EP0099835B1 - Wärmetauscher mit Modulstruktur - Google Patents

Wärmetauscher mit Modulstruktur Download PDF

Info

Publication number
EP0099835B1
EP0099835B1 EP83401490A EP83401490A EP0099835B1 EP 0099835 B1 EP0099835 B1 EP 0099835B1 EP 83401490 A EP83401490 A EP 83401490A EP 83401490 A EP83401490 A EP 83401490A EP 0099835 B1 EP0099835 B1 EP 0099835B1
Authority
EP
European Patent Office
Prior art keywords
small plates
series
lattices
fluid
perforated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP83401490A
Other languages
English (en)
French (fr)
Other versions
EP0099835A2 (de
EP0099835A3 (en
Inventor
Alain Grehier
Alexandre Rojey
Francois Benoist
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IFP Energies Nouvelles IFPEN
Original Assignee
IFP Energies Nouvelles IFPEN
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IFP Energies Nouvelles IFPEN filed Critical IFP Energies Nouvelles IFPEN
Publication of EP0099835A2 publication Critical patent/EP0099835A2/de
Publication of EP0099835A3 publication Critical patent/EP0099835A3/fr
Application granted granted Critical
Publication of EP0099835B1 publication Critical patent/EP0099835B1/de
Expired legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/08Elements constructed for building-up into stacks, e.g. capable of being taken apart for cleaning
    • F28F3/086Elements constructed for building-up into stacks, e.g. capable of being taken apart for cleaning having one or more openings therein forming tubular heat-exchange passages

Definitions

  • the invention relates to a heat exchanger of modular structure, intended more particularly for carrying out heat exchange between several fluids, in particular between two gases.
  • Tubular and shell-and-tube heat exchangers are known.
  • one of the fluids participating in the exchange passes through the tubes, the other fluid passes around the tubes in the shell.
  • the exchange surface per unit volume known as the specific surface, which it is possible to obtain by means of such exchangers, is generally limited due to the fact that, for production reasons, it is difficult to reduce the diameter of the tubes and the spacing between tubes below a value of the order of 1 cm.
  • Plate heat exchangers make it possible to obtain larger specific exchange surfaces.
  • the fluids participating in the exchange circulate on either side of the different plates but the specific surface is also limited by the need not to reduce the spacing between plates too much.
  • heat exchangers consisting of stacks of perforated sheets, juxtaposed so as to obtain, by superposition of the perforations, channels some of which can be traversed by a relatively hot fluid, others by a relatively cold fluid, the transfer thermal between the channels being provided by conduction through the material forming at least part of said sheets.
  • US-A-1,766,283 describes a structure usable for regenerators and comprising in combination a plurality of horizontal alignments of bricks extending perpendicular to each other at adjacent levels, the bricks of each alignment being provided with notches used to prevent the displacement of bricks from the adjacent alignment.
  • US-A-1,670,127 describes a heat exchanger structure formed by series of bars provided with notches or perforations, these bars being juxtaposed and superimposed in such a way that the notches or the perforations are aligned to form passages for the fluids to be put in heat exchange relation.
  • the series of bars are not embedded one above the other.
  • the problem that the invention aims to solve consists in providing a heat exchanger having a particular modular structure, making it possible in particular to delimit separate circulation spaces for the fluids to be put into heat exchange relation, the various constituent elements being built-in of joined together.
  • heat exchangers of the invention are modular structures (produced by a simple assembly of elements) allows easy adaptation to the geometric requirements encountered by the user, in particular facilitating its insertion into existing systems.
  • the possibility of making this device using a wide variety of materials also makes it easy to adapt it to the nature of the fluids involved in the heat exchange, in particular in cases where corrosion is to be feared, for example in heat exchanges with condensation.
  • heat exchangers are most often made of metallic materials. In cases where condensation occurs during heat exchange, such as in the case of heat recovery from fumes from a heating boiler, these materials have the disadvantage of being easily corroded.
  • the device of the invention also has a high specific heat exchange surface.
  • the heat exchange structures according to the invention can be used to produce both exchanger bodies with two fluids circulating in parallel currents (co-current or counter-current) or in crossed currents, as well as the heads for supplying and the departure of fluids.
  • the invention proposes a heat exchanger for the circulation of at least two fluids in heat exchange relation comprising at least one zone of modular structure essentially constituted by a stack of trellises which can be built one above the other in a contiguous manner and each formed by an intersection of two series of lamellae, each lamella being formed in one piece over its entire length, the two series of lamellae being joined together by mutual engagement of the lamellae, parallel to each other, from the first series and lamellae, parallel to each other, of the second series, at the notches formed on one of the edges (for example upper) of the lamellae of the first series and on the opposite edge (for example lower) of the lamellae of the second series, said stack creating spaces for the circulation of at least two fluids in heat exchange relationship.
  • the invention also provides a heat exchanger for the circulation of at least two fluids in heat exchange relation comprising at least one zone of modular structure essentially consisting of a stack of interlocking series of lamellae, joined together by straddling mutual of the lamellae, parallel to each other, in a series with the lamellae, parallel to each other, of the consecutive series, at the level of notches formed on the two edges of each lamella, facing each other; said stacking of series of lamellae creating spaces for the circulation of at least two fluids in heat exchange relationship.
  • a first heat exchange structure essentially consists of a stack of lattices (or grids) which can be built one above the other, and each formed by an intertwining of two series of lamellae, assembled by mutual engagement of each lamellae of a series by the lamellae of the other.
  • the lamellae of the first series, parallel to each other, consist of so-called “solid” lamellae, that is to say comprising only, on one of their edges, the notches necessary for straddling with the lamellae of the second series : said strips of the second series are mutually parallel and preferably arranged perpendicular to the strips of the first series; as the case may be, they may consist of "solid” strips like those of the first series, or of so-called “perforated” strips, that is to say comprising in addition to the notches necessary for straddling with the strips of the first series, on one of their edges, recesses formed in some of the solid parts of the strips delimited by two consecutive notches, said recesses being formed for example in one in two of these solid parts.
  • the stacking of the mesh creates circulation spaces for at least two fluids in heat exchange relationship.
  • the term "lattice therefore designates a grid, formed by an interlacing of solid strips of a first series, parallel to each other, with strips of a second series full or perforated, parallel to each other. If we consider the trellis (or grid) in a horizontal position, the two series of slats are placed in two series of vertical planes parallel to each other, each plane of one of the two series intersecting the planes of the other series according to dihedral angles of vertical edge, equal to each other. These dihedral angles are preferably 90 °.
  • This first embodiment of a structure according to the invention can correspond to an exchange zone in which two fluids can circulate in crossed currents.
  • the first type lattice 1 is formed by an intertwining of two series of lamellae, a series of solid lamellae 3 and a series of perforated lamellae 4, which are also shown in FIGS. 2A and 2B.
  • the notches 7 of the strips of the first series 3 are for example formed along the upper edge of said strips. They all preferably have the same depth and their width is equal or substantially equal to the thickness of the lamellae of the second series.
  • the notches 8 of the lamellae of the second series 4 are, for example, formed along the lower edge of said lamellae. They all preferably have the same depth and their width is equal to or substantially equal to the thickness of the strips of the first series 3.
  • the recesses in the perforated strips 4 can have any shape: they can be circular, square, rectangular, etc ... they can open, or not, on one of the edges of the strip. They can also consist of several disjointed recesses on each strip, one or more of which may or may not open on one edge or on both edges of the strip. FIGS. 4A to 4D show different forms and particular arrangements of these recesses.
  • a trellis of a second type 2 is shown, also formed by an intertwining of two series of lamellae: a series of solid lamellae 5 and a series of perforated lamellae 6, which are also shown in the figures. 3A and 3B.
  • the notches 9 of the strips of the first series 5 are for example formed along the lower edge of said strips. They all preferably have the same depth and their width is equal or substantially equal to the thickness of the lamellae of the second series. Symmetrically, the notches 10 of the lamellae of the second series 6 are formed for example along the upper edge of said lamellae. They all preferably have the same depth and their width is equal to or substantially equal to the thickness of the strips of the first series 5.
  • the recesses of the perforated lamellas 6 of the trellis 2 can have various shapes and arrangements.
  • the heat exchange structure according to the invention is formed by an alternating stack of type 1 and type 2 trellises, the underside of each type 1 trellis fitting in (as it appears in FIG. 1) on the upper face of a type 2 trellis. Likewise, the lower face of each type 2 trellis must be able to be embedded on the upper face of a type 1 trellis, not shown in FIG. 1.
  • FIG. 1 has shown two lattices each formed of a small number of lamellae, but it is understood that a stack of lattices constituting a heat exchange zone according to the The invention can consist of a large number of superimposed trellises from ten to several hundred and that each trellis can comprise a large number of interlaced lamellae (from ten to several hundred).
  • the depression of the hollow (lower) edges of the series of lamellas 6 of the trellis 2 is made to correspond to the emergence of the (upper) protruding edges of the series of lamellas 4 of a type 1 trellis located below the type 2 trellis.
  • the respective heights of the lamellae 3 and 4 and the respective depths of the notches 7 made on the lamellas 3 and of the notches 8 made on the lamellas 4 are chosen so that the bottoms of said notches 7 and 8 come into contact during the straddling of the two series of strips 3 and 4 limiting the mutual overlapping of said strips so that, for example, the edges of the perforated strips 4 opposite the edges where the notches 8 are formed are located in the outermost plane (emerging) the upper face of a type 1 trellis; while the edges of the solid strips 3 opposite the edges where the notches 7 are formed are located in the outermost plane (emerging) of the underside of the same trellis 1.
  • the respective heights of the slats 5 and 6 and the respective depths of the notches 9 made in the slats 5 and the notches 10 made in the slats 6 are chosen so that the bottoms of said notches 9 and 10, coming into contact when the two series of lamellae 5 and 6 are mounted, limit the mutual overlap of said lamellae so that, for example, the edges of the perforated lamellas 6 opposite the edges where the notches 10 are formed located in the innermost plane (recessed) of the underside of the trellis 2; while the edges of the solid strips 5 opposite the edges where the notches 9 are formed are located in the innermost plane (set back) of the upper face of the same trellis 2.
  • the height of the slats 3, 4, 5 and 6 and the depth of the notches 7, 8, 9 and 10 are chosen such that the emergence for the trellis 1, of the plane of the edges of the slats 3 opposite the edges where are notches 7, relative to the plane of the edges of the lamellae 4 where the notches 8 are practiced, is equal to the sinking for the trellis 2, from the plane of the edges of the lamellae 5 opposite the edges where the notches 9 are practiced, by relative to the plane of the edges of the lamellae 6 where the notches 10 are made; similarly, taking into account the alternation of type 1 and type 2 trellis in the stack, the height of the slats 3, 4, 5 and 6 and the depth of the notches 7, 8, 9 and 10 are chosen such that the depression for the lattice 2, of the plane of the edges of the lamellae 6 opposite the edges where the notches are made 10 relative to the plane of the edge of the lamellae 5 where the notches are made 9, is
  • the characteristics defined above reflect the fact that the different stacked trellises fit into one another and that, in this embedding, the projecting (or hollow) parts of one of the faces of a trellis of the first type come into contact with the counterpart hollow (or projecting) parts of the opposite face of the trellis of the second type.
  • the heights of the various strips are chosen so that the sum of the heights of the solid strips 3 and 5 has the same value as the sum of the heights of the perforated strips 4 and 6.
  • the respective depths of the notches 7, 8, 9 and 10 are chosen so that their sum also has the same value.
  • the depths of the notches will have to be such that:
  • the stack of perforated strips creates on the one hand, continuous partitions, when we consider the superimposition of the solid parts of said perforated lamellae, and on the other hand, perforated partition flaps, when we consider the superposition of the perforated parts of said perforated lamellae, the continuous partition flaps alternating with the perforated partition flaps, each section partition of one of the two types being separated from the adjoining partition wall, of the other type, by a continuous adjacent partition corresponding to the superposition of solid strips.
  • the partitions described above therefore determine two kinds of spaces for the circulation of fluids which it is desired to put in heat exchange relation. Indeed, all the solid partitions, formed by the superposition of the solid strips, and parallel to each other, separate spaces which, with respect to the whole of the exchange structure (the stack of lattices), appear as slices. Due to the alternation of solid panels and perforated panels on the partitions formed by superposition of the perforated lamellae, the sections defined above are, alternately, of two different types. Some are subdivided into channels, of rectangular or square section for example, separated by solid sections; the other sections are not subdivided into separate channels, owing to the fact that the openings in the openwork sections constitute as many passages from one channel to the neighboring channel.
  • the separate channels delimited in the various spaces (or sections) are generally traversed by a first fluid participating in the heat exchange.
  • the fluid then circulates in a direction parallel to the planes of the lamellae (that is to say to the planes of the partitions) constituting the exchange zone.
  • a second fluid is circulated in the spaces (or sections) not subdivided into separate channels.
  • the fluid can pass through each of these sections right through using the communication passages formed by the recesses it meets, the remains of the solid parts surrounding the recesses constituting fins or baffles.
  • the fluid circulates in an overall direction substantially perpendicular to the openwork partitions and parallel to the solid partitions. Under these conditions, the two fluids circulate in crossed currents.
  • the ends of the spaces (or sections) traversed by the second fluid located on the faces of the stack intended for the inlet and the outlet of the first fluid are closed for example by plates (such as 11 and 12, FIG. 1) coming to fit on the first (and the last) lattice of the stack, these plates covering one space out of two, the spaces remaining open corresponding to the entry (or exit) of said first fluid.
  • the openings of the sections traversed by the second fluid on the faces of the stack intended for the entry and exit of said second fluid are made de facto by the recesses in the perforated lamellae constituting said faces.
  • the heat exchanger structure as described above can constitute the exchanger body of an exchanger intended for the circulation of two fluids in cross currents, one of the fluids, for example fumes , traversing the separate channels from top to bottom or from bottom to top and the other fluid, for example air to be heated, then circulating from a side face to the opposite face.
  • the means for supplying and leaving the fluids may consist of usual means, in particular cylindrical conduits which are suitably connected to the faces of the body. exchange through which each of the fluids concerned must enter (or leave). These means have not been illustrated in FIG. 1.
  • a second embodiment of the first heat exchange structure according to the invention described above can consist essentially, like the first mode described, in a stack of trellises (or grids) built in one above the other, and each formed by an intertwining of two series of lamellae, assembled by mutual engagement of each lamellae of a series by the lamellae of the other. But. Unlike the first embodiment described, the two series of strips, the interlacing of which forms each of the lattices, are both made up of solid strips. The description of this second embodiment will therefore be similar to that of the first, provided that the "perforated" strips are replaced by "full” strips.
  • the structure considered is constituted by alternating stacking of any number of trellises such as 13 and 14.
  • the embedding of these trellises is carried out in the same manner as for the first embodiment described: the projecting parts are made to correspond (or recessed) of a trellis, for example of the first type (such as 13) with the recessed (or projecting) parts of a trellis of the second type (such as 14) further below or above said trellis of the first type.
  • the spaces will no longer be distinguished (or slices) divided into separate channels and the spaces (or slices) not subdivided into separate channels but comprising passageways that are the openings of the perforated lamellae.
  • the stack of trellises made up only of solid strips will only comprise channels, all separated from one another by the solid partitions resulting from the superposition of the solid parts of the homologous strips.
  • This structure can constitute the body of a heat exchanger in which for example two fluids circulate in parallel currents (in co-currents or against the current).
  • the distribution of the channels intended for the circulation of the first fluid and those intended for the circulation of the second fluid can be chosen in such a way that, with the exception of the channels adjoining the external walls of the exchange zone, each channel traversed by one of the two fluids is contiguous with at least two channels traversed by the other fluid. Examples of such distributions are given in Figures 6A and 6B.
  • a particularly advantageous aspect of the invention consists in having the exchange zone open up at each of its ends on heads for supplying and leaving fluids each designed analogously to the first embodiment described above (cross-flow circulation).
  • the heat exchange device 15 comprises a central body 16 and two collectors 17 and 18.
  • the central body 16 is in the form of a parallelepiped with a rectangular or square base formed, by the stacking of the trellis which constitute it, of a determined number of rows of channels of rectangular or square section, each row comprising a number determined of channels.
  • the collectors 17 and 18 each consist of a stack of several lattices similar to those of FIG. 1, which consist of intertwining of solid strips and of perforated strips assembled by mutual insertion of said strips at the level of notches formed on the edge. of these.
  • the perforated lamellae have recesses formed alternately every second time in the parts of said lamellae between two consecutive notches.
  • a second fluid can. for example, be brought in the direction of the arrows 19, through the recesses of the perforated lamellae flush with the face considered, in spaces (or slices) passing through the collector 17. These spaces are closed on the upper face 23 of the collector 17 by plates such as 11 (in FIG.
  • the spaces traversed by said second fluid are also closed on the face of the manifold 17 opposite the inlet face, by substitution of a solid lamella for the extreme perforated lamella of each of the lattices whose stack constitutes said collector 17, the superposition of these solid lamellae constituting a continuous wall 25 (not seen in FIG. 7).
  • the spaces traversed by said second fluid are, at the junction of the manifold 17 with the central body 16, in communication with the corresponding rows of channels, the plates such as 12 (shown in FIG. 1) being in this case, of course omitted.
  • the rows of channels of the manifold 17, through which the second fluid exits. are in communication with the rows of homologous channels of the central body 16.
  • the collector 18 located for example at the bottom of the central 16 can be described in a similar manner.
  • the second fluid exits for example in the direction of the arrows 20, through the recesses of the perforated lamellae flush with the face considered, outside the spaces (or slices) passing through the manifold 18 and separated from each other by rows of channels through which between the first fluid in the direction of arrows 21.
  • Said spaces (or sections) are closed on the lower face 24 of the collector 18 by plates similar to the plates 12 (in FIG. 1), which fit onto the lower lattice of the collector 18, the spaces remaining open on this face corresponding to the rows of channels through which between said first fluid.
  • the spaces traversed by said second fluid are also closed off on the face of the manifold 18 opposite to the outlet face, by substitution of a solid strip for the extreme perforated strip of each of the trellises whose stack constitutes the manifold 18, the superposition of these solid strips constituting a continuous wall 26.
  • the spaces traversed by said second fluid are, at the junction of the manifold 18 with the central body 16, in communication with the corresponding rows of channels, the plates such as 11 (shown in FIG. 1) being, in the present case, of course omitted.
  • the rows of channels of the manifold 18 through which the first fluid enters are in communication with the rows of homologous channels of the central body 16.
  • the exchangers can be associated in series so as to lengthen the path followed by one of the fluids or by the two fluids.
  • FIGS. 9, 10A and 10B A second heat exchange structure according to the invention is described below in conjunction with FIGS. 9, 10A and 10B.
  • Said second heat exchange structure consists of a stack of series of intersecting lamellae, assembled one above the other by mutual engagement of each lamella (such as 27, FIG. 9) in a series by the lamellae (such as 28 , Figure 9) of another series, placed for example above the slats of the previous series.
  • the lamellae of each series mutually parallel, have on their two edges notches (respectively 29, 30, 31 and 32) located opposite each other, intended, one (the lower notches), to ensure the assembly by mutual engagement with the notches on the upper edge of the lamellae, parallel to each other, of the series below, the others (the upper notches) intended to ensure assembly by mutual engagement with the notches on the lower edge of the lamellae, parallel between them, from the series above.
  • the planes of the lamellae of the even series intersect the planes of the lamellae of the odd series, at their respective notches, forming dihedral angles of vertical edge (if we consider a stack in which the lamellae are in vertical planes) , these dihedral angles equal to each other. are preferably 90 ° (the interlacing of the series of lamellae is done at right angles).
  • the indentations of the same edge of the lamellae of a series have the same depth and the width of all the indentations of the lamellae of the series of the same order (even or odd) have the same width, equal or substantially equal to the thickness of the lamellae of series of the other order (odd or even).
  • the lamellae of the odd series (such as 27) and the lamellae of the even series (such as 28) all have the same height h.
  • the lamellae of the series for example, odd (such as 27) are lamellae called "pteines", that is to say comprising only the notches necessary for their assembly with the lamellae even series located immediately above or below.
  • the strips of the series for example pairs (such as 28) can be "full”, like the strips 27 above, or "perforated”, that is to say comprising recesses formed alternately in one out of two of the solid parts delimited by two consecutive notches.
  • the heat exchange structure produced by assembling the different series of strips consists only of vertical tubular channels, of rectangular or square section, as already described above in relation to the figure 5. These channels can be supplied by the fluids participating in the exchange according to the distribution shown in FIG. 6A or 6B, the circulation of the two fluids can be done in co-current or against the current.
  • the structure produced comprises rows of separate channels, alternating with spaces (or sections) in which the different channels of the same row communicating with one another through the recesses made in the so-called "perforated slats"
  • Such a structure equivalent to that shown in Figure 1, allows for heat exchanges between fluids flowing at cross currents.
  • the lamellae constituting the different heat exchange structures according to the invention can be made of various good or medium heat conducting materials, depending on the temperatures of the fluids involved in the heat exchange.
  • the material may consist of a thermoplastic material such as polypropylene, optionally charged, for temperatures below 100 ° C., polyvinylidene fluoride, for temperatures ranging for example from 100 to 140 ° C., or alternatively an ethylene-tetrafluoroethylene copolymer charged, for temperatures ranging, for example, from 140 to 190 ° C.
  • a thermoplastic material such as polypropylene, optionally charged, for temperatures below 100 ° C., polyvinylidene fluoride, for temperatures ranging for example from 100 to 140 ° C., or alternatively an ethylene-tetrafluoroethylene copolymer charged, for temperatures ranging, for example, from 140 to 190 ° C.
  • the lamellae can also be made of thermosetting plastics, such as, for example, polyesters or epoxy resins.
  • the material may also consist of a metal, a metal alloy of glass, cement or ceramic. It can also consist of a composite material such as, for example, a plastic material loaded with pulverulent, granular, filamentary, woven or nonwoven products, said products or fillers themselves being able to consist of metals, alloys, amorphous carbon, graphite, glass, ceramic or mineral salts.
  • lamellae Several embodiments of the lamellae can be envisaged.
  • the strips can first of all be cut from sheets of the chosen material, the recesses and notches being produced by machining (for example, drilling, milling, sawing or grinding).
  • a second embodiment may consist of a molding or injection operation of the. material chosen, in particular when said material is a light alloy or a thermoplastic or thermosetting material.
  • the mutual insertion of the series of lamellae can be carried out by simple mechanical embedding; it can also be consolidated or made more waterproof by soldering, tinning, welding or gluing.
  • the trusses thus formed can be assembled by simple mechanical embedding, which can also be consolidated or made more waterproof by the techniques mentioned above.
  • Another embodiment may also consist in cutting the lamellae from a metallic material (for example in light alloy) and in coating them with a thermoplastic or thermosetting material before their assembly.
  • such a coating could be carried out on each of the lattices already assembled, before stacking them or else on the exchange device of the invention already constituted.
  • the dimensions of the devices of the invention can be very varied: the strips can have a length of a few centimeters to several meters and a height of a few millimeters to several decimeters.
  • the exchange surface per unit volume of the devices according to the invention can be high. Average values of this surface are in the neighborhood of 150 to 200 m 2 per m 3 .
  • its mass surface can be around 6 to 7 dm 2 / kg for steel and around 40 to 50 dm 2 / kg for a material plastic.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Claims (14)

1. Wärmetauscher für die Zirkulation wenigstens zweier Fluide in Wärmeaustauschbeziehung mit wenigstens einer Zone modularer Struktur, dadurch gekennzeichnet, daß diese Zone im wesentlichen gebildet wird durch einen Stapel von angrenzend aneinander übereinander steckbaren Gittern oder Rastern, die je aus einer Kreuzungsanordnung von zwei Reihen von Lamellen gebildet sind, wobei jede Lamelle über ihre Länge gesehen aus einem einzigen Stück gebildet ist, wobei die beiden Reihen von Lamellen aneinanderstoßend durch gabelartiges Erfassen der zueinander parallelen Lamellen der ersten Reihe mit den zueinander parallelen Lamellen der zweiten Reihe in Höhe von Ausschnitten montiert sind, die auf einem der Ränder der Lamellen der ersten Reihe sowie auf dem gegenüberliegenden Rand der Lamellen der zweiten Reihe ausgespart sind, wobei diese Stapelung Räume für die Zirkulation wenigstens zweier in Wärmeaustauschbeziehung stehender Fluide erzeugt.
2. Wärmeaustauscher nach Anspruch 1, dadurch gekennzeichnet, daß diese Zone gebildet ist durch die abwechselnde Stapelung von Gittern von zwei unterschiedlichen Typen, wobei die Gitter des ersten Typs (1) derart sind, daß die unteren Ränder der Lamellen (3) der ersten Reihe vorstehen gegen die Unterseite dieser Gitter (1) und die oberen Ränder der Lamellen (4) der zweiten Reihe vorstehen gegenüber der Oberseite dieser Gitter, wobei die Gitter des zweiten Typs (2) derart sind, daß die oberen Ränder der Lamellen (5) der ersten Reihe rückspringend gegenüber der Oberseite dieser Gitter (2) sind und die unteren Ränder der Lamellen (6) der zweiten Reihe rückspringend gegenüber der Unterseite dieser Gitter (2) sind, und das Vorragen der unteren vorstehenden Ränder der Lamellen (3) der ersten Reihe der Gitter des ersten Typs (1) gleich der Eindringtiefe der oberen rückspringenden Ränder der Lamellen (5) der ersten Reihe der Gitter des zweiten Typs (2) ist und das Vorstehen der oberen vorstehenden Ränder der Lamellen (4) der zweiten Reihe der Gitter des ersten Typs (1) gleich der Eindringtiefe der unteren rückspringenden Ränder der Lamellen (6) der zweiten Reihe der Gitter des zweiten Typs (2) ist.
3. Wärmeaustauscher nach einem der Ansprüche 1 und 2, dadurch gekennzeichnet, daß die jeweiligen Höhen h1 und h1' der Lamellen der ersten Reihe (3) sowie der zweiten Reihe (4) der Gitter des ersten Typs (1), die jeweiligen Höhen h2 und h2' der Lamellen der ersten Reihe (5) und der zweiten Reihe (6) der Gitter des zweiten Typs (2) und die jeweiligen Tiefen p1, p1', P2 und P2' der diesen Lamellen entsprechenden Ausschnitte den folgenden Beziehungen genügen :
Figure imgb0019
4. Wärmeaustauscher nach Anspruch 3, dadurch gekennzeichnet, daß sämtliche Lamellen die gleiche Höhe H haben und die Tiefen der Ausschnitte p1, p1', P2 und P2' der folgenden Beziehung genügen :
Figure imgb0020
5. Wärmeaustauscher nach einem der Ansprüche 1 bis 4, wobei die beiden Fluide im Kreuzstrom zirkulieren, dadurch gekennzeichnet, daß die Lamellen (3) und (5) der ersten Reihe der Gitter des ersten Typs (1) und der Gitter des zweiten Typs (2) voll sind und die Lamellen (4) und (6) der zweiten Reihe der Gitter des ersten Typs (1) sowie der Gitter des zweiten Typs (2) von Ausnehmungen durchbrochen sind, welche alternativ - eine auf zwei kommend - in den vollen Teilen dieser Lamellen vorgesehen sind, welche zwischen zwei aufeinanderfolgenden Ausschnitten vorgesehen sind, wobei die Übereinanderanordnung der vollen Lamellen (3) und (5) einerseits,und der vollen Teile der durchbrochenen Lamellen (4) und (6) andererseits Reihen von Kanälen rechteckigen oder quadratischen Querschnitts bilden, welche untereinander durch volle Teile der durchbrochenen Lamellen (4) und (6) getrennt sind, wobei diese Reihen von Kanälen von einem ersten Fluid durchströmbar sind und die Übereinanderanordnung der vollen Lamellen (3) und (5) einerseits und der durchbrochenen Teile der durchbrochenen Lamellen (4) und (6) andererseits Räume bilden, in welchen die Kanäle rechteckigen oder quadratischen Querschnitts untereinander über die Ausnehmungen in Verbindung stehen, welche in den durchbrochenen Lamellen (4) und (6) vorgesehen sind, wobei diese Räume von einem zweiten Fluid durchströmt werden können.
6. Wärmeaustauscher nach Anspruch 5, dadurch gekennzeichnet, daß die Endflächen des Stapels, über die das erste Fluid ein- und austritt, offen sind gegenüber dem ersten Fluid und verschlossen sind gegenüber dem zweiten Fluid durch Platten (11) und (12) welche auf die den von diesem zweiten Fluid durchströmten Räumen gegenüberstehenden Endflächen gesteckt sind, wobei die beiden sich gegenüberstehenden Flächen des Stapels, über die das zweite Fluid ein- und austritt, de facto gegenüber diesem zweiten Fluid durch Ausnehmungen offen sind, welche in den durchbrochenen Lamellen ausgespart sind, deren Übereinanderanordnung diese Flächen bildet und de facto verschlossen sind gegenüber dem ersten Fluid durch die vollen Teile der durchbrochenen Lamellen, deren Übereinanderanordnung diese Flächen bildet und die sich gegenüberstehenden Flächen des Stapels, über welche kein Fluid eintritt oder austritt de facto, durch volle Lamellen verschlossen sind, deren Überlagerung diese Flächen bildet.
7. Wärmeaustauscher nach einem der Ansprüche 1 bis 4, wobei die beiden Fluide als Parallelströme zirkulieren, dadurch gekennzeichnet, daß die Lamellen (3) und (5) der ersten Reihe sowie der zweiten Reihe (4) und (6) der Gitter des ersten Typs (1) sowie der Gitter des zweiten Typs (2) voll (wandig) ausgebildet sind und die Stapelung der Gitter dann also Kanäle rechteckigen oder quadratischen Querschnitts, die sämtlich voneinander getrennt sind, bildet, wobei gewisse der Kanäle von einem ersten Fluid durchströmbar sind, wobei die anderen Kanäle von einem zweiten Fluid durchströmbar sind.
8. Wärmeaustauscher nach Anspruch 7, dadurch gekennzeichnet, daß die beiden Fluide auf Reihen abwechselnder Kanäle verteilt sind.
9. Wärmeaustauscher für die Zirkulation wenigstens zweier in thermischem Austausch stehender Fluide mit wenigstens einer Zone modularer Struktur, dadurch gekennzeichnet, daß er ein mittiges Gehäuse (16) umfasst, das im wesentlichen gebildet wird durch einen abwechselnden Stapel von Gittern vom Typ (1) sowie Gittern vom Typ (2), die entsprechend Anspruch 7 aufgebaut sind, wobei die beiden Fluide in Parallelströmen in diesem mittigen Gehäuse (16) zirkulieren, daß dieses mittige Gehäuse (16) durch Einrasten an seinen Enden mit einem Sammler (17) und einem Sammler (18) verbunden ist, wobei jeder dieser Sammler (17) und (18) im wesentlichen durch eine abwechselnde Stapelung von Gittern des Typs (1) und Gittern des Typs (2) nach Anspruch 5 gebildet ist, wobei die beiden Fluide im wesentlichen im Kreuzstrom in diesen Sammlern (17) und (18) zirkulieren und die beiden Fluide auf Reihen von über die Gesamtheit des Wärmeaustauschers abwechselnden Reihen von Kanälen verteilt sind.
10. Wärmeaustauscher nach Anspruch 9, dadurch gekennzeichnet, daß die Eintritts- oder Austrittsfläche für das erste Fluid am Sammler (17) oder (18) offen gegenüber diesem ersten Fluid und verschlossen gegenüber dem zweiten Fluid vermittels von Platten (11) auf der Oberseite des Sammlers (17) oder Platten (12) auf der Unterseite des Sammlers (18) ist, wobei die Eintritts- oder Austrittsfläche für das zweite Fluid am Sammler (17) oder (18) gegenüber dem zweiten Fluid über Ausnehmungen offen ist, die auf den vollen Teilen der durchbrochenen Lamellen angeordnet sind, deren Stapelung diese Eintritts-oder Austrittsfläche des Sammlers (17) oder (18) bildet und verschlossen ist gegenüber dem ersten Fluid durch die vollen Teile der durchbrochenen Lamellen, deren Stapelung diese Eintritts- oder Austrittsfläche des zweiten Fluids bildet, wobei die der Eintrittsseite gegenüberliegende Seite und die der Austrittsseite gegenüberliegende Seite für dieses zweite Fluid an den Sammlern (17) und (18) gleichzeitig gegenüber dem ersten und dem zweiten Fluid durch Substitution von vollen Lamellen für durchbrochene Lamellen geschlossen ist, deren Übereinanderanordnung diese Flächen oder Seiten auf diesen Sammlern (17) und (18) bildet.
11. Wärmeaustauscher zur Zirkulation wenigstens zweier Fluide im Hinblick auf den Wärmeaustausch gemäß Anspruch 1, mit wenigstens einer Zone modularer Struktur, dadurch gekennzeichnet, daß diese Zone im wesentlichen gebildet ist durch eine Stapelung von Reihen sich kreuzender Lamellen, die, aneinander anstossend, übereinander durch gegenseitiges gabelartiges Eingreifen untereinander paralleler Lamellen (27) einer Reihe und der untereinander parallelen Lamellen (28) einer folgenden Reihe in Höhe von Ausschnitten (29) und (30) sowie Ausschnitten (31) und (32) gebildet ist. die jeweils auf den beiden Rändern der Lamellen (27) und (28) einander gegenüber angebracht sind, wobei die Lamellen (27) und die Lamellen (28) die gleiche Höhe h haben und die jeweiligen Tiefen p3, p3', p4 und p4' der Ausschnitte (29), (30), (31) und (32) der Lamellen (27) und (28) derart sind, daß sie der Beziehung P3 + P3' + P4 + p4' = h genügen.
12. Wärmeaustauscher nach Anspruch 11, wobei die beiden Fluide im Kreuzstrom zirkulieren, dadurch gekennzeichnet, daß die Lamellen (27) voll sind und die Lamellen (28), welche diese Lamellen (27) kreuzen von Ausnehmungen (33) durchbrochen sind, welche abwechselnd einmal um das andere in den vollen Teilen dieser Lamellen (28), die zwischen zwei aufeinanderfolgenden Ausschnitten ein und des gleichen Randes angeordnet sind, vorgesehen sind, wobei die Übereinanderanordnung der vollen Lamellen (27) einerseits und der vollen Teile der durchbrochenen Lamellen (28) andererseits Reihen von Kanälen rechteckigen oder quadratischen Querschnitts bilden, die untereinander durch die vollen Teile der durchbrochenen Lamellen (28) getrennt sind, wobei diese Reihen von Kanälen von einem ersten Fluid durchströmt werden können und die Übereinanderanordnung der vollen Lamellen (27) einerseits und der durchbrochenen Teile der durchbrochenen Lamellen (28) andererseits Räume bilden in welchen die Kanälen von rechteckigem oder quadratischem Querschnitt bilden und untereinander über die in den durchbrochenen Lamellen (28) ausgesparten Ausnehmungen (33) in Verbindung stehen, wobei diese Räume von einem zweiten Fluid durchströmt werden können.
13. Wärmeaustauscher nach Anspruch 11. wobei die beiden Fluide in parallelen Strömen zirkulieren. dadurch gekennzeichnet, daß sämtliche Lamellen (27) und (28) voll sind, die Kreuzung von Reihen dieser Lamellen dann Kanäle rechteckigen oder quadratischen Querschnitts bilden, die sämtlich voneinander getrennt sind, wobei gewisse dieser Kanäle von einem ersten Fluid durchströmt werden können, wobei die anderen Kanäle von einem zweiten Fluid durchströmt werden können.
14. Wärmeaustauscher nach Anspruch 13, dadurch gekennzeichnet, daß die beiden Fluide auf Reihen sich regelmässig abwechselnder Kanäle aufgeteilt sind.
EP83401490A 1982-07-21 1983-07-20 Wärmetauscher mit Modulstruktur Expired EP0099835B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8212862A FR2530798A1 (fr) 1982-07-21 1982-07-21 Echangeur de chaleur a structure modulaire
FR8212862 1982-07-21

Publications (3)

Publication Number Publication Date
EP0099835A2 EP0099835A2 (de) 1984-02-01
EP0099835A3 EP0099835A3 (en) 1984-11-07
EP0099835B1 true EP0099835B1 (de) 1988-01-20

Family

ID=9276243

Family Applications (1)

Application Number Title Priority Date Filing Date
EP83401490A Expired EP0099835B1 (de) 1982-07-21 1983-07-20 Wärmetauscher mit Modulstruktur

Country Status (5)

Country Link
US (1) US4612982A (de)
EP (1) EP0099835B1 (de)
JP (1) JPS5935793A (de)
DE (1) DE3375428D1 (de)
FR (1) FR2530798A1 (de)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4815534A (en) * 1987-09-21 1989-03-28 Itt Standard, Itt Corporation Plate type heat exchanger
DE4238190C2 (de) * 1992-11-12 1994-09-08 Hoechst Ceram Tec Ag Keramikmodul
ATE245792T1 (de) * 1998-06-12 2003-08-15 Chart Heat Exchangers Ltd Wärmetauscher
FR2821572B1 (fr) * 2001-03-05 2003-10-31 Inst Francais Du Petrole Dispositif de reacteur comportant une enceinte en materiau refractaire et une enveloppe de confinement, pour la mise en oeuvre de reactions chimiques necessitant un echange de chaleur
US7004238B2 (en) * 2001-12-18 2006-02-28 Illinois Institute Of Technology Electrode design for electrohydrodynamic induction pumping thermal energy transfer system
US20110036552A1 (en) * 2009-08-11 2011-02-17 Ventiva, Inc. Heatsink having one or more ozone catalyzing fins
US20120152942A1 (en) * 2010-12-20 2012-06-21 Cooler Master Co., Ltd. Vapor chamber
US10319396B2 (en) * 2016-06-16 2019-06-11 Seagate Technology Llc Transducer bar translation system and method of translating a transducer bar

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE398796C (de) * 1924-07-15 Joseph Lambot Waermespeicher
US1431486A (en) * 1922-10-10 Recuperator and blocks foe building the same
FR343666A (fr) * 1904-06-03 1904-10-12 Desnoyers Freres Soc Procédé de fabrication des radiateurs pour voitures automobiles et autres applications
US1378130A (en) * 1918-11-06 1921-05-17 Francobelge De Fours A Coke So Heat-recuperator for air or gas
US1430630A (en) * 1920-11-05 1922-10-03 Harry B Dempsey Recuperative furnace
US1670127A (en) * 1923-08-30 1928-05-15 Stancliffe Engineering Corp Sectional heat interchanger
US1687236A (en) * 1926-07-28 1928-10-09 Decarie Incinerator Corp Heat regenerator
US1766283A (en) * 1928-07-31 1930-06-24 Open Hearth Comb Company Checkerwork
US2226320A (en) * 1940-05-17 1940-12-24 Wilfred J O'neail Engine radiator
US2650076A (en) * 1951-05-22 1953-08-25 Air Preheater Heat exchanger core with beam components
GB717272A (en) * 1951-05-22 1954-10-27 Air Preheater Improvements in and relating to heat exchangers
GB1126733A (en) * 1964-12-23 1968-09-11 Atomic Energy Authority Uk Locating structure
DE1501568B2 (de) * 1966-10-12 1971-05-13 Linde Ag, 6200 Wiesbaden Plattenwaermetauscher
US3470950A (en) * 1967-01-31 1969-10-07 Milton Menkus Heat exchanger
FR2500610B1 (fr) * 1981-02-25 1986-05-02 Inst Francais Du Petrole Echangeur de chaleur a plaques perforees
FR2541442B1 (fr) * 1983-02-17 1988-07-15 Inst Francais Du Petrole Echangeur de chaleur a structure modulaire et son procede de fabrication

Also Published As

Publication number Publication date
DE3375428D1 (en) 1988-02-25
JPS5935793A (ja) 1984-02-27
FR2530798B1 (de) 1984-12-28
EP0099835A2 (de) 1984-02-01
FR2530798A1 (fr) 1984-01-27
EP0099835A3 (en) 1984-11-07
US4612982A (en) 1986-09-23

Similar Documents

Publication Publication Date Title
EP0202981B1 (de) Vorrichtung zum Wärmeaustausch, insbesondere verwendbar zum Gas-/Wärmeaustausch
EP0186592B1 (de) Plattenwärmetauscher
EP1212755B1 (de) Speicherrahmen zur speicherung von radioaktiven stoffen
EP0206935B1 (de) Lochplattenwärmetauscher mit verbesserter Dichtheit
EP3175181B1 (de) Verbesserte enthalpietauscher
FR2705445A1 (fr) Echangeur de chaleur à plaques.
EP0099835B1 (de) Wärmetauscher mit Modulstruktur
EP0117805B1 (de) Wärmetauscher in Modulbauweise und Verfahren zu seiner Herstellung
FR2824895A1 (fr) Ailette ondulee a persiennes pour echangeur de chaleur a plaques, et echangeur a plaques muni de telles ailettes
FR2848292A1 (fr) Plaque d'un echangeur thermique et echangeur thermique a plaques
EP3384502B1 (de) Regalvorrichtung zum aufbewahren und/oder transportieren von kernbrennstabbündeln mit stufen mit unterschiedlichen funktionalitäten
EP0235033B1 (de) Modularbauelement
EP0039291A1 (de) Plattenwärmetauscher aus aufeinander gestapelten Moduln, zusammengesetzt aus zwei rechteckigen identischen Platten und einer Folie
EP0825306B1 (de) Lochziegel
CA1252672A (fr) Paroi de foyer comportant des buses d'alimentation moulees en deux parties complementaires
FR2880106A1 (fr) Dispositif d'echange de chaleur entre deux fluides comportant des couches de mousse metallique
FR2866699A1 (fr) Echangeur thermique a plaques nervurees soudees
WO2020069880A1 (fr) Plaque pour un échangeur de chaleur à plaques
FR2604246A1 (fr) Echangeur de chaleur modulaire.
FR2606815A1 (fr) Cloison demontable de protection contre les rayonnements et ecran realise a partir d'une telle cloison
FR2863044A1 (fr) Module pour l'echange de chaleur entre fluides en circulation
EP2724110A1 (de) Wärmeregenerator
FR2619205A1 (fr) Echangeur de chaleur a impact de jet
FR2657954A1 (fr) Dispositif d'echange thermique a plaques planes et a turbulateurs.
FR2496861A1 (fr) Echangeur de chaleur a plaques

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): DE GB IT NL

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Designated state(s): DE GB IT NL

17P Request for examination filed

Effective date: 19850402

ITF It: translation for a ep patent filed

Owner name: DE DOMINICIS & MAYER S.R.L.

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE GB IT NL

REF Corresponds to:

Ref document number: 3375428

Country of ref document: DE

Date of ref document: 19880225

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19910624

Year of fee payment: 9

ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19910814

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19920720

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19920731

Year of fee payment: 10

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19920720

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19930401

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19940201

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee