EP0112277B1 - Method of coating shaped objects with polyethylene - Google Patents

Method of coating shaped objects with polyethylene Download PDF

Info

Publication number
EP0112277B1
EP0112277B1 EP83730102A EP83730102A EP0112277B1 EP 0112277 B1 EP0112277 B1 EP 0112277B1 EP 83730102 A EP83730102 A EP 83730102A EP 83730102 A EP83730102 A EP 83730102A EP 0112277 B1 EP0112277 B1 EP 0112277B1
Authority
EP
European Patent Office
Prior art keywords
ethylene copolymer
epoxy resin
layer
powder
heated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP83730102A
Other languages
German (de)
French (fr)
Other versions
EP0112277A1 (en
Inventor
Walter Dipl.-Ing. Stucke
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vodafone GmbH
Original Assignee
Mannesmann AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mannesmann AG filed Critical Mannesmann AG
Priority to AT83730102T priority Critical patent/ATE27412T1/en
Publication of EP0112277A1 publication Critical patent/EP0112277A1/en
Application granted granted Critical
Publication of EP0112277B1 publication Critical patent/EP0112277B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/14Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials to metal, e.g. car bodies
    • B05D7/148Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials to metal, e.g. car bodies using epoxy-polyolefin systems in mono- or multilayers

Definitions

  • the invention relates to a process for coating metallic moldings, in particular pipes and pipe fittings, with polyethylene, the surface of the cleaned moldings which have been heated to at least 80 ° C. being first primed with an epoxy resin / hardener mixture, then ethylene copolymer as an adhesive thereon and then polyethylene is applied as the outer cover layer, whereupon the coated moldings are cooled to room temperature.
  • a coating produced in this way which in principle consists of three layers, has been found to be particularly suitable for the insulation of steel pipes, in particular those which are laid in the ground.
  • B. is known from DE-A-1 965 802, which discloses a method according to which is sprayed onto a preferably heated to 140-200 ° C steel tube at these temperatures curing epoxy resin, while curing around the tube on the epoxy resin -Layer an extruded film tape is wound from an ethylene copolymer, which serves as a pressure sensitive adhesive for another extruded polyethylene film tape to be wrapped around the tube.
  • this method is not suitable for economical mechanical wrapping of pipe fittings. It is also unsuitable for wrapping moldings which are already provided with a heat-sensitive inner coating.
  • DE-A-22 22 911 specifies a coating method with the aforementioned 3-layer structure that is suitable for metallic tubes with a heat-sensitive inner coating.
  • the epoxy resin base layer is applied at a temperature of the pipe of 70-90 ° C.
  • the adhesive layer made of ethylene copolymer and the outer cover layer made of polyethylene are extruded as a double tube and applied to the base layer, the heat of the double tube not being sufficient for rapid curing of the epoxy resin. Rather, this takes place at room temperature within 24 hours.
  • This method is also generally unsuitable for coating because of the geometry of pipe fittings that deviate from the cylindrical shape and because of the long curing times.
  • GB-A-1 542 333 a method for coating metallic pipes with polyethylene is known, which corresponds to the generic method with regard to the materials used, but with a high heating temperature (270-300 ° C) for the Shaped body is worked, which is why it is not suitable for the coating of shaped bodies that are already provided with a heat-sensitive inner coating. In addition, it is uneconomical for heating due to the high energy expenditure.
  • thermoset and thermoplastic ie between the epoxy resin base layer and the ethylene copolymer adhesive layer, is particularly at risk in terms of peel strength.
  • the invention has for its object to provide a method according to the metallic moldings, in particular pipe fittings and pipes, even if they already have a heat-sensitive inner coating, from a base layer made of epoxy resin, an outer cover layer made of polyethylene and an intermediate adhesive Ethylene copolymer existing insulation of high peel strength can be applied.
  • the advantage of the method according to the invention is that it enables the construction of complete piping systems with the same high quality insulation on all parts. So far, pipe fittings had to be such as elbows, T-pieces and the like. In a different way than the straight and smooth pipe pieces z. B. isolated by wrapping the pipe fitting with a bitumen or plastic bandage after its assembly in a piping system, so that no equivalent external protection was given for these molded parts. With coatings according to the method according to the invention, the risk of pitting corrosion due to stray currents in the ground and / or infiltration of the insulation by moisture is no longer present, since the adhesion of the insulation to the pipe and the connection between the layers of insulation are significantly improved.
  • an epoxy resin / hardener mixture which is approximately at room temperature and is used as precondensate powder in a coating booth 5 with spray guns 6, which mixture is used at a temperature of 145- 155 ° C hardens within 50-70 minutes, sprayed electrostatically in a layer thickness of 30-50 fJ.m.
  • the epoxy resin / hardener powder mixture which is supplied to the spray guns 6 from a storage container 11, melts on the surface of the shaped piece 17 and forms a non-flowing and inconsistent film.
  • a closed primer 18 after the electrostatic spraying of the epoxy resin / hardener mixture, the molding is transported to an infrared system 9, in which only the epoxy resin layer 18 is heated to 200 ° C. by infrared radiation for 10 s, while the temperature of the steel body of the T-piece 17 hardly changes.
  • the curing of the epoxy resin 18 already used is accelerated by the supply of heat. Before the curing has ended, the shaped piece 17 is transported back into the coating booth 5. About 30 s after the application of the epoxy resin layer 18 is - again electrostatically and in powder form - on the epoxy resin layer 18, which then has a temperature of 160-170 ° C, using spray guns 7 in a layer thickness of 150 fJ.m as Sprayed adhesive ethylene copolymer powder.
  • the ethylene copolymer powder, which has a grain size composition according to claim 2, the spray guns 7 is supplied from a storage container 12 after it has been predried at 70 ° C for 1.5 hours.
  • the molding 17 is transported again to the infrared system 9.
  • the ethylene copolymer layer 19 is heated to 180 ° C., melted and smoothed within 5 minutes by further infrared radiation lasting one minute. This warming can also be done in other ways, e.g. B. can be achieved by microwave radiation.
  • polyethylene 20 is sprayed electrostatically from the storage container 13 by spray guns 8 in powder form in a layer thickness of 1.8 mm onto the ethylene copolymer.
  • the molding is then moved back into the infrared system 9, where the coating is kept at a temperature of 180-200 ° C. for 30 minutes by means of infrared radiation.
  • this heating can also in other ways, in which the temperature of the metallic core tube 17 does not rise above 100 ° C, for. B. can be achieved by microwave radiation. During this heating, the epoxy resin primer 18 cures completely. The coated T-piece 17 is then cooled in air to room temperature and transported to the finished store 10.
  • the coating process is ended as in the first example with the application of a 1.8 mm thick layer 20 of polyethylene powder, the 30-minute heating to 180-200 ° C. and the subsequent cooling in air.
  • other externally acting heat sources e.g. B. hot air or a combination of hot air and infrared radiation can be used, since the metallic base body of the fitting 24 has no heat-sensitive inner coating and may be brought to higher temperatures without damage.
  • the coating process for the steel tube body 17 in the first example leads to a three-layer insulation structure, as shown in FIG. 3.
  • the special grain size composition of the adhesive powder results in an intimate bond between the epoxy resin base layer 18 and the adhesive 19. This effect is a consequence of the fact that, under the influence of the electrostatic field, the powder grains with the smallest diameter preferentially lie directly on the epoxy resin base layer 18 can deposit, which react faster than larger grains with the epoxy resin base layer 18.
  • thermosetting base layer a mixture of ethylene copolymer powder and a powdery epoxy resin / hardener mixture according to claim 3
  • the adhesive there is an even more favorable connection of the thermosetting base layer and the thermoplastic adhesive, since the electrostatic field results in Epoxy resin powder grains should preferably be deposited on the surface of the base layer.
  • the epoxy resin content tends to sink downward onto the epoxy resin base layer when it melts. This creates a smooth transition between the different materials.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Laminated Bodies (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)

Abstract

The metal hollow is provided with a base layer of an epoxy resin being electrostatically applied upon which an ethylene copolymer powder is electrostatically applied possibly under particular inclusion of epoxy resin and possibly in several layers of varying relative consistency; after each powder application step, surface heating is applied to melt the respective powder; the final coating of polyethylene is either electrostatically applied or through suitable extrusion process. Particular grain size distribution and powder consistency patterns are suggested.

Description

Die Erfindung betrifft ein Verfahren zum Beschichten von metallischen Formkörpern, insbesondere von Rohren und Rohrformstücken, mit Polyäthylen, wobei die Oberfläche der gereinigten und auf mindestens 80 °C erwärmten Formkörper zunächst mit einem Epoxyharz/-Härter-Gemisch grundiert wird, dann darauf Äthylencopolymerisat als Kleber und anschließend als äußere Deckschicht Polyäthylen aufgebracht wird, woraufhin die beschichteten Formkörper bis auf Raumtemperatur abgekühlt werden.The invention relates to a process for coating metallic moldings, in particular pipes and pipe fittings, with polyethylene, the surface of the cleaned moldings which have been heated to at least 80 ° C. being first primed with an epoxy resin / hardener mixture, then ethylene copolymer as an adhesive thereon and then polyethylene is applied as the outer cover layer, whereupon the coated moldings are cooled to room temperature.

Eine derartig hergestellte Beschichtung, die im Prinzip aus drei Schichten besteht, hat sich für die Isolierung von Stahlrohren, insbesondere solchen, die im Erdreich verlegt werden, als besonders geeignet erwiesen und ist z. B. durch die DE-A-1 965 802 bekannt, die ein Verfahren offenbart, gemäß dem auf ein vorzugsweise auf 140-200 °C erwärmtes Stahlrohr ein bei diesen Temperaturen aushärtendes Epoxyharz aufgespritzt wird, wobei während des Aushärtens um das Rohr auf die Epoxyharz-Schicht ein extrudiertes Folienband aus einem Äthylencopolymerisat gewickelt wird, das als Haftkleber für ein weiteres um das Rohr zu wickelndes extrudiertes Folienband aus Polyäthylen dient.A coating produced in this way, which in principle consists of three layers, has been found to be particularly suitable for the insulation of steel pipes, in particular those which are laid in the ground. B. is known from DE-A-1 965 802, which discloses a method according to which is sprayed onto a preferably heated to 140-200 ° C steel tube at these temperatures curing epoxy resin, while curing around the tube on the epoxy resin -Layer an extruded film tape is wound from an ethylene copolymer, which serves as a pressure sensitive adhesive for another extruded polyethylene film tape to be wrapped around the tube.

Dieses Verfahren ist wegen der dabei erforderlichen komplizierten Bewegungsabläufe beim Wickelvorgang zum Aufbringen der Folienbänder nicht für eine wirtschaftliche maschinelle Umhüllung von Rohrformstücken geeignet. Ebenso ist es ungeeignet für die Umhüllung von Formkörpern, die bereits mit einer wärmeempfindlichen Innenbeschichtung versehen sind.Because of the complicated movements involved in the winding process for applying the foil strips, this method is not suitable for economical mechanical wrapping of pipe fittings. It is also unsuitable for wrapping moldings which are already provided with a heat-sensitive inner coating.

Ein für metallische Rohre mit wärmeempfindlicher Innenbeschichtung geeignetes Umhüllungserfahren mit dem genannten 3-schichtigen Aufbau ist in der DE-A-22 22 911 angegeben. Hierbei wird die Epoxyharz-Grundschicht bei einer Temperatur des Rohres von 70-90 °C aufgetragen. Die Kleberschicht aus Äthylencopolymerisat und die äußere Deckschicht aus Polyäthylen werden als Doppelschlauch extrudiert und auf die Grundschicht aufgebracht, wobei die Wärme des Doppelschlauches für eine schnelle Aushärtung des Epoxyharzes nicht ausreicht. Diese erfolgt vielmehr bei Raumtemperatur innerhalb von 24 Stunden. Auch dieses Verfahren eignet sich wegen der von der zylindrischen Form abweichenden Geometrie von Rohrformstücken und wegen der langen Aushärtezeiten in der Regel nicht für deren Beschichtung.DE-A-22 22 911 specifies a coating method with the aforementioned 3-layer structure that is suitable for metallic tubes with a heat-sensitive inner coating. The epoxy resin base layer is applied at a temperature of the pipe of 70-90 ° C. The adhesive layer made of ethylene copolymer and the outer cover layer made of polyethylene are extruded as a double tube and applied to the base layer, the heat of the double tube not being sufficient for rapid curing of the epoxy resin. Rather, this takes place at room temperature within 24 hours. This method is also generally unsuitable for coating because of the geometry of pipe fittings that deviate from the cylindrical shape and because of the long curing times.

Weiterhin ist aus der DE-A-22 57135 bekannt, ein zu ummantelndes Stahlrohr auf 80 °C zu erwärmen und elektrostatisch mit einem lösungsmittelhaltigen Epoxyharz/Härter-Gemisch in einer Dicke von etwa 100 p.m zu beschichten. Auf diese Grundschicht wird dann die innere Äthylencopolymerisat-Schicht und die äußere Polyäthylen-Schicht durch Aufrecken eines extrudierten Doppelschlauches oder Umwickeln mit extrudierten Folienbändern aufgebracht. Nach Abkühlung des ummantelten Rohres auf eine mittlere Rohrtemperatur von 40 °C wird die Oberfläche des Kernrohres induktiv auf etwa 240 °C erwärmt, wobei sich eine mittlere Rohrtemperatur von 100 °C einstellt. Hierdurch kann die Epoxyharz-Grundierung in wenigen Sekunden aushärten. Auch dieses Verfahren ist wegen der Art des Aufbringens der inneren Äthylencopolymerisat-Schicht und der äußeren Polyäthylen-Schicht aus geometrischen Gründen nicht für die Beschichtung von Rohrformstücken geeignet.Furthermore, it is known from DE-A-22 57135 to heat a steel pipe to be encased to 80 ° C. and to coat it electrostatically with a solvent-containing epoxy resin / hardener mixture in a thickness of approximately 100 μm. The inner ethylene copolymer layer and the outer polyethylene layer are then applied to this base layer by stretching an extruded double tube or wrapping it with extruded foil strips. After the coated tube has cooled to an average tube temperature of 40 ° C., the surface of the core tube is inductively heated to approximately 240 ° C., an average tube temperature of 100 ° C. being established. This allows the epoxy primer to harden in a few seconds. This method is also unsuitable for the coating of pipe fittings due to the nature of the application of the inner ethylene copolymer layer and the outer polyethylene layer for geometric reasons.

Schließlich ist aus der GB-A-1 542 333 ein Verfahren zum Beschichten von metallischen Rohren mit Polyäthylen bekannt, das zwar hinsichtlich der dabei verwendeten Materialien dem gattungsgemäßen Verfahren entspricht, bei dem jedoch mit einer hohen Erwärmungstemperatur (270-300 °C) für den Formkörper gearbeitet wird, weshalb es für die Beschichtung von Formkörpers, die bereits mit einer wärmeempfindlichen Innenbeschichtung versehen sind, nicht geeignet ist. Zudem ist es wegen des hohen Energieaufwandes für die Erwärmung unwirtschaftlich.Finally, from GB-A-1 542 333 a method for coating metallic pipes with polyethylene is known, which corresponds to the generic method with regard to the materials used, but with a high heating temperature (270-300 ° C) for the Shaped body is worked, which is why it is not suitable for the coating of shaped bodies that are already provided with a heat-sensitive inner coating. In addition, it is uneconomical for heating due to the high energy expenditure.

Ein wichtiges Qualitätsmerkmal einer Kunststoffbeschichtung ist ihre Schälfestigkeit. Die Schälfestigkeit einer mehrschichtigen Kunststoffisolierung wird durch innere Spannungen und den abrupten Übergang zwischen den verschiedenen Schichten beeinträchtigt. Im Schälversuch an Stahlrohren, die nach den vorgenannten Verfahren beschichtet wurden, erfolgt im Regelfall eine Trennung im Übergangsbereich der einzelnen Kunststoffschichten. Die Verbindung zwischen der Epoxyharz-Grundschicht und dem Stahlrohr ist dabei am festesten ; in der Schälfestigkeit zwischen den beiden thermoplastischen Schichten von Kleber (Äthylencopolymerisat) und äußerer Umhüllung (Polyäthylen) sind durch geeignete Wahl der Verfahrensparameter (z. B. Temperaturführung) auch hohe Werte erzielbar.An important quality feature of a plastic coating is its peel strength. The peel strength of multilayer plastic insulation is impaired by internal stresses and the abrupt transition between the different layers. In the peeling test on steel pipes that were coated according to the above-mentioned methods, there is usually a separation in the transition area of the individual plastic layers. The connection between the epoxy resin base layer and the steel tube is the strongest; In the peel strength between the two thermoplastic layers of adhesive (ethylene copolymer) and outer covering (polyethylene), high values can also be achieved by a suitable choice of process parameters (e.g. temperature control).

Besonders gefährdet hinsichtlich der Schälfestigkeit ist dagegen der Übergangs- bereich zwischen Duroplast und Thermoplast, also zwischen Epoxyharz-Grundschicht und Äthylencopolymerisat-Kleberschicht.In contrast, the transition area between thermoset and thermoplastic, ie between the epoxy resin base layer and the ethylene copolymer adhesive layer, is particularly at risk in terms of peel strength.

Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren zu schaffen, nach dem auf metallische Formkörper, insbesondere Rohrformstücke und Rohre, auch wenn diese bereits eine wärmeempfindliche Innenbeschichtung aufweisen, eine aus einer Grundschicht aus Epoxyharz, einer äußeren Deckschicht aus Polyäthylen und einem dazwischen liegenden Kleber aus Äthylencopolymerisat bestehende Isolierung von hoher Schälfestigkeit aufgetragen werden kann.The invention has for its object to provide a method according to the metallic moldings, in particular pipe fittings and pipes, even if they already have a heat-sensitive inner coating, from a base layer made of epoxy resin, an outer cover layer made of polyethylene and an intermediate adhesive Ethylene copolymer existing insulation of high peel strength can be applied.

Gelöst wird diese Aufgabe durch die Merkmale des Hauptanspruches. Vorteilhafte Weiterbildungen sind in den Unteransprüchen angegeben.This task is solved by the features of the main claim. Advantageous further developments are specified in the subclaims.

Der Vorteil des erfindungsgemäßen Verfahrens ist, daß es den Aufbau kompletter Rohrleitungssysteme mit der gleichen hochwertigen Isolierung an allen Teilen ermöglicht. Bisher mußten Rohrformstücke wie Krümmer, T-Stücke und dgl. auf andere Weise als die geraden und glatten Rohrstücke z. B. durch Umwickeln des Rohrformstückes mit einer Bitumen- oder Kunststoffbinde jeweils nach seiner Montage in ein Rohrleitungssystem isoliert werden, so daß für diese Formteile kein gleichwertiger Außenschutz gegeben war. Bei Beschichtungen nach dem erfindungsgemäßen Verfahren ist die Gefahr der Lochfraßkorrosion infolge von Streuströmen im Erdreich und/oder einer Unterwanderung der Isolierung durch Feuchtigkeit nicht mehr gegeben, da die Haftung der Isolierung auf dem Rohr und die Verbindung zwischen den Schichten der Isolierung wesentlich verbessert sind.The advantage of the method according to the invention is that it enables the construction of complete piping systems with the same high quality insulation on all parts. So far, pipe fittings had to be such as elbows, T-pieces and the like. In a different way than the straight and smooth pipe pieces z. B. isolated by wrapping the pipe fitting with a bitumen or plastic bandage after its assembly in a piping system, so that no equivalent external protection was given for these molded parts. With coatings according to the method according to the invention, the risk of pitting corrosion due to stray currents in the ground and / or infiltration of the insulation by moisture is no longer present, since the adhesion of the insulation to the pipe and the connection between the layers of insulation are significantly improved.

Die Erfindung ist anhand der folgenden Ausführungsbeispiele näher erläutert. Die dabei gemachten Angaben über Schichtdicken beziehen sich nicht auf die noch pulverförmige Schicht, sondern jeweils auf ihren Schichtdickenanteil an der Isolierung nach dem Aufschmelzen und Erkalten.The invention is explained in more detail using the following exemplary embodiments. The information given about layer thicknesses does not refer to the still powdery layer, but rather to the layer thickness portion of the insulation after melting and cooling.

Es zeigen :

  • Figur 1 eine schematische Darstellung des Verfahrensablaufes für eine Isolierung eines Formkörpers mit einer nur aus Äthylencopolymerisat bestehenden Kleberschicht,
  • Figur 2 eine schematische Darstellung des Verfahrensablaufes für eine Isolierung eines Formkörpers mit aus drei Teilschichten bestehender Kleberschicht,
  • Figur 3 einen Schnitt durch die Isolierung des Formkörpers gemäß Verfahrensablauf nach Figur 1,
  • Figur 4 einen Schnitt durch die Isolierung des Formkörpers gemäß Verfahrensablauf nach Figur 2.
Show it :
  • FIG. 1 shows a schematic representation of the process sequence for insulation of a molded body with an adhesive layer consisting only of ethylene copolymer,
  • FIG. 2 shows a schematic representation of the process sequence for an insulation of a shaped body with an adhesive layer consisting of three partial layers,
  • FIG. 3 shows a section through the insulation of the molded body according to the process sequence according to FIG. 1,
  • FIG. 4 shows a section through the insulation of the molded body in accordance with the process sequence according to FIG. 2.

Funktionsgleiche Teile sind in den Zeichnungen mit den gleichen Bezugszeichen versehen.Parts with the same function are provided with the same reference symbols in the drawings.

Gemäß den Figuren 1 und 3 wird die Oberfläche eines 2,5 m langen und 1,5 m breiten mit Bitumen, Zement oder Kunststoff 23 innenbeschichteten Stahlrohr-T-Stückes 17 von 150 mm Durchmesser mittels einer Hängebahn 1 aus dem Formstücklager 2 zu einer Einrichtung 3 zum Stahlstrahlen mit Stahldrahtkörnern transportiert und dort gereinigt. Anschließend wird das Formstück 17 im Warmluftofen 4 auf 90 °C erwärmt. Unter Drehung des Formstückes 17, die in der Zeichnung durch kreisförmige Pfeile angedeutet ist, wird dann in einer Beschichtungskabine 5 mit Sprühpistolen 6, auf seine Oberfläche ein etwa Raumtemperatur aufweisendes Epoxyharz/Härter-Gemisch als Vorkondensat-Pulver, welches bei einer Temperatur von 145-155 °C innerhalb von 50-70 Minuten aushärtet, in einer Schichtdicke von 30-50 fJ.m elektrostatisch aufgesprüht.According to Figures 1 and 3, the surface of a 2.5 m long and 1.5 m wide bitumen, cement or plastic 23 internally coated steel pipe T-piece 17 of 150 mm in diameter by means of a suspension track 1 from the fitting storage 2 to a device 3 transported to steel blasting with steel wire grains and cleaned there. Subsequently, the fitting 17 is heated to 90 ° C. in the warm air oven 4. When the molded part 17 is rotated, which is indicated in the drawing by circular arrows, an epoxy resin / hardener mixture which is approximately at room temperature and is used as precondensate powder in a coating booth 5 with spray guns 6, which mixture is used at a temperature of 145- 155 ° C hardens within 50-70 minutes, sprayed electrostatically in a layer thickness of 30-50 fJ.m.

Das Epoxyharz/Härter-Pulvergemisch, das den Sprühpistolen 6 aus einem Vorratsbehälter 11 zugeführt wird, schmilzt hierbei auf der Oberfläche des Formstückes 17 auf und bildet einen nicht verfließenden und nicht zusammenhängenden Film. Zur Erzeugung einer geschlossenen Grundierung 18 wird das Formstück nach dem elektrostatischen Aufsprühen des Epoxyharz/Härter-Gemisches zu einer Infrarot-Anlage 9 transportiert, in der durch Infrarot-Bestrahlung von 10 s Dauer nur die Epoxyharz-Schicht 18 auf 200 °C erwärmt wird, während die Temperatur des Stahlkörpers des T-Stückes 17 sich kaum verändert.The epoxy resin / hardener powder mixture, which is supplied to the spray guns 6 from a storage container 11, melts on the surface of the shaped piece 17 and forms a non-flowing and inconsistent film. To produce a closed primer 18, after the electrostatic spraying of the epoxy resin / hardener mixture, the molding is transported to an infrared system 9, in which only the epoxy resin layer 18 is heated to 200 ° C. by infrared radiation for 10 s, while the temperature of the steel body of the T-piece 17 hardly changes.

Die bereits eingesetzte Aushärtung des Epoxyharzes 18 wird durch die Wärmezufuhr beschleunigt. Noch vor Beendigung der Aushärtung wird das Formstück 17 in die Beschichtungskabine 5 zurücktransportiert. Etwa 30 s nach dem Aufbringen der Epoxyharz-Schicht 18 wird - wiederum elektrostatisch und in Pulverform - auf die Epoxyharz-Schicht 18, die dann eine Temperatur von 160-170 °C aufweist, mittels Sprühpistolen 7 in einer Schichtdicke von 150 fJ.m als Kleber Äthylencopolymerisat-Pulver aufgesprüht. Das Äthylencopolymerisat-Pulver, das eine Korngrößenzusammensetzung entsprechend Anspruch 2 aufweist, wird den Sprüh pistolen 7 aus einem Vorratsbehälter 12 zugeführt, nachdem es 1,5 Stunden lang bei 70 °C vorgetrocknet wurde.The curing of the epoxy resin 18 already used is accelerated by the supply of heat. Before the curing has ended, the shaped piece 17 is transported back into the coating booth 5. About 30 s after the application of the epoxy resin layer 18 is - again electrostatically and in powder form - on the epoxy resin layer 18, which then has a temperature of 160-170 ° C, using spray guns 7 in a layer thickness of 150 fJ.m as Sprayed adhesive ethylene copolymer powder. The ethylene copolymer powder, which has a grain size composition according to claim 2, the spray guns 7 is supplied from a storage container 12 after it has been predried at 70 ° C for 1.5 hours.

Während die Epoxyharz-Schicht 18 und die Äthylencopolymerisat-Schicht 19 eine innige Verbindung miteinander eingehen, wird das Formstück 17 erneut zur Infrarot-Anlage 9 transportiert. Durch weitere Infrarot-Bestrahlung von einer Minute Dauer wird die Äthylencopolymerisat-Schicht 19 bis auf 180 °C erwärmt, aufgeschmolzen und innerhalb von 5 Minuten geglättet. Diese Erwärmung kann auch auf andere Weise, z. B. durch Mikrowellenbestrahlung, erzielt werden. Nach der anschließenden erneuten Rückführung des Formstückes 17 in die Beschichtungskabine 5 wird Polyäthylen 20 aus einem Vorratsbehälter 13 durch Sprühpistolen 8 in Pulverform elektrostatisch in einer Schichtdicke von 1,8 mm auf das Äthylencopolymerisat aufgesprüht. Anschließend wird das Formstück wieder in die Infrarot-Anlage 9 eingefahren, wo die Beschichtung 30 Minuten lang mittels Infrarot-Bestrahlung auf einer Temperatur von 180-200 °C gehalten wird.While the epoxy resin layer 18 and the ethylene copolymer layer 19 form an intimate connection with one another, the molding 17 is transported again to the infrared system 9. The ethylene copolymer layer 19 is heated to 180 ° C., melted and smoothed within 5 minutes by further infrared radiation lasting one minute. This warming can also be done in other ways, e.g. B. can be achieved by microwave radiation. After the subsequent return of the shaped piece 17 to the coating booth 5, polyethylene 20 is sprayed electrostatically from the storage container 13 by spray guns 8 in powder form in a layer thickness of 1.8 mm onto the ethylene copolymer. The molding is then moved back into the infrared system 9, where the coating is kept at a temperature of 180-200 ° C. for 30 minutes by means of infrared radiation.

Statt durch Infrarot-Bestrahlung kann diese Erwärmung auch auf andere Weise, bei der die Temperatur des metallischen Kernrohres 17 nicht über 100 °C ansteigt, z. B. durch Mikrowellenbestrahlung, erzielt werden. Während dieser Erwärmung härtet die Epoxyharz-Grundierung 18 vollständig aus. Danach wird das beschichtete T-Stück 17 an Luft auf Raumtemperatur abgekühlt und in das Fertiglager 10 transportiert.Instead of infrared radiation, this heating can also in other ways, in which the temperature of the metallic core tube 17 does not rise above 100 ° C, for. B. can be achieved by microwave radiation. During this heating, the epoxy resin primer 18 cures completely. The coated T-piece 17 is then cooled in air to room temperature and transported to the finished store 10.

Im zweiten Beispiel gemäß den Figuren 2 und 4 wird ein 90°-Stahlrohrkrümmer von 100 mm Durchmesser und einer Schenkellänge von 1 000 mm beschichtet. Der Verfahrensablauf, dessen schematische Darstellung aus Figur 2 hervorgeht, stimmt großenteils mit dem des ersten Beispiels überein, so daß hier nur auf die Unterschiede eingegangen wird. Figur 4 zeigt einen Schnitt durch das beschichtete Formstück.In the second example according to FIGS. 2 and 4, a 90 ° steel elbow with a diameter of 100 mm and a leg length of 1000 mm is coated. The process sequence, the schematic representation of which is shown in FIG. 2, largely corresponds to that of the first example, so that only the differences are dealt with here. Figure 4 shows a section through the coated fitting.

Da der Rohrkrümmer 24 keine wärmeempfindliche Innenbeschichtung aufweist, wird er im Warmluftofen 4 auf mindestens 150 °C erwärmt. Dadurch verringern sich die zeitlichen Abstände zwischen den einzelnen Verfahrensschritten und insbesondere die Zeit für das Aushärten der Epoxyharz-Schicht 18. Nach dem Auftragen und Aufschmelzen der Epoxyharz-Grundschicht 18 wird der Kleber in 3 Teilschichten wie folgt aufgebracht:

  • Aus einem Behälter 14 wird mit Sprühpistolen 15 in der Beschichtungskabine 5 elektrostatisch eine 75 p.m dicke Schicht 21 aus einem auf 100 °C vorgewärmten Pulver aufgetragen, dessen Körner jeweils einen Kern von max. 50 p.m Durchmesser aus vorgetrocknetem Äthylencopolymerisat aufweisen, der schalenförmig von einer 10-20 µm dicken Schicht aus einem Epoxyharz/Härter-Gemisch umgeben ist. Das Pulver besteht somit zum überwiegenden Teil aus Epoxyharz/Härter-Gemisch. Durch die Vorwärmung des Pulvers beginnt bereits vor dem Auftragen eine Reaktion zwischen den verschiedenen Bestandteilen seiner Körner, die zu einer innigen Verbindung untereinander führen. Im Anschluß an das Auftragen wird diese Schicht 21 in der Infrarot-Anlage 9 innerhalb von 20 s. Bestrahlungsdauer bei 180 °C aufgeschmolzen. Danach wird in der Beschichtungskabine 5 mit den Sprühpistolen 25 aus einem Behälter 16 eine weitere Pulverschicht 22 von 75 µm Dicke elektrostatisch aufgetragen, wobei die Pulverkörner die umgekehrte Zusammensetzung zur ersten Teilschicht 21 aufweisen, nämlich einen Kern von max. 50 µm aus Epoxyharz/Härter-Gemisch.und eine Schale von 10-20 µm Dicke aus vorgetrocknetem Äthylencopolymerisat. Es folgt wiederum eine Infrarot-Bestrahlung in der Infrarot-Anlage 9 von 20 Sekunden Dauer zum Aufschmelzen der Schicht 22 bei 180 °C. Danach wird aus dem Behälter 12 mit den Sprühpistolen 7 in der Beschichtungskabine 5 die dritte Kleberteilschicht 19 von 150 µm Dicke aus reinem Äthylencopolymerisat-Pulver aufgetragen und in der Infrarot-Anlage 9 innerhalb von einer Minute Bestrahlungsdauer aufgeschmolzen.
Since the elbow 24 has no heat-sensitive inner coating, it is heated in the warm air oven 4 to at least 150 ° C. This reduces the time intervals between the individual method steps and in particular the time for the curing of the epoxy resin layer 18. After the epoxy resin base layer 18 has been applied and melted, the adhesive is applied in three partial layers as follows:
  • A 75 μm thick layer 21 of a powder preheated to 100 ° C. is applied from a container 14 with spray guns 15 in the coating booth 5, the grains of which each have a core of max. Have 50 pm diameter of pre-dried ethylene copolymer, which is shell-shaped surrounded by a 10-20 µm thick layer of an epoxy resin / hardener mixture. The powder therefore mainly consists of an epoxy resin / hardener mixture. By preheating the powder, a reaction between the various components of its grains begins before application, which leads to an intimate connection with one another. Following the application, this layer 21 is in the infrared system 9 within 20 s. Irradiation time melted at 180 ° C. Then, in the coating booth 5 with the spray guns 25, a further powder layer 22 of 75 μm thickness is applied electrostatically from a container 16, the powder grains having the opposite composition to the first partial layer 21, namely a core of max. 50 µm made of epoxy resin / hardener mixture. And a shell of 10-20 µm thick made of pre-dried ethylene copolymer. This is followed by infrared radiation in the infrared system 9 for 20 seconds to melt the layer 22 at 180 ° C. Thereafter, the third adhesive layer 19 of 150 μm thick made of pure ethylene copolymer powder is applied from the container 12 with the spray guns 7 in the coating booth 5 and melted in the infrared system 9 within one minute of irradiation.

Der Beschichtungsvorgang wird wie im ersten Beispiel mit dem Auftragen einer 1,8 mm dicken Schicht 20 aus Polyäthylen-Pulver, der 30-minütigen Erwärmung auf 180-200 °C und dem anschließenden Abkühlen an Luft beendet. Im Unterschied zum ersten Fall können für die Wärmebehandlung der aufgetragenen Schichten hier auch andere von außen wirkende Wärmequellen, z. B. Heißluft oder eine Kombination aus Heißluft und Infrarot-Bestrahlung, angewendet werden, da der metallische Grundkörper des Formstücks 24 keine wärmeempfindliche Innenbeschichtung aufweist und ohne Schaden auf höhere Temperaturen gebracht werden darf.The coating process is ended as in the first example with the application of a 1.8 mm thick layer 20 of polyethylene powder, the 30-minute heating to 180-200 ° C. and the subsequent cooling in air. In contrast to the first case, other externally acting heat sources, e.g. B. hot air or a combination of hot air and infrared radiation can be used, since the metallic base body of the fitting 24 has no heat-sensitive inner coating and may be brought to higher temperatures without damage.

Zu berücksichtigen ist jedoch, daß die zeitlichen Abläufe wegen der anderen Wärmeübergangsbedingungen entsprechend angepaßt werden müssen.However, it must be taken into account that the time sequences have to be adjusted accordingly due to the different heat transfer conditions.

Für die Beschichtung von geraden, glatten Rohren bietet sich anstelle der diskontinuierlichen Vorgehensweise bei Formstücken eine kontinuierliche Verfahrensweise unter Einsatz entsprechend hintereinander geschalteter Bearbeitungsstationen an. Wegen der einfachen Oberflächengeometrie kann dann für das Auftragen der abschließenden Polyäthylen-Schicht auch das bekannte Schlauchextrusionsverfahren oder das Wickelverfahren mit extrudierter Polyäthylen-Folie angewandt werden. Außerdem ist hierbei anstelle des Abkühlens an Luft zur Beschleunigung der Abläufe der Einsatz eines Wasserkühlbades oder von Sprühwasser zweckmäßig.For the coating of straight, smooth pipes, instead of the discontinuous procedure for fittings, a continuous procedure using processing stations connected in series is recommended. Because of the simple surface geometry, the known tube extrusion process or the winding process with extruded polyethylene film can then also be used for the application of the final polyethylene layer. In addition, instead of cooling in air to accelerate the processes, the use of a water cooling bath or spray water is expedient.

Der Beschichtungsvorgang für den Stahlrohrkörper 17 im ersten Beispiel führt zu einem dreischichtigen Isolieraufbau, wie er in Figur 3 dargestellt ist. Durch die spezielle Korngrößenzusammensetzung des Kleberpulvers ergibt sich hierbei ein inniger Verbund zwischen der Epoxyharz-Grundschicht 18 und dem Kleber 19. Dieser Effekt ist eine Folge davon, daß sich unter Einwirkung des elektrostatischen Feldes bevorzugt die Pulverkörner mit dem kleinsten Durchmesser unmittelbar auf der Epoxyharz-Grundschicht 18 ablagern können, die schneller als größere Körner mit der Epoxyharz-Grundschicht 18 reagieren.The coating process for the steel tube body 17 in the first example leads to a three-layer insulation structure, as shown in FIG. 3. The special grain size composition of the adhesive powder results in an intimate bond between the epoxy resin base layer 18 and the adhesive 19. This effect is a consequence of the fact that, under the influence of the electrostatic field, the powder grains with the smallest diameter preferentially lie directly on the epoxy resin base layer 18 can deposit, which react faster than larger grains with the epoxy resin base layer 18.

Wenn anstelle des Pulvers mit der speziellen Korngrößenzusammensetzung gemäß Anspruch 2 als Kleber ein Gemisch aus Äthylencopolymerisatpulver und einem pulverförmigen Epoxyharz/Härter-Gemisch gemäß Anspruch 3 verwendet wird, ergibt sich eine noch günstigere Verbindung von duroplastischer Grundschicht und thermoplastischem Kleber, da sich im elektrostatischen Feld die Epoxyharz-Pulverkörner bevorzugt an der Oberfläche der Grundschicht anlagern. Hinzukommt, daß infolge des größeren spezifischen Gewichtes des Epoxyharzes im Vergleich zum Äthylencopolymerisat die Epoxyharz-Anteile das Bestreben haben, beim Aufschmelzen nach unten auf die Epoxyharz-Grundschicht zu sinken. Dadurch stellt sich ein fließender Übergang zwischen den unterschiedlichen Materialien ein.If, instead of the powder with the special grain size composition according to claim 2, a mixture of ethylene copolymer powder and a powdery epoxy resin / hardener mixture according to claim 3 is used as the adhesive, there is an even more favorable connection of the thermosetting base layer and the thermoplastic adhesive, since the electrostatic field results in Epoxy resin powder grains should preferably be deposited on the surface of the base layer. In addition, due to the greater specific weight of the epoxy resin compared to the ethylene copolymer, the epoxy resin content tends to sink downward onto the epoxy resin base layer when it melts. This creates a smooth transition between the different materials.

Ein noch günstigeres Verhalten ergibt sich bei Beschichtungen entsprechend dem zweiten Beispiel mit formal 5-schichtigem Isolieraufbau (Figur 4). Die einzelnen Teilschichten 21, 22, 19 des Klebers zwischen Epoxyharz-Grundschicht 18 und Polyäthylen-Deckschicht 20 ermöglichen hierbei einen noch gleichmäßigeren Übergang vom duroplastischen (Epoxyharz) in den thermoplastischen Bereich (Äthylencopolymerisat). Dabei wirkt sich das unterschiedliche spezifische Gewicht von Äthylencopolymerisat und Epoxyharz während des Aufschmelzens der aufgetragenen Teilschichten 21, 22, 19 wiederum positiv auf einen fließenden Übergang der verschiedenen Materialien innerhalb und zwischen den Teilschichten 21, 22, 19 aus.An even more favorable behavior results in coatings according to the second example with a formally 5-layer insulation structure (FIG. 4). The individual sub-layers 21, 22, 19 of the adhesive between the epoxy resin base layer 18 and the polyethylene cover layer 20 allow an even more uniform transition from the thermosetting (epoxy resin) to the thermoplastic area (ethylene copolymer). The different specific weights of the ethylene copolymer and epoxy resin during the melting of the applied partial layers 21, 22, 19 in turn have a positive effect on a smooth transition of the different materials within and between the partial layers 21, 22, 19.

Die Verbesserungen, die sich nach dem erfindungsgemäßen Verfahren gegenüber dem Stand der Technik ergeben, der sich auf die Beschichtung von Stahlrohren bezieht, sind aus der nachfolgenden Tabelle ersichtlich.
(Siehe Tabelle Seite 5 f.)

Figure imgb0001
The improvements which result from the process according to the invention compared to the prior art which relates to the coating of steel pipes can be seen from the table below.
(See table on page 5 f.)
Figure imgb0001

Claims (13)

1. Method for the coating of metallic shaped bodies, in particular pipes and tubular shaped parts, with polyethylene, whereby the surface of the cleaned shaped body, which has been heated to at least 80 °C, is firstly primed with an epoxy resin/hardener mixture, then ethylene copolymer is applied thereon as adhesive and subsequently polyethylene is applied as external cover layer, after which the coated shaped bodies are cooled down to ambient temperature, characterized by the following steps :
a) the epoxy resin/hardener mixture, as a pre-condensate powder which hardens at a temperature of from 145-155 °C within 50-70 minutes, is sprayed electrostatically onto the surface of the shaped body in a quantity producing a layer thickness of from 30 to 50 µm and is then heated to a temperature above 150 °C by means of a heat source which acts from the outside, until the chemical reaction products thereby arising have volatilized ;
b) during the hardening of the epoxy resin layer which is thereby setting in, pre-dried ethylene copolymer powder is sprayed electrostatically onto the primary layer in one or more layers, which together produce a layer thickness of at least 150 µm, and after the application of each individual layer it is heated to a temperature of at least 180 °C by a heat source which acts from outside, and is melted on :
c) the polyethylene is then either sprayed electrostatically in powder form onto the heated ethylene copolymer layer in a quantity producing a layer thickness of at least 1.8 mm and is then melted on at a temperature between 180 and 200 °C by heat which is applied from the outside, or in the coating of pipes it is extruded as a tubular or winding foil and is applied onto the surface.
2. Method according to Claim 1, characterized by application of an adhesive of ethylene copolymer powder with a grain size composition of
approx. 70 % with 30 µm grain size,
approx. 20 % with 20 µm grain size and
approx. 10 % with 10 µm grain size.
3. Method according to Claim 1, characterized in that as adhesive, a mixture of an ethylene copolymer powder and a pulverulent epoxy resin/hardener mixture, the weight proportion of which amounts to at least 30 %, is applied in a quantity producing a layer thickness of at least 75 µm.
4. Method according to Claim 1, characterized in that as adhesive, an ethylene copolymer powder, which is pre-heated to 100 °C, is applied in a quantity producing a layer thickness of at least 75 µm, the grains of which are surrounded in each case in a shell-shaped manner by an epoxy resin/hardener mixture.
5. Method according to Claim 1, characterized in that as adhesive an ethylene copolymer powder, which is pre-heated to 100 °C, is applied in a quantity producing a layer thickness of at least 75 wm, the grains of which in each case have a core of an epoxy resin/hardener mixture, which is surrounded in a shell-shaped manner by the ethylene copolymer.
6. Method according to Claim 4 or 5, characterized in that as adhesive a powder formed from ethylene copolymer and epoxy resin/hardener mixture, the grains of which in each case have a core of a maximum of 50 µm diameter and in each case have a shell of 10-20 p.m thickness, is applied.
7. Method according to Claim 1, characterized in that after application, the epoxy resin/hardener mixture is preferably heated up to 190-210 °C.
8. Method according to one or more of Claims 1-7, characterized in that the individual layers are heated by means of infrared radiation and/or hot air.
9. Method according to one or more of Claims 1-8, characterized in that before application, the ethylene copolymer powder component is predried in each case for 1.5 hours at 70 °C.
10. Method according to one or more of Claims 1-9, characterized in that a metallic shaped body which is provided with a heat-sensitive internal coating, is heated immediately prior to priming to a temperature of a maximum of 100 °C.
11. Method according to one or more of Claims 1-9, characterized in that a metallic shaped body without a heat-sensitive internal coating is heated immediately prior to priming to a temperature of a maximum of 200 °C.
12. Method according to one or more of Claims 1-9, characterized in that a metallic shaped body without a heat-sensitive internal coating is firstly heated to 170 °C and immediately prior to priming is heated in the surface region by means of infrared radiation to 200 °C.
13. Method according to Claims 1, 2 and 4-6 and one or more of Claims 7-12, characterized in that the adhesive layer is applied in partial layers between the epoxy primary layer and polyethylene cover layer in the following sequence :
a) In a quantity producing a layer thickness of 75 µm, the powder consisting of ethylene copolymer cores with surrounding epoxy resin/hardener mixture shell is applied.
b) In a quantity producing a layer thickness of 75 µm, the powder consisting of epoxy resin/hardener mixture cores with surrounding ethylene copolymer shell is applied.
c) In a quantity producing a layer thickness of 150 µm, ethylene copolymer powder is applied.
EP83730102A 1982-12-20 1983-10-25 Method of coating shaped objects with polyethylene Expired EP0112277B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT83730102T ATE27412T1 (en) 1982-12-20 1983-10-25 PROCESS FOR COATING METALLIC MOLDINGS WITH POLYAETHYLENE.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3247512A DE3247512C1 (en) 1982-12-20 1982-12-20 Process for coating metallic moldings with polyethylene
DE3247512 1982-12-20

Publications (2)

Publication Number Publication Date
EP0112277A1 EP0112277A1 (en) 1984-06-27
EP0112277B1 true EP0112277B1 (en) 1987-05-27

Family

ID=6181440

Family Applications (1)

Application Number Title Priority Date Filing Date
EP83730102A Expired EP0112277B1 (en) 1982-12-20 1983-10-25 Method of coating shaped objects with polyethylene

Country Status (6)

Country Link
US (1) US4685985A (en)
EP (1) EP0112277B1 (en)
AT (1) ATE27412T1 (en)
CA (1) CA1205333A (en)
DD (1) DD220238A5 (en)
DE (2) DE3247512C1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4431578C1 (en) * 1994-09-05 1995-11-09 Knut Huebner Application of corrosion protective cladding to metal surfaces

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3324791A1 (en) * 1983-07-09 1985-01-17 Hoechst Ag, 6230 Frankfurt METHOD FOR COATING METAL SUBSTRATES
DE3444523A1 (en) * 1984-12-06 1986-06-12 Hoesch Ag, 4600 Dortmund METAL PIPE WITH A CORROSION AND SHOCK PROTECTION COATING AND METHOD FOR THE PRODUCTION THEREOF
DE3528682A1 (en) 1985-08-07 1987-02-12 Mannesmann Ag METHOD FOR REMOVING A PLASTIC INSULATING LAYER FROM STEEL TUBE ENDS
DE3628670A1 (en) * 1986-08-23 1988-02-25 Volkmar Eigenbrod PLASTIC COATING METHOD AND COATING PRODUCED BY THE METHOD
DE3639417C1 (en) * 1986-11-18 1987-11-26 Mannesmann Ag Process for encasing objects made of steel with plastic
US5178902A (en) * 1990-12-21 1993-01-12 Shaw Industries Ltd. High performance composite coating
US5300336A (en) * 1990-12-21 1994-04-05 Shaw Industries Ltd. High performance composite coating
AU3476693A (en) * 1992-01-17 1993-08-03 Arnco Corporation Prelubricated duct
DE4208781C1 (en) * 1992-03-17 1992-12-10 Mannesmann Ag, 4000 Duesseldorf, De Drying system for metal pipe before surface treatment e.g. polymer coating - which heats with inductive loops with a warmed airstream passing through spiral loops
US5370831A (en) * 1992-12-18 1994-12-06 United Technologies Corporation Method of molding polymeric skins for trim products
USH1888H (en) * 1993-03-29 2000-10-03 The United States Of America As Represented By The Secretary Of The Navy Process for applying high application-temperature coating to heat-sensitive aluminum alloys
US5441373A (en) * 1993-09-07 1995-08-15 Illinois Tool Works Inc. Coated fastener
GB9902185D0 (en) * 1999-02-01 1999-03-24 Cit Alcatel A protective coating
GB0121015D0 (en) * 2001-08-30 2001-10-24 Bredero Price Coaters Ltd Coating procedures and equipment
DE10233344A1 (en) * 2002-07-23 2004-02-12 Degussa Ag Polyamide powder for coating metal surfaces in a fluidized bed sinter process useful in metal coating, e.g. of clips for corsetry, as minicoat powders of mean grain size 20-70 micron, and for coating tubes in the automobile industry
EP1473506A1 (en) 2003-05-02 2004-11-03 Walter Stucke Method for removing insulation from insulated steel pipes
CA2537348A1 (en) * 2006-02-22 2007-08-22 Shawcor Ltd. Coating method for pipe having weld bead
EP2032340B1 (en) * 2006-06-05 2013-07-24 3M Innovative Properties Company Method for applying a protective layer to a pipe joint
KR101166886B1 (en) * 2012-04-23 2012-07-18 (주)금강 Metal-resin complex pipe easily windable in ring shape and, manufacturing methods for the same
EP2712682A1 (en) * 2012-09-27 2014-04-02 Dallmer GmbH & Co. KG Method for coating a surface of a drain component
WO2014063222A1 (en) * 2012-10-24 2014-05-01 Liburdi Engineering Limited A composite welding wire and method of manufacturing
DE102013006206A1 (en) 2013-04-04 2014-10-09 Salzgitter Mannesmann Line Pipe Gmbh Plastic coated steel pipe
US10702953B2 (en) 2014-10-15 2020-07-07 Liburdi Engineering Limited Composite welding wire and method of manufacturing
DE202015002866U1 (en) * 2015-04-17 2015-06-19 Kolja Kuse Solar module with stone frame
JP6443321B2 (en) * 2015-12-24 2018-12-26 株式会社オートネットワーク技術研究所 Wire protection member and wire harness

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL260568A (en) * 1961-01-25
FR2012172A1 (en) * 1968-07-02 1970-03-13 Chemo Lak As Resin coating wood panels
CA1039126A (en) * 1976-02-05 1978-09-26 Mellapalayam R. Parthasarathy Electrostatic powder deposition on elongated substrates in plural fusible layers
GB1542333A (en) * 1977-11-18 1979-03-14 British Steel Corp Coating of pipes
US4211595A (en) * 1978-10-10 1980-07-08 The Kendall Company Method of coating pipe
US4213486A (en) * 1978-11-06 1980-07-22 The Kendall Company Coated pipe and process for making same
DE2940388A1 (en) * 1979-10-05 1981-04-16 Hoechst Ag, 6000 Frankfurt METHOD FOR COATING METAL TUBES
DE3101684A1 (en) * 1981-01-21 1982-08-26 Hoechst Ag, 6000 Frankfurt "METHOD FOR COATING METAL TUBES AND USE OF THE TUBES PRODUCED BY THIS METHOD"
DE3230955C2 (en) * 1982-08-20 1984-10-04 Hoesch Werke Ag, 4600 Dortmund Process for sheathing a steel pipe with a sheathing layer made of polyethylene

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4431578C1 (en) * 1994-09-05 1995-11-09 Knut Huebner Application of corrosion protective cladding to metal surfaces

Also Published As

Publication number Publication date
US4685985A (en) 1987-08-11
CA1205333A (en) 1986-06-03
DD220238A5 (en) 1985-03-27
DE3371748D1 (en) 1987-07-02
EP0112277A1 (en) 1984-06-27
ATE27412T1 (en) 1987-06-15
DE3247512C1 (en) 1987-11-12

Similar Documents

Publication Publication Date Title
EP0112277B1 (en) Method of coating shaped objects with polyethylene
DE3247510C2 (en) Process for encasing a shaped body and application of the process to a shaped body with a heat-sensitive inner layer
DE69209596T2 (en) Multi-layer high-performance coating
DD147397A5 (en) COATED SUBJECT AND METHOD OF APPLYING THE LAYER
DE2830593B1 (en) Method and device for the inner and outer coating of metal pipes
DE3335502C1 (en) Process and device for covering a preheated steel pipe with pulverulent coating materials
DE2255084C3 (en) Composite pipe and process for its manufacture
DE102011052520A1 (en) Device for coating electrically conductive wires
EP0427111B1 (en) Method of manufacturing roughened fibre reinforcing elements for concrete structures
DE4028198C2 (en)
DE2519046B2 (en) Method of applying a layer of polyethylene to a steel pipe
DE2930870B1 (en) Method and device for producing enamelled wire, especially strong wire
DE2257135C3 (en) Method for producing a composite pipe consisting of a metallic core tube and a thermoplastic plastic jacket
DE2218320A1 (en) PROCESS FOR COATING PLASTIC PARTS
DE102014102621A1 (en) Large-tube arrangement and method for producing such
DE10014704C2 (en) Process for applying a corrosion protection system to a component
EP0198144B2 (en) Method for enveloping a steel pipe
DE2022802A1 (en) Process for the production of a plastic casing for metal wires
DE10233345A1 (en) Continuous chromate-free pipe coatings by fluidized bed sintering
DE1529784C3 (en) Method for coating wire with a thermoplastic and device for this
DE4344951C2 (en) Method and device for the three-layer coating of hollow metallic shaped bodies
DD231313A5 (en) METHOD OF COATING THROUGH METAL FORM BODIES WITH THERMOPLASTIC PLASTIC
DE2739321A1 (en) Plastics coated pipe deformed from tape - has face forming inner wall coated with further plastics layer to inhibit corrosion at interface
DE2247738A1 (en) METAL PIPE LINING METHOD
DE2743379C3 (en) Process for applying a protective coating to steel surfaces

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19831201

AK Designated contracting states

Designated state(s): AT BE CH DE FR GB IT LI NL

ITF It: translation for a ep patent filed

Owner name: BARZANO' E ZANARDO MILANO S.P.A.

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE FR GB IT LI NL

REF Corresponds to:

Ref document number: 27412

Country of ref document: AT

Date of ref document: 19870615

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3371748

Country of ref document: DE

Date of ref document: 19870702

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19930910

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19930913

Year of fee payment: 11

Ref country code: FR

Payment date: 19930913

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19930914

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19930916

Year of fee payment: 11

ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19931031

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19931123

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19941025

Ref country code: AT

Effective date: 19941025

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19941031

Ref country code: CH

Effective date: 19941031

Ref country code: BE

Effective date: 19941031

BERE Be: lapsed

Owner name: MANNESMANN A.G.

Effective date: 19941031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19950501

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19941025

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19950630

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19950701

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST