EP0100137B1 - Vorgesteuertes Wegesteuerventil - Google Patents

Vorgesteuertes Wegesteuerventil Download PDF

Info

Publication number
EP0100137B1
EP0100137B1 EP83303067A EP83303067A EP0100137B1 EP 0100137 B1 EP0100137 B1 EP 0100137B1 EP 83303067 A EP83303067 A EP 83303067A EP 83303067 A EP83303067 A EP 83303067A EP 0100137 B1 EP0100137 B1 EP 0100137B1
Authority
EP
European Patent Office
Prior art keywords
valve
power
plunger
pilot valve
pilot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP83303067A
Other languages
English (en)
French (fr)
Other versions
EP0100137A3 (en
EP0100137A2 (de
Inventor
Eugene J. Martin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pneumo Abex Corp
Original Assignee
Pneumo Corp
Pneumo Abex Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pneumo Corp, Pneumo Abex Corp filed Critical Pneumo Corp
Publication of EP0100137A2 publication Critical patent/EP0100137A2/de
Publication of EP0100137A3 publication Critical patent/EP0100137A3/en
Application granted granted Critical
Publication of EP0100137B1 publication Critical patent/EP0100137B1/de
Expired legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B13/00Details of servomotor systems ; Valves for servomotor systems
    • F15B13/02Fluid distribution or supply devices characterised by their adaptation to the control of servomotors
    • F15B13/04Fluid distribution or supply devices characterised by their adaptation to the control of servomotors for use with a single servomotor
    • F15B13/042Fluid distribution or supply devices characterised by their adaptation to the control of servomotors for use with a single servomotor operated by fluid pressure
    • F15B13/0422Fluid distribution or supply devices characterised by their adaptation to the control of servomotors for use with a single servomotor operated by fluid pressure with manually-operated pilot valves, e.g. joysticks

Definitions

  • This invention relates to a valve mechanism comprising a pilot operated directional control valve, and more particularly, to a directional control valve including a small manually operated pilot valve stage and a hydraulically operated power valve stage.
  • valve mechanism of the present invention may be used for example to actuate the thrust reverser actuators for a jet engine of an aircraft to provide for reverse thrust of the engine.
  • US-A-3 805 670 discloses a valve mechanism which comprises a booster valve freely movable within a booster piston connected to a servo valve during normal hydraulic operation. Upon loss of hydraulic pressure a spring causes the booster valve to move to a position permitting direct application of control inputs from the booster valve to the booster piston for controlling the movements of the valve mechanism without oscillation or degrading positional accuracy.
  • the mechanism includes a manually operated pilot valve and a hydraulically operated power valve with means for connecting the mechanism to a fluid pressure source.
  • a valve mechanism comprising a manually operated pilot valve stage and a hydraulically operated power valve stage, means for connecting said valve mechanism to a fluid pressure source, said pilot valve stage including a manually movable pilot valve plunger movable between second and first positions for respectively providing a signal pressure to said power valve stage when said valve mechanism is connected to such fluid pressure source and for venting said signal pressure, characterized in that spring means are provided for providing a preload on said pilot valve plunger urging said pilot valve plunger toward said first position when said valve mechanism is disconnected from such fluid pressure source, and means are provided for removing such preload in response to fluid pressure being supplied to said valve mechanism.
  • the two stages isolate the pilot valve from the effects of the high axial flows passing through the power valve.
  • a relatively low rotary input signal is all that is needed to position the pilot valve for either pressurizing or venting the signal end of the power valve.
  • the power valve preferably completely closes off the return port before opening the pressure port to prevent porting of the pressure directly to return during valve cycling.
  • a small spring preferably holds the power valve plunger in its stowed position when the signal end of the power valve is connected to return.
  • the pilot valve is preferably spring loaded in the stow direction when the system pressure is disconnected from the directional control valve.
  • Such spring also acts as a stowed condition linkage pre-tensioner to avoid fretting of the input linkage to the pilot valve during vibration conditions and the like.
  • the preload on the pilot valve is automatically removed when the system pressure to the directional control valve is re-established so that a relatively low rotary input signal is all that is necessary to move the pilot valve from the stow position to the deploy position and return.
  • Both ends of the pilot valve plunger are preferably open to return to avoid pressure unbalances on the pilot valve.
  • a pilot operated directional control valve 1 in accordance with the invention is schematically shown connected to a fluid actuator 2.
  • actuator 2 may be used for example to actuate the thrust reversers of a jet engine of an aircraft to provide for reverse thrust of the engine to assist in braking of the aircraft, and includes a cylinder 3 containing a piston 4 axially movable therein. Attached to the piston 4 is a hollow rod 5 which extends through the rod end of the cylinder and has a rod end assembly 6 on its outboard end to facilitate connection to the movable part of the device to be actuated.
  • a suitable trunnion mount may also be provided on the cylinder to facilitate connection to the other part of the device to be actuated.
  • a nut 8 having a high lead thread such as an Acme thread which may be coupled to a mating screw shaft 9.
  • One end of the screw shaft 9 is shown journaled in suitable bearings 10 within the actuator housing 11, whereas the other end extends into the hollow piston rod 5 a substantial distance beyond the nut 8.
  • the screw shaft 9 rotates at a speed proportional to the velocity of the piston 4.
  • the screw shaft 9 may have a high lead worm wheel 12 attached thereto which mates with a worm shaft 13 mounted for rotation within a transverse bore in the actuator housing.
  • a suitable lock mechanism 15 When the actuator 2 is in the retracted or stowed position shown in Figure 1, such actuator 2 may be locked in such position by a suitable lock mechanism 15.
  • sequence-power valve 17 includes a lock release lever 18 which, when in the position shown, permits the lock mechanism 15 to perform its normal locking function when the locking actuator piston 4 reaches its fully retracted position.
  • a lock piston 19 is provided which is responsive to fluid pressure being supplied to a lock-in port 20 in the sequence-power valve housing 21 to cause the lock release lever 18 to move to a lock disengaging position.
  • such directional control valve 1 consists of two stages, a small manually operated pilot valve stage 31 and a hydraulically operated power valve stage 32, both ofwhich may be contained in a common housing 34.
  • the housing includes an outlet port 35 which is connected to the lock-in port 20 of the sequence-power valve 17 and pressure and return ports 36, 37, either of which may be connected to the outlet port 35 depending on the position of thepower valve 32.
  • the power valve 32 When the power valve 32 is in the right-most or stow position shown in Figure 1, communication between the outlet port 35 and pressure port 36 is blocked by the power valve 32 and communication between such outlet port 35 and the return port 37 is established through the power valve 32.
  • the return port 37 is closed off and the pressure port 36 is connected to the outlet port 35 through the power valve 32.
  • the position of the power valve 32 is controlled by the pilot valve 31 which may be manually moved between the stow position shown in Figure 1 and a deploy position. With the pilot valve 31 in such stowed position, the right or signal end 38 of the power valve 32 is vented to the return port 37 through the pilot valve 31, whereby the system pressure-acting on the unbalanced area 39 at the left end of the power valve 32 will cause the power valve 32 to move to the-right to the stowed position shown. A small spring 40 acting on the left end of the power valve 32 will retain the power valve 32 in the stowed position as long as the signal end 38 of the power valve 32 is connected to return. However, when the pilot valve 31 is moved downwardly to its deploy position, the signal end 38 of the power valve 31 is connected to the pressure port 36 through the pilot valve 31, which causes the power valve 32 to move to the left to the deploy position.
  • pilot valve 31 to control such power valve movements is that a relatively low input force, for example, in the range of 0.113 Joules (one inch pound torque) on a short lever is all that is necessary to move the pilot valve 31 from the stow position to the deploy position or vice versa. Also, by using two stages, the pilot valve 31 is isolated from the effects of the high axial flow forces that normally act on the power valve 32 during extension of the actuator 2.
  • the system pressure that is supplied to the pressure port 36 will be ported to the lock-in port 20 through the power valve 32, which causes the lock piston 19 to move the lock release lever 18 out of engagement with the lock mechanism 15 to release the lock.
  • the system pressure acting on the lock piston 19 is ported to the extend end of the actuator 2 through a port 25 in the lock piston bore 26 which is uncovered by the lock piston 19 following such movement.
  • Port 25 communicates with the actuator extend port 16 through an extend passage 27 in the sequence-power valve housing 21. Since the area of the piston 4'exposed to the extend pressure is greater than that exposed to the retract pressure, the actuator 2 will extend.
  • An extend orifice 28 may be provided in the extend passage 27 to prevent the external pressure at the lock-in port 20 from dropping below a predetermined level so that the lock piston 19 will not cycle during extension of the actuator 2.
  • the lock release lever 18 With the lock piston 19 in its extended position shown in Figure 1, the lock release lever 18 will no longer be effective in maintaining the lock mechanism 15 in the unlocked condition. However, the construction of the lock mechanism 15 is such that it will remain unlocked until the actuator piston 4 is moved to the fully stowed position by the system pressure acting on the retract end of the actuator 2 and the actuator bottoms out.
  • the power valve 32 includes a porting sleeve 42 contained within a bore 43 extending into the valve housing 34 from one side thereof and retained in place as by an end cap retainer 44 having a threaded connection with the outer end of the bore wall.
  • the bore 43 has three axially spaced apart annular grooves 45, 46, 47 respectively in communication with the pressure port 36, outlet port 35, and return port 37 through associated passages in the valve housing.
  • a plurality of external seals in the porting sleeve 42 isolate the annular grooves 45-47 from each other except through longitudinally spaced passages 48, 49, 50 and a central passage 52 in the porting sleeve 42.
  • a power valve plunger 53 Axially movable within the central passage 52 in the porting sleeve 42 is a power valve plunger 53.
  • the power valve plunger 53 is normally held in its right-most stow position shown in Figure 2 by a light spring 40 acting on the opposite or left end of the power valve plunger 53.
  • a light spring 40 acting on the opposite or left end of the power valve plunger 53.
  • such left end is of reduced diameter and extends into a cylindrical recess 55 in the end cap retainer 44, with the spring 40 interposed between the bottom of the recess 55 and a shoulder adjacent the left end of the power valve plunger 53.
  • a pair of axially spaced apart lands 56,57 on the power valve plunger 53 alternately block and establish communication between the outlet port 35 and one or the other ports 36, 37 depending on the position of the power valve plunger 53.
  • the power valve plunger 53 When the power valve plunger 53 is in the fully stowed position shown in Figure 2, communication between the outlet port 35 and pressure port 36 is blocked by the land 56, while the land 57 unblocks communication between the outlet port and return port 37. Also when in such stow position, the right or signal end 38 of the power valve plunger bore 43 is vented to such return port 37 through the pilot valve 31 as described hereafter.
  • the power valve plunger 53 which extends into the recess 55 in the end cap retainer 44 is provided with a dynamic seal 60 to keep the valve actuating forces as low as possible.
  • a build up of fluid pressure or cavitation within the recess 55 is prevented by continuously venting the recess 55 to the return port 37 through longitudinal and radial passages 61, 62 and an annular groove 63 in the power valve plunger 53 adjacent the right side of the land 57 which communicates with the porting groove 47 through radial passages 64 in the porting sleeve.
  • An additional land 58 on the power valve plunger 53 adjacent the inner end thereof isolates the signal end of the power valve bore from the annular groove 63.
  • the pilot valve 31 When it is desired to deploy the actuator 2, the pilot valve 31 is moved to the deploy position shown in Figure 5 which closes off the return port 65 of the pilot and connects the signal end 38 of the power valve to the pressure port 66 of the pilot. This causes the power valve plunger 53 to move to the left to its deploy position also shown in Figure 5. During such movement, the land 57 completely closes off communication between the outlet port 35 and return port 37 before the land 56 opens communication between such outlet port and pressure port 36. In this way, the porting of pressure directly from the pressure port to the return port through the power control valve during valve cycling is prevented.
  • the inner end of the power valve plunger 53 has a relatively large diameter, a relatively small flow of high pressure fluid from the pilot valve to the signal end of the power valve bore will generate sufficiently large chip shear forces on the power valve plunger to ensure its movement to the unlock/deploy position when the pilot valve is moved to the deploy position.
  • the pilot valve 31 is moved to the stow position to connect the signal end of the power valve bore to return, the large chip shear forces needed to ensure return of the power valve 31 to the stow position are obtained by the system pressure acting on the unbalanced area 39 at the outer end of the power valve plunger through additional radial passages 67 in the porting sleeve 42.
  • unbalanced area 39 being smaller than the area of the inner end of the power valve plunger, will not interfere with movement of the power valve to the deploy position when the signal end of the power valve bore is pressurized as aforesaid.
  • the pilot valve 31 includes a pilot valve sleeve 70 received within another bore 71 which may extend into the housing 34 from another side thereof. Axially movable with the pilot valve sleeve 70 is a pilot valve plunger 72.
  • the pilot valve sleeve 70 is retained within the bore as by a pilot valve retainer 73 screw-threadedly received in the outer end of the bore and a valve stop spacer 74 interposed therebetween
  • the valve stop spacer 74 also provides the additional function of limiting movement of the pilot valve plunger 72 in the deploy direction.
  • the pilot valve sleeve 70 has a pair of axially spaced apart annular grooves 75, 76, of which groove 75 communicates with the pressure port 36 through a passageway 77 in the housing, and the other groove 76 communicates with the signal end 38 of the power valve bore 43 through another passageway 78 in the housing.
  • pilot valve plunger When the pilot valve plunger is in the stow position shown in Figure 2, communication between the signal end of the power valve bore and the return port 37 is established through an axial bore 79 in the pilot valve plunger.
  • the axial bore desirably extends all the way through the pilot valve plunger so that both ends are open to return to avoid undesirable pressure unbalances from acting on the pilot valve plunger.
  • the outer end of the pilot valve plunger extends into an enlarged chamber 86 within the valve housing which is maintained at return pressure by another passageway 87 in the housing communicating with the return port 37.
  • annular groove 88 in the pilot valve plunger communicates with the axial bore 79 through radial passages 90 therein, and such annular groove 88 in turn communicates with the groove 76 in the pilot valve sleeve through the return port 65 in the pilot valve sleeve when the pilot valve plunger is in such stow position as aforesaid.
  • pilot valve plunger 72 When the pilot valve plunger 72 is moved to the deploy position up against the valve stop spacer 74 as shown in Figure 5, a land 92 on the pilot valve plunger 72 closes off communication between the axial bore 79 in the pilot valve plunger and signal end of the power valve bore, following which supply pressure is ported to such signal end through another annular groove 93 in the pilot valve plunger which receives system pressure from the pressure port 36 through radial passages 94 in the pilot valve sleeve.
  • Linear movement of the pilot valve plunger 72 is obtained by applying a rotary signal to an input arm 95, shown in Figures 3 and 4.
  • Such input arm may have a nominal travel, for example 30°, and may have a relatively short length, for example 3.18 cm to 3.81 cm (1-1/4 to 1-1/2 inch) since a relatively low input force, such as 0.113 Joules (one inch pound torque), is all that is required to move the pilot valve plunger 72 from the stow position to the deploy position or vice versa.
  • the input arm is attached to one end of an input shaft 96 which may be journal mounted within a transverse bore 97 intersecting the enlarged chamber 86.
  • the input shaft may have a ball joint 98 thereon for receipt in a transverse slot 99 in the outer end of the pilot valve plunger, whereby rotation of the input shaft causes axial movement of the pilot valve plunger within the sleeve 70.
  • the pilot valve plunger is preferably spring loaded in the stow position as by a preload spring 105 contained in a central recess 106 in the pilot valve retainer 73.
  • the spring 105 may act directly against the adjacent end of the pilot valve plunger, but preferably acts through a preload piston 107 urging a rod extension 108 thereon into engagement with the outer end of the pilot valve plunger.
  • Such spring mechanism not only provides a spring load on the pilotvalve while in the stow position, but also acts as a stowed condition linkage pre-tensioner to avoid fretting of the input linkage to the pilot valve during vibration conditions and the like during such time as the directional control valve is inactive and system pressure is not being supplied to the pressure port 36.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fluid-Driven Valves (AREA)

Claims (10)

1. Ventilmechanismus (1) mit einer von Hand betätigten Schaltventilstufe (31) und einer hydraulisch betätigten Leistungsventilstufe (32), Mitteln (36) zum Verbinden des Ventilmechanismus mit einer Flüiddruckquelle, wobei die Schaltventilstufe einen von Hand bewegbaren Schaltventilkolben (72) aufweist, der zwischen zweiten und ersten Stellungen für die jeweilige Schaffung eines Signaldruckes zu der Leistungsventilstufe (32) hin bewegbar ist, wenn der Ventilmechanismus mit dieser Fluiddruckquelle verbunden ist, und zum Entlüften des Signaldruckes, dadurch gekennzeichnet, daß Federmittel (105) vorgesehen sind zur Schaffung einer Vorlast auf den Schaltventilkolben (72), welche den Schaltventilkolben gegen die erste Position drücken, wenn der Ventilmechanismus von dieser Fluiddruckquelle getrennt ist, und Mittel (110) vorgesehen sind zum Wegnehmen dieser Vorlast in Abhängigkeit vom Fluiddruck, welcher dem Ventilmechanismus zugeführt wird.
2. Ventilmechanismus nach Anspruch 1, dadurch gekennzeichnet, daß ein manuelles Eingangshebelmittel (95) mit dem Schaltventilkolben (72) verbunden ist, um diese seine Bewegungen zu bewirken, wobei auch das Federmittel (105) betreibbar ist, um eine Vorspannkraft auf das Eingangshebelmittel (95) vorzusehen, wenn der Ventilmechanismus von dieser Fluiddruckquelle getrennt ist, um Reibkorrosion des Eingangshebelmittels (95) während der Schwingungszustände und dergleichen auszuschalten, während der Ventilmechanismus ausgeschaltet ist.
3. Ventilmechanismus nach Anspruch 1, dadurch gekennzeichnet, daß ein Vorlastkolben (110) zwischen dem Federmittel (105) und dem Schaltventilkolben (72) zwischengeschaltet ist, wobei auf dem Vorlastkolben (110) eine Stangenverlängerung (108) vorgesehen ist, die mit dem Außenende des Schaltventilkolbens (72) durch das Federmittel (105) in Eingriff gedrückt wird, wenn der Ventilmechanismus von dieser Fluiddruckquelle getrennt ist, wie vorstehend erwähnt.
4. Ventilmechanismus nach Anspruch 3, dadurch gekennzeichnet, daß das Mittel (110) zum Wegnehmen dieser Vorlast den Vorlastkolben (110) aufweist, auf welchen durch diesen Fluiddruck eingewirkt wird, wenn dieser Fluiddruck dem Ventilmechanismus zugeführt wird, um den Vorlastkolben (110) von dem Schaltventilkolben (72) entgegen der Vorspannung des Federmittels (105) fortzubewegen.
5. Ventilmechanismus nach einem vorhergehenden Anspruch, dadurch gekennzeichnet, daß die Leistungsventilstufe (32) ein Signalende (38) aufweist, welchem dieser Signaldruck nacheinander zu geführt wird und das entlüftet wird von der Schaltventilstufe (31) während dieser Bewegungen des Schaltventilkolbens (72) zwischen der zweiten und ersten Stellung, wie vorstehend erwähnt, wobei die Leistungsventilstufe (32) einen Leistungsventilkolben (53) aufweist, der auf das Unterdrucksetzen und Entlüften des Signalendes anspricht, um die Bewegung des Leistungsventilkolbens zwischen zwei Differenzöffnungspositionen zu veranlassen.
6. Ventilmechanismus nach Anspruch 5, dadurch gekennzeichnet, daß ein Ende des Leistungsventilkolbens (53) dem Signalende (38) ausgesetzt wird, wodurch, wenn ein Signaldruck dem Signalende (38) zugeführt wird, der Signaldruck, welcher auf das eine Ende des Leistungsventilkolbens (53) wirkt, den Leistungsventilkolben (53) veranlaßt, sich von dem Signalende (38) zu einer der Öffnungsstellungen fortzubewegen, und das andere Ende des Leistungsventilkolbens (53) eine Differentialfläche (39) hat, die kleiner als das eine Ende des Leistungsventilkolbens (53) ist, welches der Fluiddruckquelle ausgesetzt ist, wenn der Ventilmechanismus mit dieser verbunden ist, wodurch, wenn das Signalende (38) entlüftet wird, die Fluiddruckquelle, die auf die Differentialfläche (39) auf dem anderen Ende des Leistungsventilkolbens (53) wirkt, den Leistungsventilkolben (53) veranlaßt, sich zu dem Signalende (38) zu der anderen der Öffnungsstellungen hin zu bewegen.
7. Ventilmechanismus nach Anspruch 6, dadurch gekennzeichnet, daß das Federmittel (40) auf das andere Ende des Leistungsventilkolbens (53) wirkt, um den Leistungsventilkolben (53) in dieser anderen Öffnungsstellung solange zurückzuhalten, wie das Signalende der Leistungsventilstufe (32) entlüftet wird.
8. Ventilmechanismus nach einem vorhegehenden Anspruch, dadurch gekennzeichnet, daß die Schaltventil- und Leitungsventilstufen (31 und 32) in einem gemeinsamen Gehäuse (34) enthalten sind mit Durchgängen (36, 37) zum Verbunden sowohl der Schaltventilstufe (31) als auch der Leistungsventilstufe (32) mit dieser Fluiddruckquelle und zurück, und einem anderen Durchgang (78), der von der Schaltventilstufe (31) dem Signalende (38) der Leistungsventilstufe führt für die wahlweise Verbindung des Signalendes entweder mit der Fluiddruckquelle oder zurück über die Schaltventilstufe.
9. Ventilmechanismus nach Anspruch 8, dadurch gekennzeichnet, daß beide Enden des Schaltventilkolbens (72) zur Rückführöffnung (37) offen sind, um Druckungleichgewichte auf dem Schaltventilkolben zu vermeiden.
10. Ventilmechanismus nach Anspruch 8, dadurch gekennzeichnet, daß die Leistungsventilstufe (32) Mittel (57) aufweist zum vollständigen Schließen der Verbindung zur Rückführung vor dem Öffnen der Verbindung zu dieser Fluiddruckquelle, um das Öffnen dieses Fluiddruckes direkt zur Rückführung durch die Leistungsventilstufe während des zyklischen Durchlaufens des Leistungsventilkolbens (53) zu vermeiden.
EP83303067A 1982-07-28 1983-05-27 Vorgesteuertes Wegesteuerventil Expired EP0100137B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US40274182A 1982-07-28 1982-07-28
US402741 1982-07-28

Publications (3)

Publication Number Publication Date
EP0100137A2 EP0100137A2 (de) 1984-02-08
EP0100137A3 EP0100137A3 (en) 1984-04-11
EP0100137B1 true EP0100137B1 (de) 1987-03-04

Family

ID=23593128

Family Applications (1)

Application Number Title Priority Date Filing Date
EP83303067A Expired EP0100137B1 (de) 1982-07-28 1983-05-27 Vorgesteuertes Wegesteuerventil

Country Status (3)

Country Link
EP (1) EP0100137B1 (de)
JP (1) JPS5923173A (de)
DE (1) DE3370060D1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11037114B2 (en) 2018-03-22 2021-06-15 Diebold Nixdorf, Incorporated System and method for financial transactions

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2233922B2 (de) * 1972-07-10 1975-01-16 Bergwerksverband Gmbh, 4300 Essen Hydraulische Steuerventileinrichtung für einen doppeltwirkenden hydraulischen Servomotor, insbesondere zur Steuerung des Arbeitsmittels hydraulischer Zylinder des Strebausbaus im Bergbau

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3805670A (en) * 1972-09-05 1974-04-23 Pneumo Dynamics Corp Booster valve control mechanism
US4007666A (en) * 1974-05-23 1977-02-15 Pneumo Corporation Servoactuator

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2233922B2 (de) * 1972-07-10 1975-01-16 Bergwerksverband Gmbh, 4300 Essen Hydraulische Steuerventileinrichtung für einen doppeltwirkenden hydraulischen Servomotor, insbesondere zur Steuerung des Arbeitsmittels hydraulischer Zylinder des Strebausbaus im Bergbau

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11037114B2 (en) 2018-03-22 2021-06-15 Diebold Nixdorf, Incorporated System and method for financial transactions
US11727372B2 (en) 2018-03-22 2023-08-15 Diebold Nixdorf, Incorporated System and method for financial transactions

Also Published As

Publication number Publication date
EP0100137A3 (en) 1984-04-11
EP0100137A2 (de) 1984-02-08
JPS5923173A (ja) 1984-02-06
DE3370060D1 (en) 1987-04-09

Similar Documents

Publication Publication Date Title
CN1914426B (zh) 用于液压致动器系统的冗余流量控制
US4076210A (en) Hydraulic valve
US6059228A (en) Hydraulic system
US5857330A (en) Travelling control circuit for a hydraulically driven type of travelling apparatus
US5097748A (en) Hydraulic locking cylinder with throttled supply of fluid during unlocking stage
EP0227209B2 (de) Pilotventile für zweistufige hydraulische Anlagen
US4333387A (en) Anti-jam hydraulic servo valve
US3529514A (en) Redundant servomechanism with bypass provisions
US4397221A (en) Regenerative valve
US3855904A (en) Auxiliary power steering system
US4472998A (en) Redundant control actuation system-concentric direct drive valve
IE42426B1 (en) A power steering assembly
US2597418A (en) Hydraulic servomotor and the like
US3508400A (en) Position control system
US5020419A (en) Three position fluid-controlled actuator
EP0100137B1 (de) Vorgesteuertes Wegesteuerventil
US4627467A (en) Pilot operated directional control valve
JPH05262296A (ja) サイクリックプレートによりヘリコプターのローターを制御するための低バルネラビリティ装置
US4185660A (en) Directional control valve
US5020322A (en) Accumulator blow-back hydraulic circuit
US4521060A (en) Hydraulic asymmetry detector
US4485725A (en) Actuator system including hydraulically synchronized actuators
US8419345B2 (en) Actuator
US3034483A (en) Hydraulic servomotor
US4128047A (en) Actuator with locking valves

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Designated state(s): DE FR GB

AK Designated contracting states

Designated state(s): DE FR GB

17P Request for examination filed

Effective date: 19841002

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: PNEUMO ABEX CORPORATION

REF Corresponds to:

Ref document number: 3370060

Country of ref document: DE

Date of ref document: 19870409

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19890410

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19890430

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19890502

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19900527

GBPC Gb: european patent ceased through non-payment of renewal fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19910131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19910201

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST