EP0112238A2 - Procédé et dispositif d'implantation de particules dans un solide - Google Patents

Procédé et dispositif d'implantation de particules dans un solide Download PDF

Info

Publication number
EP0112238A2
EP0112238A2 EP83402341A EP83402341A EP0112238A2 EP 0112238 A2 EP0112238 A2 EP 0112238A2 EP 83402341 A EP83402341 A EP 83402341A EP 83402341 A EP83402341 A EP 83402341A EP 0112238 A2 EP0112238 A2 EP 0112238A2
Authority
EP
European Patent Office
Prior art keywords
particles
energetic
target
gas
solid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP83402341A
Other languages
German (de)
English (en)
Other versions
EP0112238A3 (fr
Inventor
Michel Bruel
Alain Soubie
Philippe Spinelli
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Original Assignee
Commissariat a lEnergie Atomique CEA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat a lEnergie Atomique CEA filed Critical Commissariat a lEnergie Atomique CEA
Publication of EP0112238A2 publication Critical patent/EP0112238A2/fr
Publication of EP0112238A3 publication Critical patent/EP0112238A3/fr
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/317Electron-beam or ion-beam tubes for localised treatment of objects for changing properties of the objects or for applying thin layers thereon, e.g. for ion implantation
    • H01J37/3171Electron-beam or ion-beam tubes for localised treatment of objects for changing properties of the objects or for applying thin layers thereon, e.g. for ion implantation for ion implantation

Definitions

  • the present invention relates to a method and a device for implanting particles in a solid. It finds its application in particular in the doping of semiconductors in particular for the production of MOS transistors and for the production of resistance of low values in bipolar circuits.
  • One method of implanting particles in a solid is ion implantation.
  • the ions of the species which one wishes to implant in the solid are created in an ion source.
  • a beam of these ions is then formed which is accelerated to impart sufficient energy to them to penetrate the solid.
  • an important drawback of this method lies in the fact that it is difficult to obtain a pure ion beam, that is to say an ion beam containing only the ions to be implanted in the solid.
  • the ion source which produces ions for example in a conventional manner by an electric discharge in a gas, indifferently produces the ions of the species which it is desired to implant in the solid and other ions. It is then necessary to carry out a sorting of the ions produced in order to accelerate only those which it is desired to implant in the solid.
  • a known process derived from ion implantation is implantation by recoil.
  • the solid is covered with a thin layer of the element that one wishes to implant there.
  • a beam of energetic primary particles for example argon ions, is then directed towards this solid. These primary energetic particles strike the atoms of the thin layer and thus transfer their energy to them, which allows the atoms of the thin layer to penetrate into the solid.
  • This retraction implantation method is mainly limited by ionic erosion of the thin layer deposited on the solid as implantation takes place. The disappearance of this layer limits the doses of particles that can be implanted in the solid.
  • the object of the present invention is precisely to remedy these drawbacks by replacing, in the retraction implantation method, the thin layer of particles to be implanted with a gas of particles to be implanted located opposite the solid.
  • the subject of the invention is a method of implanting particles in a solid in which a substantially parallel beam of energetic particles A is created, and on the path of this substantially parallel beam of energetic particles A are particles B which, by interaction with the energetic particles A, are projected towards the target with sufficient energy to penetrate there, which is characterized in that the particles B are in the gaseous state, this gas occupying an area situated opposite the target .
  • the direction of the substantially parallel beam of energetic particles A is approximately perpendicular to the surface of the target.
  • the particles A are electrically charged.
  • the particles B are electrically neutral.
  • the subject of the invention is also a device for implanting particles in a solid comprising in a vacuum enclosure a target support, a solid target, characterized in that it further comprises a source of energetic particles A delivering a beam substantially parallel of energetic particles A, a source of particles B to be implanted, a means for confining the particles B communicating with the source of particles B, comprising a primary opening for receiving the substantially parallel beam of energetic particles A and a secondary opening for allowing the retreating particles B to reach the target.
  • the confinement means is of generally cylindrical shape, of generatrices parallel to the direction of the substantially parallel beam of energetic pardcules A and it comprises an appendage forming a receptacle for the source of particles B.
  • the confinement means comprises a means for heating the gas of particles B.
  • the confinement means is provided with cooling means for condensing the gas of particles B.
  • the confinement means is provided with a multicollimator between the primary opening and the zone where the gas of particles B prevails and with another multicollimator between this zone and the secondary opening.
  • the two multicollimators are aligned.
  • FIG. 1 represents a device for implanting particles in a solid according to the invention.
  • the various elements of the device are placed in an enclosure 2 under vacuum.
  • This enclosure 2 comprises a target support 4 on which has been fixed a target 6 which constitutes the solid in which it is desired to implant particles.
  • It also comprises a source 8 of energy particles A delivering a substantially parallel beam 11 of energy particles A.
  • the source 8 of energy particles A comprises a source of particles A and a means of acceleration of these particles.
  • This source 8 of energetic particles A has been represented in FIG. 1 in enclosure 2. It is understood that this source 8 of energetic particles A may also be found in another enclosure than enclosure 2 communicating through an orifice with this enclosure 2.
  • the device further comprises a source 10 of particles B to be implanted located in a receptacle 18 communicating with a confinement means 12.
  • the particles B generated by the source 10 form a gas 24 whose spatial extent is limited by the confinement means 12 which maintains this gas 24 on the path of the parallel beam 11 of energetic particles A.
  • the source 10 of particles B to be implanted is shown in the figure in the form of a solid.
  • the gas 24 of particles B is in this case obtained by liquefaction and then evaporation or directly by sublimation of this solid. If the particles B are in the liquid state in the receptacle 18, it will suffice to evaporate them.
  • the source 10 may be a nozzle or a porous tube connected to a reservoir of gas of particles B possibly located outside the enclosure 2.
  • gas 24 can be replaced by a flow of particles B, for example a vacuum evaporation flow or a flow of sprayed particles.
  • the confinement means 12 has a primary opening 14 allowing the substantially parallel beam 11 of energetic particles A to interact with the particles B of the gas 24. It also has a secondary opening 16 which allows the receding particles B 13 to reach the target 6.
  • the transfer of energy between the energetic particles A of the substantially parallel beam 11 and the particles B of the gas 24 is all the better the greater the percentage of particles A of the parallel beam 11 interacting with the particles B.
  • the mean free path in the gas 24 of the energetic particles A of the substantially parallel beam 11 must be of the same order of magnitude as the spatial extension of the gas 24 in the direction of the beam.
  • parallel 11 of energetic particles A This mean free path of the energetic particles A of the substantially parallel beam 11 is a function of the density of the gas 24. This density can be adjusted by the heating means 20.
  • the operating process is simple. It consists in delivering a substantially parallel beam 11 of energetic particles A of sufficient power for the energetic particles A to pass through the gas 24 and reach the target 6. The density of the gas 24 is then increased by heating it by the heating means 20 up to 'so that no more particles A reaching target 6 are observed.
  • the confinement means 12 finally comprises cooling means 22 located near the primary opening 14 and the secondary opening 16 which carry out the condensation of the gas of particles B tending to escape from the confinement means 12. This improves the confinement of the gas 24 and avoids polluting the enclosure 2 with particles B.
  • FIG. 2 shows a cross section of a multicollimator.
  • This multicollimator consists of the juxtaposition of collimators parallel to each other such as the collimator 26.
  • the section of these collimators 26 is trapezoidal. It is obvious that this section can have another geometry, for example circular, square, triangular, etc.
  • This multi-collimator can be produced simply by superposing alternately planar and corrugated sheets.
  • FIG. 3 represents a particular embodiment of the confinement means 12.
  • This confinement means 12 comprises a receptacle 18 provided with heating means 20, cooling means 22. It further comprises two multicollimators, one located between the primary opening 14 of the confinement means 12 and the zone where the gas 24 of particles B to be implanted prevails, the other located between this same zone and the secondary opening 16 of the confinement means 12. These two multicollimators allow better confinement the gas 24 in the central part of the confinement means 12 and therefore of reducing the gas losses.
  • the axis of the collimators will preferably be parallel to the parallel beam 11 of energetic particles A, this so that the energetic particles A reach the gas 24 sa.ns interact with the multicollimator, therefore without losing energy.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Physical Vapour Deposition (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)

Abstract

L'invention concerne un procédé et un dispositif d'implantation de particules dans un solide. Le procédé d'implantation de particules dans un solide dans lequel on crée un faisceau parallèle (11) de particules énergétiques A, on place sur le chemin de ce faisceau parallèle (11) de particules énergétiques A des particules B qui, par interaction avec les particules énergétiques A, sont projetées vers une cible (6) avec une énergie suffisante pour y pénétrer, est caractérisé en ce que les particules B sont à l'état gazeux, ce gaz (24) occupant une zone située en regard de la cible (6). Cette invention trouve notamment son application dans le dopage des semiconducteurs.

Description

  • La présente invention a pour objet un procédé et un dispositif d'implantation de particules dans un solide. Elle trouve notamment son application dans le dopage des semiconducteurs en particulier pour la réalisation de transistors MOS et pour la réalisation de résistance de faibles valeurs dans les circuits bipolaires.
  • Une méthode d'implantation de particules dans un solide, connue de l'homme de l'art, est l'implantation ionique. Dans cette méthode, on crée dans une source d'ions les ions de l'espèce que l'on désire implanter dans le solide. On forme ensuite un faisceau de ces ions que l'on accélère pour leur communiquer l'énergie suffisante pour pénétrer dans le solide.
  • Un inconvénient important de cette méthode réside dans le fait qu'il est difficile d'obtenir un faisceau d'ions pur, c'est-à-dire un faisceau d'ions ne contenant que les ions à implanter dans le solide. En effet la source d'ions, qui produit des ions par exemple de manière classique par une décharge électrique dans un gaz, produit indifféremment les ions de l'espèce que l'on désire implanter dans le solide et d'autres ions. Il est alors nécessaire d'effectuer un tri des ions produits pour n'accélérer que ceux que l'on désire implanter dans le solide.
  • Un procédé connu dérivé de l'implantation ionique est l'implantation par recul. Dans cette méthode, on recouvre le solide d'une mince couche de l'élément que l'on désire y implanter. Un faisceau de particules primaires énergétiques, par exemple des ions argon, est ensuite dirigé vers ce solide. Ces particules primaires énergétiques heurtent les atomes de la couche mince et leur transfèrent ainsi leur énergie, ce qui permet aux atomes de la couche mince de pénétrer dans le solide.
  • Cette méthode d'implantation par recul est limitée principalement par l'érosion ionique de la couche mince déposée sur le solide à mesure que l'implantation se déroule. La disparition de cette couche limite les doses de particules que l'on peut implanter dans le solide.
  • La présente invention a justement pour but de remédier à ces inconvénients en remplaçant dans la méthode d'implantation par recul la couche mince de particules à implanter par un gaz de particules à implanter situé en regard du solide.
  • De façon plus précise l'invention a pour objet un procédé d'implantation de particules dans un solide dans lequel on crée un faisceau sensiblement parallèle de particules énergétiques A, on place sur le chemin de ce faisceau sensiblement parallèle de particules énergétiques A des particules B qui, par interaction avec les particules énergétiques A, sont projetées vers la cible avec une énergie suffisante pour y pénétrer, qui se caractérise en ce que les particules B sont à l'état gazeux, ce gaz occupant une zone située en regard de la cible.
  • Selon une variante préférée, la direction du faisceau sensiblement parallèle de particules énergétiques A est à peu près perpendiculaire à la surface de la cible.
  • Selon une caractéristique secondaire, les particules A sont électriquement chargées.
  • Selon une autre caractéristique secondaire, les particules B sont électriquement neutres.
  • L'invention a également pour objet un dispositif d'implantation de particules dans un solide comprenant dans une enceinte sous vide un support de cible, une cible solide, caractérisé en ce qu'il comprend en outre une source de particules énergétiques A délivrant un faisceau sensiblement parallèle de particules énergétiques A, une source de particules B à implanter, un moyen de confinement des particules B communiquant avec la source de particules B, comportant une ouverture primaire pour recevoir le faisceau sensiblement parallèle de particules énergétiques A et une ouverture secondaire pour permettre aux particules B de recul d'atteindre la cible.
  • Selon un mode de réalisation préféré, le moyen de confinement est de forme générale cylindrique, de génératrices parallèles à la direction du faisceau sensiblement parallèle de pardcules énergétiques A et il comprend un appendice formant réceptacle de la source de particules B.
  • Selon une caractéristique secondaire, le moyen de confinement comprend un moyen de chauffage du gaz de particules B.
  • Selon une autre caractéristique secondaire, le moyen de confinement est muni de moyens de refroidissement pour condenser le gaz de particules B.
  • Selon une autre caractéristique secondaire, le moyen de confinement est muni d'un multicollimateur entre l'ouverture primaire et la zone où règne le gaz de particules B et d'un autre multicollimateur entre cette zone et l'ouverture secondaire.
  • Selon une autre caractéristique secondaire, les deux multicollimateurs sont alignés.
  • D'autres caractéristiques et avantages de l'invention ressortiront mieux de la description qui va suivre, donnée à titre illustratif mais non limitatif, en référence aux dessins annexés dans lesquels
    • - la figure 1 représente un mode de réalisation du dispositif selon l'invention
    • la figure 2 représente une coupe transversale d'un multicollimateur ;
    • - la figure 3 représente un mode de réalisation particulier du moyen de confinement.
  • La figure 1 représente un dispositif d'implantation de particules dans un solide selon l'invention. Les différents éléments du dispositif sont placés dans une enceinte 2 sous vide. Cette enceinte 2 comprend un support de cible 4 sur lequel a été fixée une cible 6 qui constitue le solide dans lequel on désire implanter des particules. Elle comprend également une source 8 de particules énergétiques A délivrant un faisceau sensiblement parallèle 11 de particules énergétiques A. La source 8 de particules énergétiques A comprend une source de particules A et un moyen d'accélération de ces particules. Cette source 8 de particules énergétiques A a été représentée sur la figure 1 dans l'enceinte 2. Il est bien entendu que cette source 8 de particules énergétiques A peut aussi se trouver dans une autre enceinte que l'enceinte 2 communiquant par un orifice avec cette enceinte 2.
  • Le dispositif comprend en outre une source 10 de particules B à implanter située dans un réceptacle 18 communiquant avec un moyen de confinement 12. Les particules B engendrées par la source 10 forment un gaz 24 dont l'extension spatiale est limitée par le moyen de confinement 12 qui maintient ce gaz 24 sur la trajectoire du faisceau parallèle 11 de particules énergétiques A. La source 10 de particules B à implanter est représentée sur la figure sous la forme d'un solide. Le gaz 24 de particules B est dans ce cas obtenu par liquéfaction puis évaporation ou directement par sublimation de ce solide. Si les particules B sont à l'état liquide dans le réceptacle 18, il suffira de les évaporer. Si les particules B sont gazeuses dans les conditions de température et de pression de l'opération, la source 10 pourra être une buse ou un tube poreux relié à un réservoir de gaz de particules B situé éventuellement hors de l'enceinte 2. Enfin, on peut remplacer le gaz 24 par un flux de particules B par exemple un flux d'évaporation sous vide ou un flux de particules pulvérisées.
  • Le moyen de confinement 12 possède une ouverture primaire 14 permettant au faisceau sensiblement parallèle 11 de particules énergétiques A d'interagir avec les particules B du gaz 24. Il possède également une ouverture secondaire 16 qui permet aux particules B de recul 13 d'atteindre la cible 6.
  • Le transfert d'énergie entre les particules énergétiques A du faisceau sensible ment parallèle 11 et les particules B du gaz 24 est d'autant meilleur que le pourcentage de particules A du faisceau parallèle 11 interagissant avec les particules B est important.
  • Pour que ce transfert d'énergie soit optimal, il faut que le libre parcours moyen dans le gaz 24 des particules énergétiques A du faisceau sensible ment parallèle 11 soit du même ordre de grandeur que l'extension spatiale du gaz 24 dans la direction du faisceau parallèle 11 de particules énergétiques A. Ce libre parcours moyen des particules énergétiques A du faisceau sensiblement parallèle 11 est fonction de la densité du gaz 24. Cette densité peut être ajustée par les moyens de chauffage 20. Le procédé opératoire est simple. Il consiste à délivrer un faisceau sensiblement parallèle 11 de particules énergétiques A de puissance suffisante pour que les particules énergétiques A traversent le gaz 24 et atteignent la cible 6. On accroît alors la densité du gaz 24 en le chauffant par les moyens de chauffage 20 jusqu'à ce que l'on n'observe plus de particules A atteignant la cible 6.
  • Le moyen de confinement 12 comprend enfin des moyens de refroidissement 22 situés près de l'ouverture primaire 14 et de l'ouverture secondaire 16 qui réalisent la condensation du gaz de particules B tendant à s'échapper du moyen de confinement 12. Ceci améliore le confinement du gaz 24 et évite de polluer l'enceinte 2 par des particules B.
  • La figure 2 représente une coupe transversale d'un multicollimateur. Ce multicollimateur est constitué de la juxtaposition de collimateurs parallèles entre eux tels que le collimateur 26. Sur la figure 2, la section de ces collimateurs 26 est trapézoïdale. Il est bien évident que cette section peut avoir une autre géométrie, par exemple circulaire, carrée, triangulaire, etc.... Ce multicollimateur peut être réalisé simplement par la superposition de tôles alternativement planes et ondulées.
  • La figure 3 représente un mode de réalisation particulier du moyen de confinement 12. Ce moyen de confinement 12 comprend un réceptacle 18 muni de moyens de chauffage 20, des moyens de refroidissement 22. Il comprend en outre deux multicollimateurs, l'un situé entre l'ouverture primaire 14 du moyen de confinement 12 et la zone où règne le gaz 24 de particules B à implanter, l'autre situé entre cette même zone et l'ouverture secondaire 16 du moyen de confinement 12. Ces deux multicollimateurs permettent de mieux confiner le gaz 24 dans la partie centrale du moyen de confinement 12 et donc de diminuer les pertes de gaz. L'axe des collimateurs sera préférentiellement parallèle au faisceau parallèle 11 de particules énergétiques A, ceci pour que les particules énergétiques A atteignent le gaz 24 sa.ns interagir avec le multicollimateur, donc sans perdre d'énergie.

Claims (10)

1. Procédé d'implantation de particules dans un solide dans lequel on crée un faisceau sensible ment parallèle (11) de particules énergétiques A, on place sur le chemin de ce faisceau sensihle ment parallèle (11) de particules énergétiques A, des particules B qui, par interaction avec les particules énergétiques A, sont projetées vers une cible (6) avec une énergie suffisante pour y pénétrer, caractérisé en ce que les particules B sont à l'état gazeux, ce gaz (24) occupant une zone située en regard de la cible (6).
2. Procédé d'implantation de particules selon la revendication 1, caractérisé en ce que la direction du faisceau sensiblement parallèle (11) de particules énergétiques A est àpeu près perpendiculaire à la surface de la cible (6).
3. Procédé d'implantation de particules selon l'une quelconqoe des revendications 1 et 2, caractérisé en ce que les particules A sont électriquement chargées.
4. Procédé d'implantation de particules selon l'une quelconque des revendications 1 à 3, caractérisé en ce que les particules B sont électriquement neutres.
5. Dispositif d'implantation de particules dans un solide comprenant dans une enceinte (2) sous vide un support de cible (4), une cible (6) solide, caractérisé en ce qu'il comprend en outre une source (8) de particules énergétiques A délivrant un faisceau sensiblement parallèle (11) de particules énergétiques A, une source (10) de particules B à implanter dans la cible (6), un moyen de confinement (12) des particules B communiquant avec la source (10) de particules B, comportant une ouverture primaire (14) pour recevcoir le faisceau sensiblement parallèle (11) de particules énergétiques A et une ouverture secondaire (16) pour éjecter les particules de recul B (13) vers la cible (6).
6. Dispositif selon la revendication 5, caractérisé en ce que le moyen de confinement (12) est de forme générale cylindrique, de génératrices parallèles à la direction du faisceau parallèle (11) de particules énergétiques A et en ce qu'il comprend un appendice (18) formant réceptacle de la source (10) de particules B.
7. Dispositif selon l'une quelconque des revendications 5 et 6, caractérisé en ce que le moyen de confinement (12) comprend un moyen de chauffage (20) du gaz (24) de particules B.
8. Dispositif selon l'une quelconque des revendications 5 à 7, caractérisé en ce que le moyen de confinement (12) est muni de moyens de refroidissement (22) pour condenser le gaz (24) de particules B.
9. Dispositif selon l'une quelconque des revendications 5 à 8, caractérisé en ce que le moyen de confinement (12) est muni d'un multicollimateur entre l'ouverture primaire (14) et la zone où règne le gaz (24) de particules B et d'un autre multicollimateur entre cette zone et l'ouverture secondaire (16).
10. Dispositif selon la revendication 9, caractérisé en ce que les deux multicollimateurs sont alignés.
EP83402341A 1982-12-10 1983-12-05 Procédé et dispositif d'implantation de particules dans un solide Withdrawn EP0112238A3 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8220720A FR2537777A1 (fr) 1982-12-10 1982-12-10 Procede et dispositif d'implantation de particules dans un solide
FR8220720 1982-12-10

Publications (2)

Publication Number Publication Date
EP0112238A2 true EP0112238A2 (fr) 1984-06-27
EP0112238A3 EP0112238A3 (fr) 1984-07-25

Family

ID=9279958

Family Applications (1)

Application Number Title Priority Date Filing Date
EP83402341A Withdrawn EP0112238A3 (fr) 1982-12-10 1983-12-05 Procédé et dispositif d'implantation de particules dans un solide

Country Status (4)

Country Link
US (1) US4585945A (fr)
EP (1) EP0112238A3 (fr)
JP (1) JPS59114744A (fr)
FR (1) FR2537777A1 (fr)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2577714A1 (fr) * 1984-10-10 1986-08-22 Us Energy Procede pour la formation de structures submicroniques a haute resolution sur une surface de substrat
US5985742A (en) * 1997-05-12 1999-11-16 Silicon Genesis Corporation Controlled cleavage process and device for patterned films
US6027988A (en) * 1997-05-28 2000-02-22 The Regents Of The University Of California Method of separating films from bulk substrates by plasma immersion ion implantation
US8993410B2 (en) 2006-09-08 2015-03-31 Silicon Genesis Corporation Substrate cleaving under controlled stress conditions
US9362439B2 (en) 2008-05-07 2016-06-07 Silicon Genesis Corporation Layer transfer of films utilizing controlled shear region

Families Citing this family (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0610348B2 (ja) * 1986-07-28 1994-02-09 三菱電機株式会社 イオン注入装置
US4828817A (en) * 1987-10-29 1989-05-09 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Method for producing an atomic oxygen beam
US4804837A (en) * 1988-01-11 1989-02-14 Eaton Corporation Ion implantation surface charge control method and apparatus
JPH04112441A (ja) * 1990-08-31 1992-04-14 Toshiba Corp イオン注入装置及びそのクリーニング方法
US5149974A (en) * 1990-10-29 1992-09-22 International Business Machines Corporation Gas delivery for ion beam deposition and etching
US5206516A (en) * 1991-04-29 1993-04-27 International Business Machines Corporation Low energy, steered ion beam deposition system having high current at low pressure
FR2681472B1 (fr) 1991-09-18 1993-10-29 Commissariat Energie Atomique Procede de fabrication de films minces de materiau semiconducteur.
FR2748851B1 (fr) * 1996-05-15 1998-08-07 Commissariat Energie Atomique Procede de realisation d'une couche mince de materiau semiconducteur
US5851413A (en) * 1996-06-19 1998-12-22 Micrion Corporation Gas delivery systems for particle beam processing
US6033974A (en) * 1997-05-12 2000-03-07 Silicon Genesis Corporation Method for controlled cleaving process
US6291313B1 (en) 1997-05-12 2001-09-18 Silicon Genesis Corporation Method and device for controlled cleaving process
US20070122997A1 (en) 1998-02-19 2007-05-31 Silicon Genesis Corporation Controlled process and resulting device
US6548382B1 (en) * 1997-07-18 2003-04-15 Silicon Genesis Corporation Gettering technique for wafers made using a controlled cleaving process
US6329650B1 (en) * 1997-12-01 2001-12-11 Ebara Corporation Space charge neutralization of an ion beam
US6184532B1 (en) 1997-12-01 2001-02-06 Ebara Corporation Ion source
FR2773261B1 (fr) 1997-12-30 2000-01-28 Commissariat Energie Atomique Procede pour le transfert d'un film mince comportant une etape de creation d'inclusions
US6291326B1 (en) 1998-06-23 2001-09-18 Silicon Genesis Corporation Pre-semiconductor process implant and post-process film separation
WO2001011930A2 (fr) * 1999-08-10 2001-02-15 Silicon Genesis Corporation Procede de clivage permettant de fabriquer des substrats multicouche a l'aide de faibles doses d'implantation
US6500732B1 (en) 1999-08-10 2002-12-31 Silicon Genesis Corporation Cleaving process to fabricate multilayered substrates using low implantation doses
US6263941B1 (en) 1999-08-10 2001-07-24 Silicon Genesis Corporation Nozzle for cleaving substrates
US6221740B1 (en) 1999-08-10 2001-04-24 Silicon Genesis Corporation Substrate cleaving tool and method
FR2823599B1 (fr) 2001-04-13 2004-12-17 Commissariat Energie Atomique Substrat demomtable a tenue mecanique controlee et procede de realisation
US6956268B2 (en) * 2001-05-18 2005-10-18 Reveo, Inc. MEMS and method of manufacturing MEMS
US7045878B2 (en) * 2001-05-18 2006-05-16 Reveo, Inc. Selectively bonded thin film layer and substrate layer for processing of useful devices
US7033910B2 (en) * 2001-09-12 2006-04-25 Reveo, Inc. Method of fabricating multi layer MEMS and microfluidic devices
US6875671B2 (en) * 2001-09-12 2005-04-05 Reveo, Inc. Method of fabricating vertical integrated circuits
US7163826B2 (en) * 2001-09-12 2007-01-16 Reveo, Inc Method of fabricating multi layer devices on buried oxide layer substrates
US8187377B2 (en) 2002-10-04 2012-05-29 Silicon Genesis Corporation Non-contact etch annealing of strained layers
FR2848336B1 (fr) * 2002-12-09 2005-10-28 Commissariat Energie Atomique Procede de realisation d'une structure contrainte destinee a etre dissociee
TW200500290A (en) * 2003-02-10 2005-01-01 Reveo Inc Micro-nozzle, nano-nozzle, manufacturing methods therefor, applications therefor
FR2856844B1 (fr) * 2003-06-24 2006-02-17 Commissariat Energie Atomique Circuit integre sur puce de hautes performances
FR2857953B1 (fr) 2003-07-21 2006-01-13 Commissariat Energie Atomique Structure empilee, et procede pour la fabriquer
FR2861497B1 (fr) * 2003-10-28 2006-02-10 Soitec Silicon On Insulator Procede de transfert catastrophique d'une couche fine apres co-implantation
US7354815B2 (en) * 2003-11-18 2008-04-08 Silicon Genesis Corporation Method for fabricating semiconductor devices using strained silicon bearing material
FR2889887B1 (fr) * 2005-08-16 2007-11-09 Commissariat Energie Atomique Procede de report d'une couche mince sur un support
FR2891281B1 (fr) 2005-09-28 2007-12-28 Commissariat Energie Atomique Procede de fabrication d'un element en couches minces.
US7811900B2 (en) 2006-09-08 2010-10-12 Silicon Genesis Corporation Method and structure for fabricating solar cells using a thick layer transfer process
US8293619B2 (en) 2008-08-28 2012-10-23 Silicon Genesis Corporation Layer transfer of films utilizing controlled propagation
FR2910179B1 (fr) * 2006-12-19 2009-03-13 Commissariat Energie Atomique PROCEDE DE FABRICATION DE COUCHES MINCES DE GaN PAR IMPLANTATION ET RECYCLAGE D'UN SUBSTRAT DE DEPART
FR2922359B1 (fr) * 2007-10-12 2009-12-18 Commissariat Energie Atomique Procede de fabrication d'une structure micro-electronique impliquant un collage moleculaire
FR2925221B1 (fr) * 2007-12-17 2010-02-19 Commissariat Energie Atomique Procede de transfert d'une couche mince
US8330126B2 (en) 2008-08-25 2012-12-11 Silicon Genesis Corporation Race track configuration and method for wafering silicon solar substrates
US8329557B2 (en) 2009-05-13 2012-12-11 Silicon Genesis Corporation Techniques for forming thin films by implantation with reduced channeling
FR2947098A1 (fr) * 2009-06-18 2010-12-24 Commissariat Energie Atomique Procede de transfert d'une couche mince sur un substrat cible ayant un coefficient de dilatation thermique different de celui de la couche mince
FR2978600B1 (fr) 2011-07-25 2014-02-07 Soitec Silicon On Insulator Procede et dispositif de fabrication de couche de materiau semi-conducteur

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1558881A (fr) * 1967-05-29 1969-02-28
US4108751A (en) * 1977-06-06 1978-08-22 King William J Ion beam implantation-sputtering

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1558881A (fr) * 1967-05-29 1969-02-28
US4108751A (en) * 1977-06-06 1978-08-22 King William J Ion beam implantation-sputtering

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
NUCLEAR INSTRUMENTS AND METHODS, volume 182/183, partie 1, avril-mai 1981 (AMSTERDAM, NL) T. WADA "A new recoil implantation in Si using electron bombardment", pages 131-136 *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2577714A1 (fr) * 1984-10-10 1986-08-22 Us Energy Procede pour la formation de structures submicroniques a haute resolution sur une surface de substrat
US6159825A (en) 1997-05-12 2000-12-12 Silicon Genesis Corporation Controlled cleavage thin film separation process using a reusable substrate
US6010579A (en) * 1997-05-12 2000-01-04 Silicon Genesis Corporation Reusable substrate for thin film separation
US6013563A (en) * 1997-05-12 2000-01-11 Silicon Genesis Corporation Controlled cleaning process
US6048411A (en) * 1997-05-12 2000-04-11 Silicon Genesis Corporation Silicon-on-silicon hybrid wafer assembly
US5985742A (en) * 1997-05-12 1999-11-16 Silicon Genesis Corporation Controlled cleavage process and device for patterned films
US6290804B1 (en) 1997-05-12 2001-09-18 Silicon Genesis Corporation Controlled cleavage process using patterning
US6027988A (en) * 1997-05-28 2000-02-22 The Regents Of The University Of California Method of separating films from bulk substrates by plasma immersion ion implantation
US8993410B2 (en) 2006-09-08 2015-03-31 Silicon Genesis Corporation Substrate cleaving under controlled stress conditions
US9356181B2 (en) 2006-09-08 2016-05-31 Silicon Genesis Corporation Substrate cleaving under controlled stress conditions
US9640711B2 (en) 2006-09-08 2017-05-02 Silicon Genesis Corporation Substrate cleaving under controlled stress conditions
US9362439B2 (en) 2008-05-07 2016-06-07 Silicon Genesis Corporation Layer transfer of films utilizing controlled shear region
US11444221B2 (en) 2008-05-07 2022-09-13 Silicon Genesis Corporation Layer transfer of films utilizing controlled shear region

Also Published As

Publication number Publication date
JPS59114744A (ja) 1984-07-02
EP0112238A3 (fr) 1984-07-25
FR2537777A1 (fr) 1984-06-15
US4585945A (en) 1986-04-29
FR2537777B1 (fr) 1985-03-08

Similar Documents

Publication Publication Date Title
EP0112238A2 (fr) Procédé et dispositif d'implantation de particules dans un solide
Goldby et al. Gas condensation source for production and deposition of size-selected metal clusters
JP2973407B2 (ja) レーザイオン給源から材料層を生成する方法及び装置
FR2535109A1 (fr) Appareil de pulverisation, utilisable notamment pour la fabrication des dispositifs a semi-conducteurs
EP0112230A1 (fr) Procédé et dispositif d'obtention de faisceaux de particules de densité spatialement modulée, application à la gravure et à l'implantation ioniques
FR2849696A1 (fr) Dispositif de fabrication de specimen et procede de fabrication de specimen
FR2786359A1 (fr) Tube a neutrons hermetique
Thomas et al. Ion beam epiplantation
US5857889A (en) Arc Chamber for an ion implantation system
Wieland et al. EUV and fast ion emission from cryogenic liquid jet target laser-generated plasma
EP2168136A2 (fr) Source micronique d'émission ionique
FR2639363A1 (fr) Procede et dispositif de traitement de surface par plasma, pour un substrat porte par une electrode
WO2006003321A1 (fr) Alimentation d’implanteur ionique prevue pour une limitation de l’effet de charge
FR2551614A1 (fr) Source intense de rayons x mous, a compression cylindrique de plasma, ce plasma etant obtenu a partir d'une feuille explosee
JPS5983766A (ja) 電子銃を用いた真空蒸着装置
EP0064003B1 (fr) Dispositif de traitement d'un échantillon par faisceau électronique impulsionnel
FR2637725A1 (fr) Dispositif d'extraction et d'acceleration des ions limitant la reacceleration des electrons secondaires dans un tube neutronique scelle a haut flux
EP0060771A1 (fr) Dispositif de radiographie utilisant l'accélérateur de particules chargées d'un appareil de radiothérapie, et appareil de radiothérapie équipé d'un tel dispositif
EP0298817B1 (fr) Procédé et dispositif de production d'électrons utilisant un couplage de champ et l'effet photoélectrique
EP0295743B1 (fr) Source d'ions à quatre électrodes
EP0104973B1 (fr) Dispositif d'ionisation d'un matériau par chauffage à haute température
EP0165140B1 (fr) Source d'ions opérant par ionisation de surface, notamment pour la réalisation d'une sonde ionique
Mühle High‐field ion sources and applicationsa
FR2831988A1 (fr) Dispositif d'assemblage de pieces d'un dispositif tel qu'un filtre de wien
JPS59501430A (ja) ア−ク放電デバイスにおける低電圧作動

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Designated state(s): DE GB NL

AK Designated contracting states

Designated state(s): DE GB NL

17P Request for examination filed

Effective date: 19841210

17Q First examination report despatched

Effective date: 19860604

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Withdrawal date: 19860830

RIN1 Information on inventor provided before grant (corrected)

Inventor name: SOUBIE, ALAIN

Inventor name: BRUEL, MICHEL

Inventor name: SPINELLI, PHILIPPE