EP0114016A1 - Taillant pour foration rotative assistée par jet - Google Patents

Taillant pour foration rotative assistée par jet Download PDF

Info

Publication number
EP0114016A1
EP0114016A1 EP83402511A EP83402511A EP0114016A1 EP 0114016 A1 EP0114016 A1 EP 0114016A1 EP 83402511 A EP83402511 A EP 83402511A EP 83402511 A EP83402511 A EP 83402511A EP 0114016 A1 EP0114016 A1 EP 0114016A1
Authority
EP
European Patent Office
Prior art keywords
plates
cutter according
drilling
cutter
channels
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
EP83402511A
Other languages
German (de)
English (en)
Inventor
Serge Ippolito
Georges Augustin Cagnioncle
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
COCENTALL-ATELIERS DE CARSPACH
Charbonnages de France CDF
Original Assignee
COCENTALL-ATELIERS DE CARSPACH
Charbonnages de France CDF
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by COCENTALL-ATELIERS DE CARSPACH, Charbonnages de France CDF filed Critical COCENTALL-ATELIERS DE CARSPACH
Publication of EP0114016A1 publication Critical patent/EP0114016A1/fr
Ceased legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B10/00Drill bits
    • E21B10/46Drill bits characterised by wear resisting parts, e.g. diamond inserts
    • E21B10/58Chisel-type inserts
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B10/00Drill bits
    • E21B10/02Core bits
    • E21B10/04Core bits with core destroying means
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B10/00Drill bits
    • E21B10/46Drill bits characterised by wear resisting parts, e.g. diamond inserts
    • E21B10/54Drill bits characterised by wear resisting parts, e.g. diamond inserts the bit being of the rotary drag type, e.g. fork-type bits
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B10/00Drill bits
    • E21B10/60Drill bits characterised by conduits or nozzles for drilling fluids
    • E21B10/602Drill bits characterised by conduits or nozzles for drilling fluids the bit being a rotary drag type bit with blades

Definitions

  • the present invention relates to cutters for rotary jet-assisted drilling and aims more particularly at optimizing their geometry.
  • a cutter is a mine tool which is mounted at the end of a drilling rod driven in rotation and which is intended, thanks to sharp edges formed on its leading edge, to bite and to penetrate a rock, parallel to its axis of rotation.
  • These sharp edges are generally constituted by plates of high hardness, tungsten carbide most often, reported by brazing; sometimes it is specified that it is a cutter with reported stakes.
  • Such cutters are used in practice in the drilling of relatively soft and not very abrasive rocks.
  • roto-percussive drilling with striking effect, but this has proved to have serious drawbacks insofar as, apart from that it leads to very high installation costs, it causes the appearance of noises, vibrations and very strong oil vapors which are detrimental to compliance with ergonomic and even safety rules.
  • This process consists in driving a cutter in simple rotation, without striking effect, by injecting, near its sharp cutting edges, a fluid at very high pressure which fractures the rock and therefore facilitates the felling of it by the cutting.
  • the present invention thus relates to a new cutting geometry leading to higher performance than that of cutting edges currently known for a lower manufacturing cost.
  • a cutter for rotary jet-assisted drilling intended to be mounted at the end of a rotary drive rod, of the type comprising, opposite said rod, a plurality of drilling plates having radial and axial projecting edges angularly separated by debris discharge ramps, pressurized fluid supply channels opening near said plates, characterized in that the plates have a small radial dimension and are arranged around a spark gap central through a discontinuous peripheral ring axially extending said cutter, which ring is crossed by said fluid supply channels.
  • a cutting edge according to the invention turns out to lead to the use of smaller plates adapted to exert, by their edges projecting axially, for the same axial thrust, much higher penetration stresses than in the prior art where the axial thrust was distributed over much longer radial edges.
  • a cutter according to the invention therefore allows the drilling of much harder rocks than in the prior art, which can reach pressures of 600-800 bars and more.
  • a central spark gap which can for example be a cone, preferably in precession, or a jet of pressurized fluid, any risk of tailgating of the cutting edge against a central zone of rock not felled by the pads can be spread.
  • the discharge ramps are rectilinear. This results in a significant lowering of the manufacturing costs of the cutters insofar as the invention proposes a cutter which, before the brazing of the wafers, can be shaped to using simple and inexpensive machining operations such as turning or milling.
  • a cutter 1 according to the invention which advantageously has an axial symmetry, comprises, in known manner, at one of its ends a fixing skirt 11 internally threaded for receiving the end of a drill rod, not shown, intended to rotate the cutting bit 1 during drilling operations.
  • the cutting edge 1 flares from the skirt 11 in a connecting section 12, and ends with a leading end 13 forming the cutting edge body.
  • the fixing skirt 11 and the body 13 are cylindrical, while the connection section is frustoconical.
  • the cutting body 13 carries a plurality of plates 20, two per cutting in the examples shown, angularly distributed in an advantageously regular manner so as to distribute the forces well within the cutting edge.
  • These plates have leading edges 21 and 22 projecting axially and radially.
  • the plates have a small radial dimension, of the order of half the radius of the body 13 in the example shown. They are arranged around a central spark gap 40, through a discontinuous peripheral ring 50 extending the cutting edge axially 1.
  • the channels 60 open out in front of the edges 21, through the plates 20, or behind them.
  • the invention recommends that the channels 60 preferably be provided outside of the wafers 20.
  • the diameter of the channels 60 is clearly overestimated in the figures, 2 and 4 compared to reality.
  • these channels are designed to provide, near the wafers, an injection of fluid under high pressure which can range up to 1000 bars and more, greater than the pressures currently used.
  • the calibration of the jets thus injected, or even their orientation, is preferably ensured by injection nozzles 61 shown only in FIGS. 2 and 4.
  • FIGS 1 and 2 illustrate a cutter according to the invention in which the fluid injection channels 60 open behind the associated plates 20.
  • These plates 20 have a radial thickness close to that of the crown 50. Their section is trapezoidal so that their external lateral face 23 is radially set back relative to the edge 22 and does not come into contact with the rock, or the material to be drilled. Likewise, the external front face 24 of each insert is inclined relative to the axis of rotation A of the cutting edge. Preferably, the transverse surface 51 of the crown 50 behind the plates is also inclined towards the rear, so as to keep the mouth of the channels 60 axially recessed with respect to the drilling front of the rock. In this way only the edges of the plates participate in the drilling.
  • the discontinuous crown 50 after the transverse zone 51 where at least one pressure fluid inlet channel opens, moves away from the rock to be drilled and is thus connected to an evacuation ramp 30.
  • such a ramp 30 is advantageously delimited by rectilinear surfaces 31, 32, 33, which can easily be obtained by milling.
  • the discharge ramps 30 continue up to the height of the fixing skirt so that the debris can then be discharged between the wall of the drilled hole and the skirt 11, then the drive rod in rotation.
  • each discharge ramp preferably terminates at the base of the following plate so as to facilitate the evacuation of rock debris along the front face of said plate from the edge 21.
  • the crown 50 surrounds a central spark gap 40 constituted by a cone 40a pointing towards the rock to be drilled.
  • this cone is preferably attached.
  • its axis is advantageously inclined relative to the axis A of rotation so as to undergo a slight precessional movement in rotation, which increases its efficiency.
  • FIGS. 3 and 4 illustrate a cutter according to the invention in which the injection channels 60 open out in front of the plates 20; these plates have a shape very close to that of the plates of FIGS. 1 and 2. Taking into account that the fluid jets are all the more effective for fracturing the rock that they are coherent, these jets preferably emerge near the rock to be drilled.
  • the body 13 of the cutter comprises consequently a shoulder 14 rising axially towards the rock in front of each plate; the plates are thus attached in notches formed axially in the body 13.
  • the front surface 15 of the shoulders 14 into which the channels 60 open is advantageously inclined towards the axis so as to evacuate the debris well towards the ramps. This evacuation is further facilitated by a surface 16 of connection between the front surface 15 and the straight surface 31 'of said ramp 30 which, as in the previous example, is preferably delimited by surfaces 31', 32 ', 33 'straight.
  • the central spark gap 40 is constituted by a pipe 40b for supplying pressurized fluid intended to burst a portion of rock not felled by the plates although already weakened and fractured.
  • This channel 40b is preferably supplied by the same pressure source as the channels 60, so as to simplify the structure of the rotary drive rod to be implemented.
  • the plates 20 are arranged radially through the crowns 50, so that the edges 21 are not themselves radial, and that the plates thus present a drilling wedge 25 relayed during drilling by the edges 21 then 22.
  • the drilling capacities of a wafer are thus optimized.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Earth Drilling (AREA)
  • Processing Of Stones Or Stones Resemblance Materials (AREA)

Abstract

L'invention concerne la géométrie des taillants pour foration rotative assistée par jet. L'invention préconise un taillant comportant des plaquettes (20) de faible dimension radiale, disposés autour d'un éclateur central (40a) au travers d'une couronne périphérique discontinue (50) prolongeant axialement ledit taillant, des canaux (60) d'amenée de fluide sous pression débouchant de la couronne à proximité des plaquettes. Celles-ci sont de préférence séparées par des rampes d'évacuation (30) rectilignes. Un taillant selon l'invention peut s'obtenir par exemple par tournage et fraisage. Application: foration de roches dans les mines, ou autres matériaux durs.

Description

  • La présente invention concerne les taillants pour foration rotative assistée par jet et vise plus particulièrement l'optimisation de leur géométrie.
  • Ainsi qu'on le sait un taillant est un outil de mine que l'on monte au bout d'une tige de foration entraînée en rotation et qui est destiné, grâce à des arêtes vives ménagées sur son front d'attaque, à mordre et à pénétrer dans une roche, parallèlement à son axe de rotation. Ces arêtes vives sont généralement constituées par des plaquettes de dureté élevée, en carbure de tungstène le plus souvent, rapportées par brasage ; on précise parfois alors qu'il s'agit d'un taillant à mises rapportées.
  • De tels taillants sont utilisés en pratique dans la foration de roches relativement tendres et peu abrasives. Pour des roches plus dures et/ou plus abrasives, il a bien été proposé de recourir à la foration roto-percutante,avec effet de frappe, mais celle-ci s'est révélée présenter de graves inconvénients dans la mesure où, outre qu'elle conduit à des coûts d'installation très élevés, elle provoque l'apparition de bruits, de vibrations et de vapeurs d'huile fort préjudiciables au respect des règles d'ergonomie, voire même de sécurité.
  • Une autre solution a cependant été proposée récemment pour la foration des roches semi-dures (pression supérieure ou égale à 800 bars environ), dures et abrasives, qui semble promise à un grand avenir : la foration rotative assistée par jet.
  • Ce procédé consiste à entraîner un taillant en simple rotation, sans effet de frappe, en injectant, à proximité de ses arêtes vives de taille, un fluide à très haute pression qui fracture la roche et facilite donc l'abattage de celle-ci par le taillant.
  • La mise en oeuvre de ce procédé a soulevé certaines difficultés liées à l'amenée, au travers de la tige de foration et du taillant, dudit fluide sous très haute pression, de l'eau le plus souvent. Il est cependant à noter qu'il était déjà connu d'amener au niveau du taillant de l'eau ou de l'air à basse pression (20 à 40 bars environ) pour l'évacuation des débris de foration ou d'abattage.
  • Le brevet français n° 2 450 936 (G. CAGNIONCLE), déposé le 8 Mars 1979, décrit une manière dont ces difficultés ont pu être surmontées. Pour la mise en oeuvre du procédé qui y est décrit il y est préconisé d'aménager au travers d'un taillant deux jeux de canaux de fluide sous pression : des canaux d'amenée de fluide basse pression pour l'évacuation des débris, et des canaux beaucoup plus fins pour l'amenée de fluide sous très haute pression (1000 à 4000 Lars) pour l'assistance de la foration proprement dite, débouchant au travers ou en avant des plaquettes rapportées. Ce brevet décrit également tout le dispositif d'alimentation en liquide nécessaire à une telle injection de fluide sous deux pressions très différentes.
  • Il s'avère en fait que les taillants mis en oeuvre jusqu'à présent dans le cadre d'une foration rotative assistée par jet ont une géométrie très voisine de celle des taillants traditionnels (sans assitance par jets).
  • Or la Demanderesse a pu mettre en évidence, dans le cadre de ses recherches, que le fait d'assister par jets la-foration rotative permettait de revoir complètement la géométrie des taillants à mettre en oeuvre.
  • La présente invention vise ainsi une nouvelle géométrie de taillant conduisant à des performances supérieures à celles des taillants actuellement connus pour un moindre coût de fabrication.
  • Elle propose à cet effet un taillant pour foration rotative assistée par jet, destiné à être monté au bout d'une tige d'entraînement en rotation, du genre comportant, à l'opposé de ladite tige, une pluralité de plaquettes de foration présentant des arêtes d'attaque en saillie radiale et axiale et séparées angulairement par des rampes d'évacuation de débris, des canaux d'amenée de fluide sous pression débouchant à proximité desdites plaquettes, caractérisé en ce que les plaquettes ont une faible dimension radiale et sont disposées autour d'un éclateur central au travers d'une couronne périphérique discontinue prolongeant axialement ledit taillant, laquelle couronne est traversée par lesdits canaux d'amenée de fluide.
  • Une telle géométrie de taillant se différencie très nettement des géométries actuellement connues. En effet les taillants de l'art antérieur sont généralement compacts et massifs ; ils comportent des plaquettes dont la dimension radiale est à peine inférieure au plus grand rayon du taillant, de manière à forer une roche sur pratiquement toute la section du taillant. Compte tenu de leur taille, ces plaquettes subissent en cours de rotation des contraintes importantes auxquelles elles ne peuvent résister qu'à condition d'être en appui sur une masse importante de métal. En pratique ces plaquettes sont supportées par des bras hélicoïdaux obtenus par forgeage, ou alors sont enserrées dans des encoches ménagées dans un taillant massif tel qu'en représente le brevet 2 450 936 précité.
  • Un taillant selon l'invention se révèle par contre conduire à la mise en oeuvre de plaquettes plus petites adaptées à exercer par leurs arêtes en saillie axiale, pour une même poussée axiale, des contraintes de pénétration bien plus élevées que dans l'art antérieur où la poussée axiale était répartie sur des arêtes radiales bien plus longues. Un taillant selon l'invention permet donc la foration de roches bien plus dures que dans l'art antérieur, pouvant atteindre des pressions de 600-800 bars et plus. Il est à noter que grâce à la présence d'un éclateur central, qui peut être par exemple un cône, de préférence en précession, ou un jet de fluide sous pression, tout risque de talonnage du taillant contre une zone centrale de roche non abattue par les plaquettes peut être écarté.
  • Selon une caractéristique importante de l'invention les rampes d'évacuation sont rectilignes. Il en résulte un abaissement sensible des coûts de fabrication des taillants dans la mesure où l'invention propose un taillant qui, avant le brasage des plaquettes, peut être mis en forme à l'aide d'opérations d'usinage simples et peu coûteuses telles que le tournage ou le fraisage.
  • D'autres objets, caractéristiques et avantages de l'invention ressortent de la description qui suit, donnée à titre d'exemple non limitatif, en regard du dessin annexé sur lequel :
    • la figure 1 est une vue frontale d'un premier mode de réalisation d'un taillant selon l'invention ;
    • la figure 2 est une vue latérale du taillant de la figure 1, avec coupe partielle d'un côté de l'axe ;
    • la figure 3 est une vue frontale d'un deuxième mode de réalisation d'un taillant selon l'invention ; et
    • la figure 4 est une vue latérale du taillant de la figure 3, avec coupe partielle d'un côté de l'axe.
  • -- Tel que représenté à titre d'exemple aux figures 1 et 2, ou aux figures 3 et 4, un taillant 1 selon l'invention, qui présente avantageusement une symétrie axiale, comporte,de manière connue,en une de ses extrémités une jupe de fixation 11 taraudée intérieurement destinée à recevoir le bout d'une tige de foration, non représentée, destinée à entraîner en rotation le taillant 1 au cours dès opérations de foration.
  • - Le taillant 1 s'évase à partir de la jupe 11 en un tronçon de raccordement 12, et se termine par une extrémité d'attaque 13 formant corps de taillant. Dans les exemples représentés, la jupe de fixation 11 et le corps 13 sont cylindriques, tandis que le tronçon de raccordement est tronconique.
  • De manière connue, le corps de taillant 13 porte une pluralité de plaquettes 20, deux par taillant dans les exemples représentés, réparties angulairement de manière avantageusement régulière de manière à bien répartir les efforts au sein du taillant. Ces plaquettes présentent des arêtes d'attaque 21 et 22 en saillie axiale et radiale.
  • Ces plaquettes sont rapportées, de manière connue, par brasage, et sont séparées angulairement par des rampes 30 d'évacuation des débris d'abattage.
  • Selon l'invention les plaquettes présentent une faible dimension radiale, de l'ordre de la moitié du rayon du corps 13 dans l'exemple représenté.. Elles sont disposées autour d'un éclateur central 40, au travers d'une couronne périphérique discontinue 50 prolongeant axialement le taillant 1. Des canaux 60 d'amenée de fluide sous pression, de l'eau généralement, traversent la couronne discontinue 50 et débouchent à proximité des arêtes 21 ; ils sont de préférence rectilignes ; ils débouchent à leur autre extrémité à l'intérieur de la jupe 11 où ils sont alimentés en liquide au travers de la tige d'entraînement en rotation (non représentée) par un dispositif de tout type connu.
  • Plusieurs configurations de taillants sont possibles selon que, compte tenu du sens de rotation des taillants indiqué par la flèche F, les canaux 60 débouchent devant les arêtes 21, au travers des plaquettes 20, ou en arrière de celles-ci. De manière à éviter toute difficulté d'alignement au moment du brasage des plaquettes l'invention préconise de ménager,de préférence,les canaux 60 en dehors des plaquettes 20.
  • Il est à noter que, pour des questions de dessin, le diamètre des canaux 60 est nettement surestimé sur les f igures,2 et 4 par rapport à la réalité. En pratique, ces canaux sont conçus pour assurer, près des plaquettes, une injection de fluide sous haute pression pouvant aller jusqu'à 1000 bars et plus, supérieure aux pressions actuellement mises en oeuvre. Le calibrage des jets ainsi injectés, voire leur orientation, est de préférence assuré par des buses d'injection 61 représentées uniquement sur les figures 2 et 4.
  • Les figures 1 et 2 illustrent un taillant selon l'invention dans lequel les canaux 60 d'injection de fluide débouchent en arrière des plaquettes 20 associées.
  • Ces plaquettes 20-ont une épaisseur radiale voisine de celle de la couronne 50. Leur section est trapézoïdale de sorte que leur face latérale extérieure 23 est radialement en retrait par rapport à l'arête 22 et ne vienne pas en contact avec la roche, ou le matériau à forer. De même, la face frontale externe 24 de chaque plaquette est inclinée par rapport à l'axe de rotation A du taillant. De préférence, la surface transversale 51 de la couronne 50 en arrière des plaquettes est également inclinée vers l'arrière, de manière à maintenir l'embouchure des canaux 60 en retrait axialement vis-à-vis du front de foration de la roche. De la sorte seules les arêtes des plaquettes participent à la foration.
  • La couronne discontinue 50, après la zone transversale 51 où débouche au moins un canal d'amenée de fluide sous pression,s`écarte de la roche à forer et se raccorde ainsi à une rampe d'évacuation 30.
  • Ainsi qu'il ressort des figures 1 et 2, une telle rampe 30 est avantageusement délimitée par des surfaces rectilignes 31, 32, 33, qui peuvent aisément s'obtenir par fraisage. Les rampes d'évacuation 30 se poursuivent jusqu'à hauteur de la jupe de fixation de manière à ce que les débris puissent ensuite être évacués entre la paroi du trou foré et la jupe 11, puis la tige d'entraînement en rotation.
  • La surface 31de chaque rampe d'évacuation aboutit de préférence à la base de la plaquette suivante de manière à faciliter l'évacuation des débris de roches longeant la face avant de ladite plaquette depuis l'arête 21.
  • Dans l'exemple représenté, la couronne 50 entoure un éclateur central 40 constitué par un cône 40a pointant vers la roche à forer. Pour des facilités de fabrication, ce cône est de préférence rapporté. En outre, son axe est avantageusement incliné par rapport à l'axe A de rotation de manière à subir en rotation un léger mouvement de précession, ce qui en augmente l'efficacité.
  • Les figures 3 et 4 illustrent par contre un taillant selon l'invention dans lequel les canaux d'injection 60 débouchent en avant des plaquettes 20 ; ces plaquettes ont une forme très voisine de celle des plaquettes des figures 1 et 2. Compte tenu de ce que les jets de fluide sont d'autant plus efficaces pour fracturer la roche qu'ils sont cohérents, ces jets débouchent de préférence à proximité de la roche à forer. Le corps 13 du taillant comporte en conséquence un épaulement 14 remontant axialement vers la roche devant chaque plaquette ; les plaquettes sont ainsi rapportées dans des encoches ménagées axialement dans le corps 13. La surface frontale 15 des épaulements 14 dans laquelle débouche les canaux 60 est avantageusement inclinée vers l'axe de manière à bien évacuer les débris vers les rampes. Cette évacuation est en outre facilitée grâce à une surface 16 de raccordement entre la surface frontale 15 et la surface rectiligne 31' de ladite rampe 30 qui, comme dans l'exemple précédent, est délimitée de préférence par des surfaces 31', 32', 33' rectilignes.
  • Dans l'exemple représenté aux figures 3 et 4, l'éclateur central 40 est constitué par une canalisation 40b d'amenée de fluide sous pression destinée à faire éclater une portion de roche non abattue par les plaquettes bien que déjà affaiblie et fracturée. Ce canal 40b est de préférence alimenté par la même source de pression que les canaux 60, de manière à simplifier la structure de la tige d'entraînement en rotation à mettre en oeuvre.
  • Il est à noter que dans les deux exemples représentés les plaquettes 20 sont disposées radialement au travers des couronnes 50, de sorte que les arêtes 21 ne sont, elles, pas radiales, et que les plaquettes présentent ainsi un coin de forage 25 relayé au cours de la foration par les arêtes 21 puis 22. Les capacités de forage d'une plaquette sont ainsi optimisées.
  • Il va de soi que de nombreuses variantes de réalisation peuvent être proposées par l'homme de l'art sans pour autant sortir du cadre de l'invention, lequel est défini par les revendications annexées. Ainsi, le nombre des plaquettes, la position et le nombre des canaux d'injection de fluide sous pression, leur direction, les inclinaisons des diverses faces des plaquettes, de la couronne ou des rampes, ou encore la structure de l'éclateur central peuvent être choisis en fonction des besoins particuliers de chaque utilisateur, et de chaque matériau particulier à forer.

Claims (10)

1. Taillant de mine pour foration rotative assistée par jet, destiné à être monté au bout d'une tige d'entraînement en rotation, du genre comportant, à l'opposé de ladite tige une pluralité de plaquettes de foration présentant des arêtes d'attaque en saillie radiale et axiale et séparées anagulairement par des rampes d'évacuation de débris, en combinaison avec des canaux d'amenée de fluide sous très haute pression débouchant à proximité desdites plaquettes, caractérisé en ce que les plaquettes (20) ont une faible dimension radiale et sont insérées, autour d'un éclateur central (40), dans une couronne périphérique discontinue (50) prolongeant axialement ledit taillant (1), laquelle couronne est traversée par lesdits canaux (60) d'amenée de fluide.
2. Taillant selon la revendication 1, caractérisé en ce que les rampes d'évacuation (30) sont limitées par des faces (31, 32, 33, 31', 32', 33') rectilignes.
3. Taillant selon la revendication 1 ou la revendication 2, caractérisé en ce qu'il présente une symétrie axiale par rapport à son axe de rotation (A).
4. Taillant selon l'une quelconque des revendications 1 à 3, caractérisé en ce que l'éclateur central (40) est un cône (40a).
5. Taillant selon la revendication 4, caractérisé en ce que le cône (40a) est incliné par rapport à l'axe de rotation (A).
6. Taillant selon la revendication 4 ou la revendication 5, caractérisé en ce que le cône est rapporté.
7. Taillant selon l'une quelconque des revendications 1 à 3, caractérisé en ce que l'éclateur central (40) est constitué par un canal (40b) d'amenée de liquide sous pression.
8. Taillant selon la revendication 7, caractérisé en ce que les divers canaux d'amenée de liquide sous pression (40b, 60) sont alimentés par une même source de pression.
9. Taillant selon l'une quelconque des revendications 1 à 8, caractérisé en ce que les plaquettes présentent un coin de Foration (25).
10.. Taillant selon l'une quelconque des revendications 1 à 9, caractérisé en ce que les canaux (60) d'amenée de fluide sous pression débouchent en avant des plaquettes (20) au travers d'épaulements remontant vers le matériau à forer le long desdites plaquettes.
EP83402511A 1982-12-23 1983-12-22 Taillant pour foration rotative assistée par jet Ceased EP0114016A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8221674A FR2538442B1 (fr) 1982-12-23 1982-12-23 Taillant pour foration rotative assistee par jet
FR8221674 1982-12-23

Publications (1)

Publication Number Publication Date
EP0114016A1 true EP0114016A1 (fr) 1984-07-25

Family

ID=9280460

Family Applications (1)

Application Number Title Priority Date Filing Date
EP83402511A Ceased EP0114016A1 (fr) 1982-12-23 1983-12-22 Taillant pour foration rotative assistée par jet

Country Status (7)

Country Link
US (1) US4535853A (fr)
EP (1) EP0114016A1 (fr)
JP (1) JPS59173482A (fr)
AU (1) AU556885B2 (fr)
CA (1) CA1202955A (fr)
FR (1) FR2538442B1 (fr)
ZA (1) ZA839456B (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0189024A1 (fr) * 1984-12-18 1986-07-30 Vereinigte Edelstahlwerke Aktiengesellschaft (Vew) Trépan
EP0192016A1 (fr) * 1985-02-19 1986-08-27 Strata Bit Corporation Trépan rotatif

Families Citing this family (80)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2558891B1 (fr) * 1984-02-01 1986-11-07 Charbonnages De France Taillant de foration rotative assistee par jets haute pression
US5174391A (en) * 1987-04-16 1992-12-29 Shell Oil Company Tubular element for use in a rotary drilling assembly and method
GB8709229D0 (en) * 1987-04-16 1987-05-20 Shell Int Research Tubular element
US4907659A (en) * 1988-01-19 1990-03-13 Basf Corporation Powered soil-sampler
US5180022A (en) * 1991-05-23 1993-01-19 Brady William J Rotary mining tools
AUPO022996A0 (en) * 1996-06-04 1996-06-27 Commonwealth Scientific And Industrial Research Organisation A drilling apparatus and method
US7681670B2 (en) * 2004-09-10 2010-03-23 Smith International, Inc. Two-cone drill bit
US8267196B2 (en) 2005-11-21 2012-09-18 Schlumberger Technology Corporation Flow guide actuation
US7225886B1 (en) * 2005-11-21 2007-06-05 Hall David R Drill bit assembly with an indenting member
US7571780B2 (en) * 2006-03-24 2009-08-11 Hall David R Jack element for a drill bit
US8360174B2 (en) 2006-03-23 2013-01-29 Schlumberger Technology Corporation Lead the bit rotary steerable tool
US7753144B2 (en) 2005-11-21 2010-07-13 Schlumberger Technology Corporation Drill bit with a retained jack element
US8522897B2 (en) 2005-11-21 2013-09-03 Schlumberger Technology Corporation Lead the bit rotary steerable tool
US7591327B2 (en) * 2005-11-21 2009-09-22 Hall David R Drilling at a resonant frequency
US8205688B2 (en) * 2005-11-21 2012-06-26 Hall David R Lead the bit rotary steerable system
US8316964B2 (en) 2006-03-23 2012-11-27 Schlumberger Technology Corporation Drill bit transducer device
US7730975B2 (en) * 2005-11-21 2010-06-08 Schlumberger Technology Corporation Drill bit porting system
US8297375B2 (en) * 2005-11-21 2012-10-30 Schlumberger Technology Corporation Downhole turbine
US8297378B2 (en) 2005-11-21 2012-10-30 Schlumberger Technology Corporation Turbine driven hammer that oscillates at a constant frequency
US7549489B2 (en) * 2006-03-23 2009-06-23 Hall David R Jack element with a stop-off
US8528664B2 (en) 2005-11-21 2013-09-10 Schlumberger Technology Corporation Downhole mechanism
US7617886B2 (en) 2005-11-21 2009-11-17 Hall David R Fluid-actuated hammer bit
US7967082B2 (en) 2005-11-21 2011-06-28 Schlumberger Technology Corporation Downhole mechanism
US7559379B2 (en) * 2005-11-21 2009-07-14 Hall David R Downhole steering
US7600586B2 (en) 2006-12-15 2009-10-13 Hall David R System for steering a drill string
US7484576B2 (en) 2006-03-23 2009-02-03 Hall David R Jack element in communication with an electric motor and or generator
US7533737B2 (en) * 2005-11-21 2009-05-19 Hall David R Jet arrangement for a downhole drill bit
US7624824B2 (en) * 2005-12-22 2009-12-01 Hall David R Downhole hammer assembly
US7497279B2 (en) * 2005-11-21 2009-03-03 Hall David R Jack element adapted to rotate independent of a drill bit
US7424922B2 (en) * 2005-11-21 2008-09-16 Hall David R Rotary valve for a jack hammer
US8225883B2 (en) 2005-11-21 2012-07-24 Schlumberger Technology Corporation Downhole percussive tool with alternating pressure differentials
US7419018B2 (en) 2006-11-01 2008-09-02 Hall David R Cam assembly in a downhole component
US7419016B2 (en) 2006-03-23 2008-09-02 Hall David R Bi-center drill bit
US7641002B2 (en) * 2005-11-21 2010-01-05 Hall David R Drill bit
US8130117B2 (en) * 2006-03-23 2012-03-06 Schlumberger Technology Corporation Drill bit with an electrically isolated transmitter
US7900720B2 (en) 2006-01-18 2011-03-08 Schlumberger Technology Corporation Downhole drive shaft connection
US7661487B2 (en) 2006-03-23 2010-02-16 Hall David R Downhole percussive tool with alternating pressure differentials
US8011457B2 (en) 2006-03-23 2011-09-06 Schlumberger Technology Corporation Downhole hammer assembly
US7694756B2 (en) 2006-03-23 2010-04-13 Hall David R Indenting member for a drill bit
USD620510S1 (en) 2006-03-23 2010-07-27 Schlumberger Technology Corporation Drill bit
US8449040B2 (en) 2006-08-11 2013-05-28 David R. Hall Shank for an attack tool
US20100059289A1 (en) * 2006-08-11 2010-03-11 Hall David R Cutting Element with Low Metal Concentration
US8616305B2 (en) * 2006-08-11 2013-12-31 Schlumberger Technology Corporation Fixed bladed bit that shifts weight between an indenter and cutting elements
US9145742B2 (en) 2006-08-11 2015-09-29 Schlumberger Technology Corporation Pointed working ends on a drill bit
US9316061B2 (en) 2006-08-11 2016-04-19 David R. Hall High impact resistant degradation element
US8567532B2 (en) 2006-08-11 2013-10-29 Schlumberger Technology Corporation Cutting element attached to downhole fixed bladed bit at a positive rake angle
US8191651B2 (en) * 2006-08-11 2012-06-05 Hall David R Sensor on a formation engaging member of a drill bit
US8590644B2 (en) 2006-08-11 2013-11-26 Schlumberger Technology Corporation Downhole drill bit
US8714285B2 (en) 2006-08-11 2014-05-06 Schlumberger Technology Corporation Method for drilling with a fixed bladed bit
US9051795B2 (en) 2006-08-11 2015-06-09 Schlumberger Technology Corporation Downhole drill bit
US7871133B2 (en) 2006-08-11 2011-01-18 Schlumberger Technology Corporation Locking fixture
US20090058174A1 (en) * 2006-08-11 2009-03-05 Hall David R Attack Tool
US8122980B2 (en) * 2007-06-22 2012-02-28 Schlumberger Technology Corporation Rotary drag bit with pointed cutting elements
US8215420B2 (en) 2006-08-11 2012-07-10 Schlumberger Technology Corporation Thermally stable pointed diamond with increased impact resistance
US20080035389A1 (en) * 2006-08-11 2008-02-14 Hall David R Roof Mining Drill Bit
US7637574B2 (en) 2006-08-11 2009-12-29 Hall David R Pick assembly
US7886851B2 (en) * 2006-08-11 2011-02-15 Schlumberger Technology Corporation Drill bit nozzle
US8240404B2 (en) * 2006-08-11 2012-08-14 Hall David R Roof bolt bit
US7669674B2 (en) 2006-08-11 2010-03-02 Hall David R Degradation assembly
US8622155B2 (en) 2006-08-11 2014-01-07 Schlumberger Technology Corporation Pointed diamond working ends on a shear bit
US7527110B2 (en) 2006-10-13 2009-05-05 Hall David R Percussive drill bit
US9068410B2 (en) 2006-10-26 2015-06-30 Schlumberger Technology Corporation Dense diamond body
US8960337B2 (en) 2006-10-26 2015-02-24 Schlumberger Technology Corporation High impact resistant tool with an apex width between a first and second transitions
US7954401B2 (en) 2006-10-27 2011-06-07 Schlumberger Technology Corporation Method of assembling a drill bit with a jack element
US7392857B1 (en) 2007-01-03 2008-07-01 Hall David R Apparatus and method for vibrating a drill bit
US8839888B2 (en) 2010-04-23 2014-09-23 Schlumberger Technology Corporation Tracking shearing cutters on a fixed bladed drill bit with pointed cutting elements
USD678368S1 (en) 2007-02-12 2013-03-19 David R. Hall Drill bit with a pointed cutting element
USD674422S1 (en) 2007-02-12 2013-01-15 Hall David R Drill bit with a pointed cutting element and a shearing cutting element
US7866416B2 (en) 2007-06-04 2011-01-11 Schlumberger Technology Corporation Clutch for a jack element
US7721826B2 (en) 2007-09-06 2010-05-25 Schlumberger Technology Corporation Downhole jack assembly sensor
US7967083B2 (en) 2007-09-06 2011-06-28 Schlumberger Technology Corporation Sensor for determining a position of a jack element
US8540037B2 (en) 2008-04-30 2013-09-24 Schlumberger Technology Corporation Layered polycrystalline diamond
US8701799B2 (en) 2009-04-29 2014-04-22 Schlumberger Technology Corporation Drill bit cutter pocket restitution
US8550190B2 (en) 2010-04-01 2013-10-08 David R. Hall Inner bit disposed within an outer bit
US8418784B2 (en) 2010-05-11 2013-04-16 David R. Hall Central cutting region of a drilling head assembly
US8333254B2 (en) 2010-10-01 2012-12-18 Hall David R Steering mechanism with a ring disposed about an outer diameter of a drill bit and method for drilling
US8820440B2 (en) 2010-10-01 2014-09-02 David R. Hall Drill bit steering assembly
US8342266B2 (en) 2011-03-15 2013-01-01 Hall David R Timed steering nozzle on a downhole drill bit
US9617794B2 (en) 2012-06-22 2017-04-11 Smith International, Inc. Feature to eliminate shale packing/shale evacuation channel
EP4345244A1 (fr) * 2022-09-29 2024-04-03 Boart Longyear Company Trépan à percussion

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE151171C (fr) *
US2024730A (en) * 1934-09-17 1935-12-17 Security Invest Company Roller core breaker for bits
FR1002187A (fr) * 1946-08-10 1952-03-03 Krupp Gmbh Perforatrice à percussion
US2740612A (en) * 1954-02-23 1956-04-03 Phipps Orville Two-arm rotary drill bit
US2854219A (en) * 1954-11-22 1958-09-30 Alvin S Macneil Apparatus for deep well drilling
US2857140A (en) * 1956-08-13 1958-10-21 Sam N Johnson Earth bit
FR1176596A (fr) * 1956-06-27 1959-04-13 Sandvikens Jernverks Ab Tête de fleuret de perforation par percussion
CA659574A (en) * 1963-03-19 H. Davis Sidney Drilling bit
FR1411867A (fr) * 1963-08-19 1965-09-24 P & V Mining & Engineering Ltd Procédé et appareil pour augmenter l'action du liquide de nettoyage dans les outils servant à perforer les roches
FR1463719A (fr) * 1965-01-19 1966-12-23 Atlas Copco Ab Trépan perfectionné pour perforatrices
US3301339A (en) * 1964-06-19 1967-01-31 Exxon Production Research Co Drill bit with wear resistant material on blade
FR2135053A1 (fr) * 1971-05-04 1972-12-15 Petroles Cie Francaise
DE2555672A1 (de) * 1975-12-11 1977-06-16 Richard Karnebogen Bohrkrone fuer schlagende gesteinsbohrvorrichtungen
DE2735855A1 (de) * 1976-08-31 1978-03-02 Akad Gorniczo Hutnicza Bohrkrone fuer bohrungen im gestein
FR2450936A1 (fr) * 1979-03-08 1980-10-03 Cagnioncle Georges Nouvelle foreuse rotative a taillant protege par un film fluide a tres haute pression
WO1980002858A1 (fr) * 1979-06-19 1980-12-24 Syndrill Prod Joint Venture Trepan de forage d'un trou profond dans la roche

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2494188A (en) * 1945-10-17 1950-01-10 Juan M Meaney Detachable rock drill bit with replaceable cutters
US2905443A (en) * 1956-01-23 1959-09-22 Arnold H Goett Jet pronged digging heads
US3077936A (en) * 1961-11-06 1963-02-19 Arutunoff Armais Diamond drill
US3672455A (en) * 1970-04-14 1972-06-27 Tarton Ind Inc Drag bits
FR2385883A1 (fr) * 1977-03-31 1978-10-27 Petroles Cie Francaise Outil de forage a haut rendement a attaque rapide de la carotte
WO1980000285A1 (fr) * 1978-07-18 1980-02-21 Chloride Group Ltd Batteries d'accumulateurs electriques

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE151171C (fr) *
CA659574A (en) * 1963-03-19 H. Davis Sidney Drilling bit
US2024730A (en) * 1934-09-17 1935-12-17 Security Invest Company Roller core breaker for bits
FR1002187A (fr) * 1946-08-10 1952-03-03 Krupp Gmbh Perforatrice à percussion
US2740612A (en) * 1954-02-23 1956-04-03 Phipps Orville Two-arm rotary drill bit
US2854219A (en) * 1954-11-22 1958-09-30 Alvin S Macneil Apparatus for deep well drilling
FR1176596A (fr) * 1956-06-27 1959-04-13 Sandvikens Jernverks Ab Tête de fleuret de perforation par percussion
US2857140A (en) * 1956-08-13 1958-10-21 Sam N Johnson Earth bit
FR1411867A (fr) * 1963-08-19 1965-09-24 P & V Mining & Engineering Ltd Procédé et appareil pour augmenter l'action du liquide de nettoyage dans les outils servant à perforer les roches
US3301339A (en) * 1964-06-19 1967-01-31 Exxon Production Research Co Drill bit with wear resistant material on blade
FR1463719A (fr) * 1965-01-19 1966-12-23 Atlas Copco Ab Trépan perfectionné pour perforatrices
FR2135053A1 (fr) * 1971-05-04 1972-12-15 Petroles Cie Francaise
DE2555672A1 (de) * 1975-12-11 1977-06-16 Richard Karnebogen Bohrkrone fuer schlagende gesteinsbohrvorrichtungen
DE2735855A1 (de) * 1976-08-31 1978-03-02 Akad Gorniczo Hutnicza Bohrkrone fuer bohrungen im gestein
FR2450936A1 (fr) * 1979-03-08 1980-10-03 Cagnioncle Georges Nouvelle foreuse rotative a taillant protege par un film fluide a tres haute pression
WO1980002858A1 (fr) * 1979-06-19 1980-12-24 Syndrill Prod Joint Venture Trepan de forage d'un trou profond dans la roche

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0189024A1 (fr) * 1984-12-18 1986-07-30 Vereinigte Edelstahlwerke Aktiengesellschaft (Vew) Trépan
EP0192016A1 (fr) * 1985-02-19 1986-08-27 Strata Bit Corporation Trépan rotatif

Also Published As

Publication number Publication date
AU556885B2 (en) 1986-11-20
JPS59173482A (ja) 1984-10-01
FR2538442B1 (fr) 1986-02-28
US4535853A (en) 1985-08-20
CA1202955A (fr) 1986-04-08
FR2538442A1 (fr) 1984-06-29
ZA839456B (en) 1984-08-29
AU2278683A (en) 1984-06-28

Similar Documents

Publication Publication Date Title
EP0114016A1 (fr) Taillant pour foration rotative assistée par jet
BE1014353A5 (fr) Element coupant et trepan tournant utilisant cet element.
BE1012649A5 (fr) Element de coupe superabrasif avec chanfrein plan supporte par un contrefort et trepans de forage equipes d'un tel element.
BE1014915A5 (fr) Structure de forage de formations souterraines.
BE1014519A5 (fr) Tete de forage et son procede d'utilisation.
BE1012751A5 (fr) Trepan a lames rotatif dirigeable a agressivite longitudinale variable de la zone de front de taille.
BE1012823A5 (fr) Elements rapportes a pointe superabrasive pour trepans de forage de terre.
BE1003792A3 (fr) Trepan de forage combine.
FR2495216A1 (fr) Trepan de forage
BE1013011A5 (fr) Element de coupe, trepan de forage, systeme et procede de forage de formations plastiques molles.
BE1013805A5 (fr) Procede de forage d'une formation souterraine avec utilisation d'un trepan de forage oscillant.
BE1016273A3 (fr) Procede de forage de formations souterraines.
EP0169110B1 (fr) Méthode et perfectionnement aux outils de forage comportant des passages d'eau permettant une grande efficacité du nettoyage du front de taille
EP0072072B1 (fr) Dispositif de forage
BE1014241A5 (fr) Trepan de forage rotatif a lames presentant des caracteristiques hydrauliques et de stabilisation ameliorees.
CA2515836A1 (fr) Tete de forage profond et procede de forage profond pour le forage d'une piece de fabrication
EP0944765A1 (fr) Outil de forage et/ou de carottage
EP0944764A1 (fr) Tete de forage
CA1108596A (fr) Outil de forage a haut rendement a attaque rapide de la carotte
BE1012923A5 (fr) Trepans de forage de terre comportant des caracteristiques ameliorees d'elimination des deblais de la formation et procedes de forage.
FR2674568A1 (fr) Dispositif de foncage horizontal et procede de foncage horizontal pour la pose dans le sol de tuyauteries d'un diametre interne ne permettant pas la circulation.
EP0170548B1 (fr) Méthode et perfectionnement aux outils de forage permettant une grande efficacité du nettoyage du front de taille
FR2656554A1 (fr) Outil de percage de precision pour materiaux composites.
EP1533425A1 (fr) Machine de forage à outils rotatifs
FR2605676A1 (fr) Outil a abrasifs ultradurs pour tete de creusement et procede de fabrication d'un tel outil

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT CH DE GB LI SE

17P Request for examination filed

Effective date: 19841115

17Q First examination report despatched

Effective date: 19860507

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED

18R Application refused

Effective date: 19870924

RIN1 Information on inventor provided before grant (corrected)

Inventor name: IPPOLITO, SERGE

Inventor name: CAGNIONCLE, GEORGES AUGUSTIN