6 Cr, 0.98 Mo, 4.1 V, rest essentially Fe filled, but before filling a Inner tube made of structural steel with an outer diameter of 60 mm and a wall thickness of 4 mm was used centrally. In order to form a gas-tight seal after compressing the powder metallurgy material, instead of the corresponding round sheet metal washers from the outer diameter of the cladding tube to the inner tube, sheet metal washers were welded to the tube ends and the isostatic hot pressing and further processing were carried out analogously as in Example 1.

Beispiel 3:Example 3:

In ein Kapselrohr mit einem Bodenblech aus unlegiertem Baustahl mit einem Aussendurchmesser 215 mm, einem Innendurchmesser von 212 mm und einer Länge von 500 mm wurde ein Hohlzylinder aus Stahl folgender Zusammensetzung C 0,03, Mo 5,0, Ni 18,5, Co 9,0, Ti 0,6 mit einem Aussendurchmesser von 210 mm und einem Innendurchmesser von 120 mm und einer Länge von 500 mm eingebracht. Im Zentrum des Hüllenrohres wurde ein zylindrischer Stab aus Automatenstahl mit einem Aussendurchmesser von 100 mm und einer Länge von 500 mm eingebracht. Der hohlzylinderförmige Zwischenraum wurde mit einem Pulver einer Kobaltbasislegierung folgender Zusammensetzung in Gew.-% C 0,25, Cr 28,0, Mo 5,4, Ni 3,0, Rest Co gefüllt, wobei durch Rütteln eine Dichte von 6,8 g/cm3 erreicht wurde. Bei 360 °C wurde entgast, worauf ein oberer Deckel mit Absaugöffnungen angeschweisst wurde. Sodann wurde evakuiert und gemäss Beispiel 2 heiss-isostatisch verpresst. Der so erhaltene Verbundkörper wurde auf einer Langschmiedemaschine mit einer vierfachen Verformung geschmiedet. Die Weiterverarbeitung erfolgte nach einem Lösungsglühen analog Beispiel 2 zu einer Warmziehmatrize.In a capsule tube with a base plate made of unalloyed structural steel with an outer diameter of 215 mm, an inner diameter of 212 mm and a length of 500 mm, a hollow cylinder made of steel with the following composition C 0.03, Mo 5.0, Ni 18.5, Co 9 , 0, Ti 0.6 introduced with an outer diameter of 210 mm and an inner diameter of 120 mm and a length of 500 mm. A cylindrical rod made of free-cutting steel with an outside diameter of 100 mm and a length of 500 mm was inserted in the center of the casing tube. The hollow cylindrical space was filled with a powder of a cobalt-based alloy of the following composition in% by weight C 0.25, Cr 28.0, Mo 5.4, Ni 3.0, rest Co, a density of 6.8 g being obtained by shaking / cm 3 was reached. Degassing was carried out at 360 ° C., whereupon an upper cover with suction openings was welded on. It was then evacuated and hot-isostatically pressed according to Example 2. The composite body thus obtained was forged on a long forging machine with a fourfold deformation. Further processing was carried out after solution annealing as in Example 2 to give a hot-drawing die.

Beispiel 4:Example 4:

Ähnlich wie im Beispiel 1 wurde zur Herstellung einer Kaltschlagmatrize für Torbandschrauben ein 100 mm langes Hüllenrohr von 70 mm Aussendurchmesser und einer Wandung von 20 mm aus dem Werkstoff 25CrMo4 zur Gänze mit einem sphärisch ausgebildeten Legierungspulver der Zusammensetzung in Gew.-% 0,9 C, 0,6 Si, 0,55 Mn, 5,0 Cr, 6,5 Mo, 5,1 Co, 2,7 W, 2,5 V, Rest im wesentlichen Fe gefüllt, dieses durch Evakuieren verdichtet und das Hüllenrohr beiderseits gasdicht mittels aufgeschweisster Blechscheiben verschlossen. Das heiss-isostatische Pressen wurde bei 1050 °C und einem Gasdruck von 1100 bar drei Stunden lang vorgenommen. Im zentralen Bereich des Kernwerkstoffes wurde die für den angegebenen Verwendungszweck vorgesehene, der Schraubenform entsprechende Ausnehmung durch funkenerosive Bearbeitung hergestellt.Similar to Example 1, a 100 mm long sleeve tube of 70 mm outside diameter and a wall of 20 mm made of the material 25CrMo4 was made entirely of a spherical alloy powder of the composition in% by weight 0.9 C to produce a cold impact die for gate screws. 0.6 Si, 0.55 Mn, 5.0 Cr, 6.5 Mo, 5.1 Co, 2.7 W, 2.5 V, rest essentially filled with Fe, this compressed by evacuation and the casing tube gas-tight on both sides closed by means of welded sheet metal washers. The hot isostatic pressing was carried out at 1050 ° C. and a gas pressure of 1100 bar for three hours. In the central area of the core material, the recess intended for the specified purpose and corresponding to the screw shape was produced by EDM machining.

An Stelle des Kapselrohres kann auch das Hüllenrohr direkt mit den Deckeln verschweisst werden, da teilweise keine Druckeinwirkung auf das Pulver in radialer Richtung auf Grund der Materialstärke des Hüllenrohres eintreten kann. Der Kern kann auch durch einen Hohlzylinder gebildet sein, wobei in diesem Falle über einen Dorn geschmiedet werden kann.Instead of the capsule tube, the sleeve tube can also be welded directly to the lids, since in some cases no pressure can act on the powder in the radial direction due to the material thickness of the sleeve tube. The core can also be formed by a hollow cylinder, in which case a mandrel can be used for forging.

Es kann auch ein Hüllenrohr verwendet werden, das eine Innenbeschichtung, z.B. elektrolytisch abgeschieden aus Nickel od.dgl., aufweist, die als Haftvermittler zwischen dem Material des Hüllenrohres und dem Pulver auftreten kann.A cladding tube can also be used which has an inner coating, e.g. Electrolytically deposited from nickel or the like., Which can occur as an adhesion promoter between the material of the cladding tube and the powder.

Bei allen angeführten Beispielen war ein vollflächiger Verbund zwischen dem Hüllenrohr und dem Innenteil eingetreten, wobei beispielsweise bei der Kobalthartlegierung gemäss Beispiel 1 folgende Eingenschaftsverbesserungen durch das heiss-isostatische Verpressen bzw. durch heissisostatisches Verpressen und Schmieden erreicht werden können.

Figure imgb0001
In all of the examples cited, a full-area bond had occurred between the casing tube and the inner part, the following property improvements, for example in the case of the cobalt hard alloy according to Example 1, being able to be achieved by hot-isostatic pressing or by hot-isostatic pressing and forging.
Figure imgb0001

Claims (8)

1. A process for treating metal using dies having an inner moulding portion and at least one casing surrounding the latter made of different metal materials, characterised in that the die is manufactured in such a way that a filling, made of a powdered highly-abrasion-resistant and/or corrosion- proof material having a bulk density of at least 60% of the density of the compact material, is inserted in an encasing tube made of a tough alloy, a hollow region being made in the central region of the encasing tube, the hollow region being hollowed out by a filling body of machining steel, and then compressed and sealed at the encasing tube ends, then evacuated and the thus sealed tube being compressed at a temperature of 900°C, but below the melting point of the metal materials and at a pressure of at least 900 bar, and in that the compound body thus obtained, having a holohedral connection between the encasing tube and the compressed material, before its further shaping into a die is subjected to a hot-forming process with at least a 1.3-fold deformation, and then machined into shape.
2. A process according to claim 1, characterised in that a tube is used as a filling body.
3. A process according to claim 1 and 2, characterised in that an iron-based alloy which is difficult to deform, in particular a ledeburitic chromium steel, is used to fill the encasing tube.
4. A process according to one of claims 1 to 3, characterised in that a cobalt-based alloy is used as a highly-abrasion-resistant alloy.
5. A process according to one of claims 1 to 4, characterised in that a nickel-based alloy is used as a highly-abrasion-resistant alloy.
6. A process according to one of claims 1 to 5, characterised in that the encasing tube has an inner lining made of an adhesion agent, eg nickel.
7. A process according to one of claims 1 to 6, characterised in that the powdered material is pre-compressed and/or pre-sintered.
8. A process according to one of claims 1 to 7, characterised in that the encasing tube is disposed in a covering tube.
EP83890233A 1982-12-23 1983-12-22 Process for treating metals by using dies Expired EP0114592B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
AT4679/82 1982-12-23
AT467982 1982-12-23

Publications (2)

Publication Number Publication Date
EP0114592A1 EP0114592A1 (en) 1984-08-01
EP0114592B1 true EP0114592B1 (en) 1988-03-30

Family

ID=3567024

Family Applications (3)

Application Number Title Priority Date Filing Date
EP83890233A Expired EP0114592B1 (en) 1982-12-23 1983-12-22 Process for treating metals by using dies
EP83890234A Withdrawn EP0114593A1 (en) 1982-12-23 1983-12-22 Process for the production of a hollow cylinder for synthetics processing machines
EP83890232A Expired EP0114591B1 (en) 1982-12-23 1983-12-22 Process for the production of arm barrels

Family Applications After (2)

Application Number Title Priority Date Filing Date
EP83890234A Withdrawn EP0114593A1 (en) 1982-12-23 1983-12-22 Process for the production of a hollow cylinder for synthetics processing machines
EP83890232A Expired EP0114591B1 (en) 1982-12-23 1983-12-22 Process for the production of arm barrels

Country Status (6)

Country Link
US (1) US4747225A (en)
EP (3) EP0114592B1 (en)
AT (2) ATE33218T1 (en)
DE (2) DE3376100D1 (en)
ES (2) ES8501657A1 (en)
GR (2) GR79748B (en)

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT385227B (en) * 1984-01-24 1988-03-10 Ver Edelstahlwerke Ag METHOD FOR THE PRODUCTION OF FORCE TRANSFERRING, IN PARTICULAR TORQUE TRANSFERRING ELEMENTS
US4640814A (en) * 1985-10-17 1987-02-03 Crucible Materials Corporation Method for producing clad tubular product
EP0283877B1 (en) * 1987-03-25 1993-06-23 Nippon Steel Corporation Method of producing clad metal tubes.
AT391105B (en) * 1988-10-07 1990-08-27 Boehler Gmbh PRE-MATERIAL FOR THE PRODUCTION OF COMPOSITES
DE4136038C2 (en) * 1990-11-02 1994-06-16 Usui Kokusai Sangyo Kk Welded steel tube with high corrosion resistance of the inner surface and process for its production
US5290507A (en) * 1991-02-19 1994-03-01 Runkle Joseph C Method for making tool steel with high thermal fatigue resistance
US5341719A (en) * 1992-12-14 1994-08-30 General Electric Company Multi-layer composite gun barrel
US5357842A (en) * 1993-07-09 1994-10-25 Reynolds Charles E Recoil reducing device
US5724643A (en) * 1995-06-07 1998-03-03 Allison Engine Company, Inc. Lightweight high stiffness shaft and manufacturing method thereof
US6218026B1 (en) 1995-06-07 2001-04-17 Allison Engine Company Lightweight high stiffness member and manufacturing method thereof
US5856631A (en) * 1995-11-20 1999-01-05 Nitinol Technologies, Inc. Gun barrel
DE19834394A1 (en) * 1998-07-30 2000-02-03 Rheinmetall W & M Gmbh Gun barrel with a wear-reducing hard chrome layer
SE516130C2 (en) * 1999-03-15 2001-11-19 Damasteel Ab Substance for metal product, process for making metal product and metal product
DE19926246A1 (en) * 1999-06-09 2000-12-14 Rheinmetall W & M Gmbh Process for coating the inside of a gun barrel
US6594936B1 (en) * 2002-10-03 2003-07-22 Gary Sniezak Method for lining a gun barrel
US20040226211A1 (en) * 2003-05-16 2004-11-18 Ra Brands. L.L.C. Composite receiver for firearms
US20040244254A1 (en) * 2003-06-09 2004-12-09 Barfield Christopher A.. Firearm safety device
US7922065B2 (en) 2004-08-02 2011-04-12 Ati Properties, Inc. Corrosion resistant fluid conducting parts, methods of making corrosion resistant fluid conducting parts and equipment and parts replacement methods utilizing corrosion resistant fluid conducting parts
US7963202B1 (en) * 2005-09-21 2011-06-21 The United States Of America As Represented By The Secretary Of The Army Superalloy mortar tube
US7921590B2 (en) 2006-02-23 2011-04-12 Strum, Ruger & Company, Inc. Composite firearm barrel reinforcement
US20100236122A1 (en) * 2006-07-26 2010-09-23 Fonte Matthew V Flowforming Gun Barrels and Similar Tubular Devices
EP2046524A4 (en) * 2006-08-01 2016-05-25 Afl Telecommunications Llc Embedded metallic tubes with compression fit and method for manufacturing the same
US8910409B1 (en) 2010-02-09 2014-12-16 Ati Properties, Inc. System and method of producing autofrettage in tubular components using a flowforming process
US8869443B2 (en) 2011-03-02 2014-10-28 Ati Properties, Inc. Composite gun barrel with outer sleeve made from shape memory alloy to dampen firing vibrations
US10118259B1 (en) 2012-12-11 2018-11-06 Ati Properties Llc Corrosion resistant bimetallic tube manufactured by a two-step process
US9279633B2 (en) 2014-01-21 2016-03-08 Richard R. Hayes Multi-caliber weapon
US9796057B2 (en) * 2015-01-15 2017-10-24 Saeilo Enterprises, Inc. Gun barrel assembly

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US930927A (en) * 1906-03-19 1909-08-10 Robert H Berkstresser Gun-barrel and process of producing the same.
US2372202A (en) * 1940-05-08 1945-03-27 Mallory & Co Inc P R Bearing
US2636849A (en) * 1946-12-13 1953-04-28 Us Sec War Method of electroforming gun barrels and liners
US2977666A (en) * 1954-12-29 1961-04-04 Porter H Brace Method of making gun liner elements
US3112553A (en) * 1960-06-08 1963-12-03 William H Safranek Electroforming of gun liners
US3261121A (en) * 1961-10-13 1966-07-19 Joseph R Eves Gun barrel with explosively welded liner
US3753704A (en) * 1967-04-14 1973-08-21 Int Nickel Co Production of clad metal articles
JPS50106844A (en) * 1974-01-31 1975-08-22
DE2514565C3 (en) * 1975-04-03 1979-09-20 Uralskij Nautschno-Issledovatelskij Institut Trubnoj Promyschlennosti, Tscheljabinsk (Sowjetunion) Process for the production of a composite pipe
US4016008A (en) * 1975-07-31 1977-04-05 The International Nickel Company, Inc. Clad metal tubes
DE2737248C2 (en) * 1977-08-18 1985-09-19 MTU Motoren- und Turbinen-Union München GmbH, 8000 München High strength component with a complex geometric shape and process for its manufacture
US4135286A (en) * 1977-12-22 1979-01-23 United Technologies Corporation Sputtering target fabrication method
GB2073783B (en) * 1980-04-10 1984-10-10 Cameron Iron Works Inc Lining valves by hot isotatic pressing
US4426248A (en) * 1983-05-20 1984-01-17 The United States Of America As Represented By The Secretary Of The Army Process for coating rifle tubes

Also Published As

Publication number Publication date
ATE33219T1 (en) 1988-04-15
ES528315A0 (en) 1984-12-01
GR79748B (en) 1984-10-31
GR81355B (en) 1984-12-11
DE3376101D1 (en) 1988-05-05
US4747225A (en) 1988-05-31
ES8501658A1 (en) 1984-12-01
EP0114593A1 (en) 1984-08-01
ES8501657A1 (en) 1984-12-01
EP0114591B1 (en) 1988-03-30
ES528317A0 (en) 1984-12-01
EP0114591A1 (en) 1984-08-01
EP0114592A1 (en) 1984-08-01
ATE33218T1 (en) 1988-04-15
DE3376100D1 (en) 1988-05-05

Similar Documents

Publication Publication Date Title
EP0114592B1 (en) Process for treating metals by using dies
DE2419014C3 (en) Method of manufacturing stainless steel pipes and application of the method to the manufacture of composite pipes
US5069869A (en) Process for direct shaping and optimization of the mechanical characteristics of penetrating projectiles of high-density tungsten alloy
DE2310536A1 (en) PROCESS FOR MANUFACTURING COMPOSITE METAL OBJECTS
DE2542094A1 (en) METAL POWDER, METAL POWDER TREATMENT METHOD, AND METAL POWDER MANUFACTURING METHOD
CH677530A5 (en)
EP0426101B1 (en) Cylinder component for twin screw extruder and method of manufacture
EP0035601B1 (en) Process for making a memory alloy
EP0383103B1 (en) Process for the production of a high-strength and tough metal composite material
EP0165520A2 (en) Tool die blank and manufacturing method thereof
DE4232432A1 (en) Powder metallurgy connecting rod - has at least powder metallurgy big-end bearing forming part of compound connecting rod structure
EP0045985B1 (en) Method of manufacturing a copper-based memory alloy
EP3335820A2 (en) Composite body and method for its production
DE10048870C2 (en) Housing for plastic, metal powder, ceramic powder or food processing machines and method for producing such a housing
DE2539684C1 (en) Splinter shell for projectiles, warheads, ammunition and the like.
DE2711810A1 (en) ROLLER STRUCTURE
EP0356718A2 (en) Method for shaping by extrusion and modifying the mechanical properties of semi-finished products made from metallic-powder alloys having an increased heat resistance
AT401628B (en) METHOD FOR THE PRODUCTION OF CONTINUOUS CHILLERS FOR CONTINUOUS CASTING MACHINES
EP0151103B1 (en) Manufacturing method for elements of force, especially torque transmission
US4606884A (en) Composite billet for hot transformation
DE2556061A1 (en) Thin walled precision tube - made of metal powder by hot isostatic press forming inside autoclave in sheet metal mould
EP0814172B1 (en) Powder metallurgy hot-work tool steel, and process for its manufacture
DE2438315C3 (en) Process for the powder metallurgical production of precision parts
DE3018345A1 (en) METHOD FOR PRODUCING A THREAD-ROLLED SINTERED CYLINDRICAL METAL PRODUCT
DE2462747C2 (en) Extruded billets for the powder metallurgical production of stainless steel pipes

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

17P Request for examination filed

Effective date: 19850125

17Q First examination report despatched

Effective date: 19860404

R17C First examination report despatched (corrected)

Effective date: 19860821

ITF It: translation for a ep patent filed

Owner name: DE DOMINICIS & MAYER S.R.L.

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

REF Corresponds to:

Ref document number: 33219

Country of ref document: AT

Date of ref document: 19880415

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3376101

Country of ref document: DE

Date of ref document: 19880505

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
ET Fr: translation filed
BECN Be: change of holder's name

Effective date: 19880330

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

26 Opposition filed

Opponent name: SEILSTORFER GMBH & CO. METALLURGISCHE VERFAHRENST

Effective date: 19881229

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: VOEST-ALPINE STAHL AKTIENGESELLSCHAFT

NLR1 Nl: opposition has been filed with the epo

Opponent name: SEILSTORFER GMBH & CO. METALLURGISCHE VERFAHRENSTE

NLT2 Nl: modifications (of names), taken from the european patent patent bulletin

Owner name: VOEST-ALPINE STAHL AKTIENGESELLSCHAFT TE LINZ A.D.

REG Reference to a national code

Ref country code: CH

Ref legal event code: PFA

Free format text: VOEST-ALPINE STAHL AKTIENGESELLSCHAFT

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19911107

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19911108

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19911111

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19911113

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19911118

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 19911125

Year of fee payment: 9

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19911212

Year of fee payment: 9

Ref country code: BE

Payment date: 19911212

Year of fee payment: 9

ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19911231

Year of fee payment: 9

EPTA Lu: last paid annual fee
RDAG Patent revoked

Free format text: ORIGINAL CODE: 0009271

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT REVOKED

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

27W Patent revoked

Effective date: 19921015

GBPR Gb: patent revoked under art. 102 of the ep convention designating the uk as contracting state

Free format text: 921015

NLR2 Nl: decision of opposition
BERE Be: lapsed

Owner name: VOEST-ALPINE STAHL A.G.

Effective date: 19921231

EUG Se: european patent has lapsed

Ref document number: 83890233.6

Effective date: 19930317

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO