EP0099776A1 - Détecteur de niveau d'ionisation d'un milieu gazeux contrôlé par arc électrique - Google Patents

Détecteur de niveau d'ionisation d'un milieu gazeux contrôlé par arc électrique Download PDF

Info

Publication number
EP0099776A1
EP0099776A1 EP83401258A EP83401258A EP0099776A1 EP 0099776 A1 EP0099776 A1 EP 0099776A1 EP 83401258 A EP83401258 A EP 83401258A EP 83401258 A EP83401258 A EP 83401258A EP 0099776 A1 EP0099776 A1 EP 0099776A1
Authority
EP
European Patent Office
Prior art keywords
detector
circuit
electrodes
voltage
conductivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP83401258A
Other languages
German (de)
English (en)
Other versions
EP0099776B1 (fr
Inventor
Jean-Claude Nudelmont
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pgep Professional General Electronic Products SA
Professional General Electronic Products PGEP SAS
Original Assignee
Pgep Professional General Electronic Products SA
Professional General Electronic Products PGEP SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pgep Professional General Electronic Products SA, Professional General Electronic Products PGEP SAS filed Critical Pgep Professional General Electronic Products SA
Priority to AT83401258T priority Critical patent/ATE42648T1/de
Publication of EP0099776A1 publication Critical patent/EP0099776A1/fr
Application granted granted Critical
Publication of EP0099776B1 publication Critical patent/EP0099776B1/fr
Expired legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B17/00Fire alarms; Alarms responsive to explosion
    • G08B17/10Actuation by presence of smoke or gases, e.g. automatic alarm devices for analysing flowing fluid materials by the use of optical means
    • G08B17/11Actuation by presence of smoke or gases, e.g. automatic alarm devices for analysing flowing fluid materials by the use of optical means using an ionisation chamber for detecting smoke or gas

Definitions

  • the invention relates to an ionization level detector controlled by an electric arc.
  • ionic fire detectors are already widespread due to the very rapid response of these devices and their low sensitivity to the harmful action of gases.
  • the ionic detectors already known being essentially constituted by two chambers, one open in order to be in contact with the medium which is monitored the other practically closed, comprising a very slight leak, and both receiving radiation from the 'a radioactive sample it is clear that their use is in some cases not recommendable.
  • the conductivities between the measurement electrodes are identical in the two chambers.
  • collisions occur between particles and ions present in this chamber thus causing a large decrease in conductivity while the conductivity in the closed chamber remains practically unchanged for quite a long time.
  • the extremely rapid detection of this difference in conductivity makes it possible to detect the appearance of other sources of pollution.
  • the object of the invention is an ionization level detector characterized in that the ionization of the medium being monitored is caused by an electric arc between a first pair of electrodes, the conductivity of the medium between two electrodes of measurement controlling at least one reaction circuit indicating the rate of decrease of the ions, function of the variations of the number of particles of the ambient medium and their mobility.
  • Another characteristic of the invention is to compensate for the rapid disappearance of the ions resulting from their impact on the particles of the medium entering the conductivity measurement chamber by means of a reaction circuit controlling the triggering of an electric arc of very short duration.
  • the advantage of this method is not only the repetition of the measurements by ion formation, but also the comparison of the results between two strikes of the arc with a view to possibly discriminating the types of ions formed according to their mobility.
  • the discontinuous creation of an arc causing ionization has the consequence of considerably reducing the energy consumption necessary for the operation of the device.
  • Another feature of the detector is the inclusion of a circuit for comparing the results of two successive conductivity measurements.
  • This circuit can include simple analog elements and the ATC control device can supply voltages of the order of 6 to 12,000 V very short duration of the order of 100 to 500 nanosec., The current being order of 1 microampere, we thus manage to use extremely low powers of the order of 16 picowatt to ensure the ionization of the measurement chamber, the total consumption of the components of the other circuits being limited to 20 microwatt for example.
  • the detector shown diagrammatically in FIG. 1 essentially comprises a single chamber 4, the opening of which is covered by a fine protective grid 5 grounded.
  • the grid allows in particular the suppression of parasitic radioelectric emissions.
  • the electrodes E l and E 2 used for the production of intermittent arcs as well as the electrodes E 3 and E4 for measuring the conductivity of the medium are supplied with voltage by the windings 7 of a transformer whose primary winding 8 is controlled through gate 9 of transistor Z 1 .
  • This door is connected by the circuit 10 to the circuit for measuring the conductivity of the space between the electrodes E 3 and E4.
  • the primary winding 8 is supplied by means of terminals 1 and 2 connected to the terminals of any supply device supplying respectively a positive voltage to the terminal 1 for example of + 6V and a negative voltage to the terminal 2 of - 6V.
  • the reference voltage at terminal 3 can be + 6V.
  • the capacitor C 1 connected to ground and to terminal 1 by the resistor R 1 is charged.
  • the capacitor C l discharges through Z 1 through the primary winding 8 of the transformer. Since the discharge takes place in an extremely short time, a significant difference in potential occurs at the terminals of the secondary winding 7 connected to the electrodes E 1 and E 2 thus causing an electric arc between these electrodes.
  • the increase in the ionization of the medium contained in the chamber 4 increases the conductivity between the electrodes E 3 and E4 resulting in the increase in the voltage of the gate 9.
  • the capacitor C 1 having just discharged, it can be seen that the overshoot of the voltage of the anode 11 by the voltage of the gate 9 occurs in a very short time, the discharge of the capacitor causing the immediate interruption by Z 1 of the supply of the winding 8.
  • the capacitor C 2 charges to a certain value and that the moment when the voltage of the gate 9 exceeds that of the anode is a function of the conductivity of the space located between the electrodes E 3 and E4 as well as values of resistors R 2 and R 3 . It follows that, if over time, the conductivity varies between E 3 and E4 due to a rapid disappearance of the ions due to the arrival in the chamber 4 of particles emitted for example during a fire, the frequency the arc between E 1 and E 2 increases. This provides a convenient means of detecting pollution of the environment surrounding the chamber 4.
  • Figure 2 shows in V 9 the decrease curve of the voltage of the gate 9 causing the abrupt conduction of Z 1 , when the anode voltage shown in V 11 exceeds the value V L of the voltage V 9 of the gate 9
  • the voltage V 12 of the cathode 12 then increases suddenly at time t, then decreases until time t 2 .
  • the capacitor C 1 is charged again and the cycle begins again.
  • FIG. 3 shows a succession of pulses for controlling the electric arc causing the ionization of the chamber 4 as well as the conductivity curve 13 as a function of time during the detection of a certain pollution that the 'the frequency of the pulses V 12 for controlling the arc between the electrodes E l and E 2 is also detected.
  • An alarm signal of any type can be triggered by the device 30 shown in FIG. 4. This may for example include a missing pulse detection circuit of known type sold for example under the reference "Philips 555" and that just connect to the elements shown in the diagram in Figure 1 by connecting the input 25 of the detection circuit to the terminal 3 of the circuit of Figure 1.
  • the output 24 of the detection device 30 is connected to any desired alarm device 31, so that, when the pulses are spaced as in FIG.
  • the circuit 30 gives a normal response between A and B.
  • the increase in the frequency of the pulses V 12 results in an output signal at 24 of the detection device 30.
  • the connection 32 to the device alarm 31 thus triggers any device.
  • the trigger signal at 24 does not disappear until the return of the pitch frequency at C.
  • FIG. 5 A variant of the signaling control circuit has been shown in FIG. 5.
  • the junction point 14 of the resistors R 2 and R 3 is connected on the one hand directly to the negative input of an operational amplifier 15, on the other hand to the positive input of the amplifier 15 via the circuit consisting of the diode D 2 and the delay line composed of the resistor R 4 and the capacitor C 3 .
  • FIG. 6 shows the curve 16 of the decrease in conductivity in the normal medium that the ion detector monitors and at 17 the curve of the voltage drop at the input of the circuit R 4 , C 3 as a function of time ce circuit being previously adjusted so that at all times the value of the voltage represented by curve 17 is lower than that represented by curve 16.
  • the voltage represented by curve 17 serves as a reference threshold and allows that as soon as particles penetrate in chamber 4 and cause the number of ions in space E 3 , E4 to decrease, to control the operational amplifier 15, the curve of voltage V 10 at junction point 14 decreasing faster than that of circuit R 4 - C 3 .
  • the output voltage V of the amplifier 15 can be used to control any alarm circuit, such as 31 for example.
  • This very simple signaling control circuit has the advantage of being very sensitive and is particularly suitable for monitoring environments where humidity and temperature are relatively constant.
  • the signaling control device can be replaced by the device shown in FIG. 7 allowing the voltage to be compared V 10 taken at the junction point 14 after a predetermined period T 1 following the control of the arc causing the ionization, with the previous value of this voltage V 10 previously recorded.
  • the voltage V 10 is injected into the operational amplifier 18 serving as an impedance transformer, so that the same voltage source V 10 is applied to the terminal 27 of transistor 26 of the MOS type, the drain of which is connected at 28 to the negative input of amplifier 20 and to resistor R 5 .
  • the gate 29 controlling the conduction of the MOS transistor 26 serving as a switch is connected by 32 of the timing circuit 23.
  • This circuit causes a transmission delay T 2 , FIG. 8, of the signal transmitted by the differential circuit C 7 , R 7 .
  • This signal comes from the amplifier 19 via the circuit C 6 , R 6 and the timing circuit 22 which introduces the delay T 1 , shown in FIG. 8.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Chairs Characterized By Structure (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Arc Welding Control (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
  • Electron Tubes For Measurement (AREA)
  • Discharge Heating (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

L'ionisation est créée par un arc électrique au sein de la chambre (4) qui est en communication avec le mileu ambiant à travers la grille de protection (5). Les électrodes (E3, E4) de mesure de la conductivité fonction du niveau d'ionisation permettent de réamorcer une décharge électrique entre (E1) et (E2) à partir d'un certain seuil par le circuif de réaction (10) commandant la porte (9) et déclenchant la décharge du condensateur (C1) dans l'enroulement (8). Le contrôle de la fréquence des décharges permet de connaître les variations du niveau d'ionisation.

Description

  • L'invention se rapporte à un détecteur de niveau d'ionisation contrôlé par arc électrique.
  • L'utilisation de détecteurs ioniques d'incendie est déjà très répandue en raison de la très grande rapidité de réponse de ces appareils et de leur faible sensibilité à l'action nocive des gaz.
  • Cependant les détecteurs ioniques déjà connus étant constitués essentiellement par deux chambres, l'une ouverte afin d'être en contact avec le milieu que l'on surveille l'autre pratiquement close, comportant une très légère fuite, et recevant toutes deux le rayonnement d'un échantillon radioactif il est clair que leur emploi est dans certains cas peu recommandable.
  • L'échantillon ionisant l'air ou le milieu contenu dans les deux chambres, on constate normalement que les conductivités entre les électrodes de mesure sont identiques dans les deux chambres. Cependant, dès que le milieu ambiant dans lequel se trouve le détecteur pénétrant dans la chambre ouverte subit des variations d'ionisation ou de conductivité comme par exemple lors de l'apparition d'un.feu, des collisions se produisent entre particules et ions présents dans cette chambre entraînant ainsi une forte diminution de la conductivité alors que la conductivité dans la chambre fermée reste pratiquement inchangée pendant une assez longue période. La détection extrêmement rapide de cette différence de conductivité permet de détecter l'apparition d'autres sources de pollution.
  • L'inconvénient de tels appareils dans certaines industries comme l'industrie agricole, est évident puisque leur utilisation permettrait à des particules radioactives de contaminer des produits alimentaires, ce qui entraînerait de graves dangers pour les consommateurs. En outre, quels que soient les domaines d'utilisation de ces appareils, il est indispensable de pouvoir les récupérer après un incendie, ce qui n'est pas toujours possible de sorte que la matière radioactive ri.sque de contaminer le système de distribution de l'eau d'alimentation par les eaux de ruissellement ayant été en contact avec les appareils non récupérés.
  • L'objet de l'invention est un détecteur de niveau d'ionisation caractérisé en ce que l'ionisation du milieu que l'on surveille est provoquée par un arc électrique entre une première paire d'électrodes, la conductivité du milieu entre deux électrodes de mesure contrôlant au moins un circuit de réaction indicateur du taux de décroissance des ions, fonction des variations du nombre de particules du milieu ambiant et de leur mobilité.
  • On évite de la sorte l'utilisation de matières radioactives, les deux chambres distinctes destinées à comparer les conductivités de deux milieux momentanément:distincts étant remplacés par une simple chambre.
  • Une autre caractéristique de l'invention est de compenser la disparition rapide des ions résultant de leur impact sur les particules du milieu pénétrant dans la chambre de mesure de la conductivité au moyen d'un circuit de réaction contrôlant le déclenchement d'un arc électrique de très courte durée.
  • L'avantage de cette méthode est non seulement la répétition des mesures par formation d'ions, mais encore la comparaison des résultats entre deux réamorçages de l'arc en vue de discriminer éventuellement les types d'ions formés en fonction de leur mobilité. On peut ainsi suivre l'évolution d'un certain phénomène, par exemple phase d'émission de particules.lourdes ou légères au cours d'un incendie. En outre, la création discontinue d'arc provoquant l'ionisation a pour conséquence de réduire de façon considérable la consommation d'énergie nécessaire au fonctionnement de l'appareil.
  • Une autre caractéristique du détecteur est l'inclusion d'un circuit de comparaison des résultats de deux mesures successives de la conductivité. Ce circuit pouvant comporter de simples éléments analogiques et le dispositif de commande de l'atc pouvant fournir des tensions de l'ordre de 6 à 12.000 V très courte durée de l'ordre de 100 à 500 nanosec., le courant étant de l'ordre de 1 microampère, on parvient ainsi à utiliser des puissances extrêmement faibles de l'ordre de 16 picowatt pour assurer l'ionisation de la chambre de mesure, la consommation totale des composants des autres circuits étant limitée à 20 microwatt par exemple.
  • D'autres caractéristiques et avantages de l'invention apparaîtront au cours de la description suivante faite en référence aux dessins et qui représentent à titre d'exemples non limitatifs, un mode de réalisation de la présente invention et des variantes de la commande de signalisation des mesures.
    • La figure 1 est une représentation schématique de l'appareil et doses circuits.
    • La figure 2 le diagramme représentant les tensions de contrôle du transistor commandant le déclenchement de l'arc électrique.
    • La figure 3 un exemple de succession des tensions de commande de l'arc et de la variation de la conductivité entre électrodes de mesure.
    • La figure 4 le schéma d'un circuit de signalisation de la détection d'une chute de conductivité.
    • La figure 5 une variante du dispositif de la figure 4,
    • La figure 6 le schéma des tensions du dispositif de commande de déclenchement de l'arc électrique,
    • La figure 7 une variante du dispositif de la figure 5, et
    • La figure 8 un exemple des tensions des commandes du dispositif de signalisation représenté à la figure 7.
  • Le détecteur schématisé figure 1 comprend essentiellement une chambre unique 4 dont l'ouverture est recouverte par une fine grille de protection 5 mise à la masse. La grille permet notamment la suppression d'émissions radioélectriques parasites. Les électrodes El et E2 servant à la production d'arcs intermittents ainsi que les électrodes E3 et E4 de mesure de la conductivité du milieu sont alimentés en tension par les enroulements 7 d'un transformateur dont l'enroulement primaire 8 est contrôlé par la porte 9 du transistor Z1. Cette porte est connectée par le circuit 10 au circuit de mesure de conductivité de l'espace compris entre les électrodes E3 et E4.
  • L'alimentation de l'enroulement primaire 8 s'effectue au moyen de terminaux 1 et 2 connectés aux bornes de tout dispositif d'alimentation fournissant respectivement une tension positive au terminal 1 par exemple de + 6V et une tension négative au terminal 2 de -6V. La tension de référence au terminal 3 peut être de + 6V. En absence de conduction de Z1, le condensateur C1 connecté à la masse et au terminal 1 par la résistance R1 se charge. Lorsque la tension de l'anode 11 croît et dépasse celle de la porte 9, le condensateur Cl se décharge par Z1 à travers l'enroulement primaire 8 du transformateur. La décharge se produisant en un temps extrêmement court,une différence importante de potentiel se produit aux bornes de l'enroulement secondaire 7 connectées aux électrodes E1 et E2 provoquant ainsi un arc électrique entre ces électrodes. L'accroissement de l'ionisation du milieu contenu dans la chambre 4 accroît la conductivité entre les électrodes E3 et E4 entraînant l'accroissement de la tension de la porte 9. Le condensateur C1 venant de se décharger, on voit que le dépassement de la tension de l'anode 11 par la tension de la porte 9 se produit en un temps très court, la décharge du condensateur entraînant la coupure immédiate par Z1 de l'alimentation de l'enroulement 8.
  • On voit que dès que la chambre 4 est ionisée, le condensateur C2 se charge à une certaine valeur et que le moment où la tension de la porte 9 dépasse celle de l'anode est fonction de la conductivité de l'espace situé entre les électrodes E3 et E4 ainsi que des valeurs des résistances R2 et R3. II en résulte que, si au cours du temps, la conductivité varie entre E3 et E4 en raison d'une disparition rapide des ions due à la venue dans la chambre 4 de particules émises par exemple au cours d'un incendie, la fréquence d'amorçage de l'arc entre E1 et E2 croît. On obtient ainsi un moyen commode de détecter la pollution du milieu environnant la chambre 4.
  • La figure 2 montre en V9 la courbe de décroissance de la tension de la porte 9 entraînant la conduction brusque de Z1, lorsque la tension d'anode représentée en V11 dépasse la valeur VL de la tension V9 de la porte 9. La tension V12 de la cathode 12, croît alors brusquement à l'instant t, puis décroît jusqu'à l'instant t2. Le condensateur C1 se charge à nouveau et le cycle recommence.
  • On a représenté à la figure 3 une succession d'impulsions de commande de l'arc électrique provoquant l'ionisation de la chambre 4 ainsi que la courbe de conductivité 13 en fonction du temps au cours de la détection d'une certaine pollution que l'on détecte encore par la fréquence des impulsions V12 de commande de l'arc entre les électrodes El et E2. Un signal d'alarme de tout type peut être déclenché par le dispositif 30 représenté figure 4. Celui-ci peut comporter par exemple un circuit de détection d'impulsion manquante de type connu commercialisé par exemple sous la référence "Philips 555" et qu'il suffit de raccorder aux éléments représentés au schéma de la figure 1 en connectant l'entrée 25 du circuit de détection au terminal 3 du circuit de la figure 1. La sortie 24 du dispositif de détection 30 est connectée à tout dispositif d'alarme désiré 31, de sorte que, lorsque les impulsions sont espacées comme sur la figure 3,avant accroissement de la conductivité, le circuit 30 donne une réponse normale entre A et B. Par contre, entre les points B et C l'accroissement de la fréquence des impulsions V12 entraîne un signal de sortie en 24 du dispositif de détection 30. La connexion 32 au dispositif d'alarme 31 déclenche ainsi tout dispositif. Le signal de déclenchement en 24 ne disparaît qu'au retour de la fréquence primitive en C.
  • Une variante du circuit de commande de la signalisation a été représentée figure 5. Dans cette variante, le point de jonction 14 des résistances R2 et R3 est relié d'une part directement à l'entrée négative d'un amplificateur opérationnel 15, d'autre part à l'entrée positive de l'amplificateur 15 par l'intermédiaire du circuit constitué de la diode D2 et de la ligne de retard composée de la résistance R4 et du condensateur C3. On a représenté à la figure 6 la courbe 16 de décroissance de la conductivité dans le milieu normal que le détecteur ionique surveille et en 17 la courbe de la chute de tension à l'entrée du circuit R4, C3 en fonction du temps ce circuit étant préalablement réglé pour qu'à tout instant la valeur de la tension représentée par la courbe 17 soit inférieure à celle représentée par la courbe 16. La tension représentée par la courbe 17 sert de seuil de référence et permet que dès que des particules pénètrent dans la chambre 4 et entraînent la diminution du nombre des ions dans l'espace E3, E4 de commander l'amplificateur opérationnel 15, la courbe de la tension V10 du point de jonction 14 décroissant plus vite que celle du circuit R4-C3. La tension de sortie V de l'amplificateur 15 peut être utilisée pour commander tout circuit d'alarme, tel que 31 par exemple.
  • Ce circuit de commande de signalisation très simple a l'avantage d'être très sensible et convient particulièrement à la surveillance de milieux où l'humidité et la température sont relativement constantes.
  • Lorsque le milieu à surveiller est susceptible de présenter des variations d'humidité et de température affectant la mobilité des ions ainsi que la rapidité de leur disparition, le dispositif de commande de signalisation peut être remplacé par le dispositif représenté figure 7 permettant de comparer la tension V10 prise au point de jonction 14 après une période prédéterminée T1 suivant la commande de l'arc entraînant l'ionisation, avec la valeur précédente de cette tension V10 préalablement enregistrée.
  • A cet effet, la tension V10, représentative de la conduction entre les électrodes E3 et E4, est injectée dans l'amplificateur opérationnel 18 servant de transformateur d'impédance, de sorte que la même source de tension V10 est appliquée à la borne 27 du transistor 26 du type MOS dont le drain est connecté en 28 à l'entrée négative de l'amplificateur 20 et à la résistance R5.
  • La porte 29 commandant la conduction du transistor MOS 26 servant d'interrupteur est reliée par 32 du circuit de temporisation 23. Ce circuit entraîne un retard de transmission T2, figure 8, du signal transmis par le circuit différentiel C7, R7. Ce signal provient de l'amplificateur 19 par l'intermédiaire du circuit C6, R6 et du circuit de temporisation 22 qui introduit le retard T1, représenté figure 8.
  • Dès que la tension V10 est supérieure à une valeur de référence appliquée a l'entrée 21 de l'amplificateur 19, celui-ci transmet une impulsion négative au circuit 22 par le circuit différentiel C6R6. Cette impulsion est retardée à son tour du temps T2.
  • Il en résulte que, lorsque la tension V10 est appliquée par l'interrupteur MOS 26 à la borne 28 et au circuit R5,C5, que si la tension du condensateur C5, représentant l'ancienne valeur de V10, cas des valeurs B et C, figure 8, est inférieure à la nouvelle valeur de V10, la sortie 33 de l'amplificateur 20 reste à la valeur 0.
  • Par contre, lorsque l'ancienne valeur de V10 représentée par celle de C5 est supérieure à la nouvelle, cas de valeurs B et A, figure 8, la nouvelle valeur est enregistrée par C5 et la sortie 33 de l'amplificateur 20 fournit un signal transmis à tout dispositif d'alarme tel que 31.
  • Il est ainsi possible d'analyser avec précision aussi bien les variations globales de diminution de la conductivité du milieu que les variations entraînées par les mobilités différentes des ions.

Claims (9)

1.- Détecteur de niveau d'ionisation d'un milieu gazeux, caractérisé en ce que l'ionisation du milieu gazeux (4) que l'on surveille est provoquée par un arc électrique entre deux électrodes (E1 et E2), la valeur de la conductivité du milieu entre une seconde paire d'électrodes (E3, E4), contrôlant au moins un circuit de réaction (10) indicateur du taux de décroissance des ions fonction des variations du nombre 4e particules du milieu ambiant et de leur mobilité.
2. - Détecteur tel que revendiqué en 1 comportant un circuit de commande de l'arc électrique (C1, 10, 7, 8) fournissant des tensions de l'ordre de 6 à 12.000 V de très courte durée de l'ordre de 100 à 500 nanosecondes.
3. - Détecteur tel que revendiqué en 1 ou 2, dont ledit circuit de réaction (10) est placé sous le contrôle des électrodes de mesure (E3, E4) de la conductivité du milieu, lesdites électrodes étant alimentées en tension par un enroulement secondaire (7) d'un transformateur dont l'excitation du primaire (8) est placée sous le contrôle de la tension de charge d'un condensateur (C1) et de la tension fournie par le circuit de réaction (10).
4. - Détecteur tel que revendiqué en 3 dont les électrodes (E1 et E2) de commande de l'arc électrique sont raccordées audit enroulement secondaire (7) du transformateur dont le primaire (8) est excité par la d-charge du condensateur (C1) placé sous le contrôle des électrodes de mesures (E3' E4).
5. - Détecteur tel que revendiqué en 3 comprenant en outre un dispositif de signalisation (31) de la chute de conductivité, contrôlé par un détecteur (30) de la variation de fréquence de charge dudit condensateur (C1).
6. - Détecteur tel que revendiqué en 5 dont le circuit de contrôle (Z1) de la commande de l'arc électrique est relié à l'entrée (25) d'un dispositif de détection d'impulsion
7. - Détecteur tel que revendiqué en 1 dont la tension fournie par les électrodes de mesure de conductivité (E3, E4) sont reliées à un circuit (R4, C3) engendrant une tension variable décroissante (17) inférieure à la tension variable décroissante théorique (16) de la conductivité correspondant à la décroissance normale de l'ionisation entre lesdites électrodes, le circuit de détection de la décroissance de l'ionisation due aux particules pénétrant dans la chambre d'ionisation comprenant un amplificateur opérationnel (15) dont les entrées sont reliées d'une part audit circuit (R4, C3) de génération d'une tension décroissante d'autre part, au circuit de réaction (Z1) de contrôle de l'arc électrique.
8. - Détecteur tel que revendiqué en 1 dont le circuit de réaction commandé par les électrodes de mesure (E3, E4) est aussi connecté d'une part à un dispositif mémoire (CS) de la valeur (V10) représentative de la conductivité entre électrodes de mesure, d'autre part à un dispositif de commande (19) dont la sortie est pourvue de deux dispositifs de temporisation (22 et 23) commandant l'accès de ladite valeur (V10) à la fois à ladite mémoire (C5) et à un amplificateur opérationnel (20) contrôlant tout dispositif de signalisation (31).
9. - Détecteur tel que revendiqué en 7 dont ledit accès de la valeur (V10) représentative de la conductivité entre électrodes de mesure (E3, E4) comprend un transistor MOS (26) utilisé en interrupteur et commandé par un amplificateur opérationnel (19) recevant d'une part une tension de référence (21) d'autre part ladite tension (V10) du circuit de réaction connecté à la commande (Zl) de l'arc électrique.
EP83401258A 1982-06-17 1983-06-17 Détecteur de niveau d'ionisation d'un milieu gazeux contrôlé par arc électrique Expired EP0099776B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT83401258T ATE42648T1 (de) 1982-06-17 1983-06-17 Ionisationsniveau-detektor von einer mit elektrischem bogen kontrollierten gasartigen umgebung.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8210592 1982-06-17
FR8210592A FR2528980A1 (fr) 1982-06-17 1982-06-17 Detecteur de niveau d'ionisation d'un milieu gazeux controle par arc electrique

Publications (2)

Publication Number Publication Date
EP0099776A1 true EP0099776A1 (fr) 1984-02-01
EP0099776B1 EP0099776B1 (fr) 1989-04-26

Family

ID=9275106

Family Applications (1)

Application Number Title Priority Date Filing Date
EP83401258A Expired EP0099776B1 (fr) 1982-06-17 1983-06-17 Détecteur de niveau d'ionisation d'un milieu gazeux contrôlé par arc électrique

Country Status (12)

Country Link
US (1) US4629992A (fr)
EP (1) EP0099776B1 (fr)
JP (1) JPS59501124A (fr)
AT (1) ATE42648T1 (fr)
AU (1) AU571838B2 (fr)
CA (1) CA1212784A (fr)
DE (1) DE3379756D1 (fr)
DK (1) DK163152C (fr)
ES (1) ES523393A0 (fr)
FI (1) FI80804C (fr)
FR (1) FR2528980A1 (fr)
WO (1) WO1984000074A1 (fr)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5164673A (en) * 1989-11-13 1992-11-17 Rosener Kirk W Induced electric field sensor
DE4038994C2 (de) * 1990-12-06 1994-03-10 Lehmann Martin Verfahren zum Ermitteln einer Meßgröße und Meßanordnung
CA2032912C (fr) * 1990-12-21 1994-06-28 Bryan M. Latta Methode non effractive de mesure de la teneur en gaz de la lame d'air d'un vitrage isolant, et appareil connexe
US5324398A (en) * 1992-06-19 1994-06-28 Water Regeneration Systems, Inc. Capacitive discharge control circuit for use with electrolytic fluid treatment systems
US6781384B2 (en) * 2001-07-24 2004-08-24 Agilent Technologies, Inc. Enhancing the stability of electrical discharges
EP3074765B1 (fr) * 2013-11-26 2020-11-11 Smiths Detection Montreal Inc. Source d'ionisation par décharge à barrière diélectrique pour spectrométrie

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3673586A (en) * 1970-02-19 1972-06-27 Statitrol Corp Resistance controlled timed pulse generator
FR2129380A5 (fr) * 1971-03-16 1972-10-27 Tif Instr Inc
US3728615A (en) * 1969-10-29 1973-04-17 Eaton Yale & Towne Smoke, gas, or rapid temperature increase detector utilizing a periodic electric field to create a self-sustained avalanche current
US3949390A (en) * 1974-06-05 1976-04-06 Rca Corporation High voltage aerosol detector
US3978397A (en) * 1973-12-06 1976-08-31 National Research Development Corporation Apparatus for sensing particles

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2550498A (en) * 1947-06-14 1951-04-24 Gen Electric Method and apparatus for electrically detecting vapors and the like
FR1540305A (fr) * 1967-02-09 1968-09-27 Dispositif perfectionné de détection d'incendie
DE2029485B2 (de) * 1969-06-21 1971-11-25 Nittan Co. Ltd., Tokio Ionisations rauchfuehler
BE881812A (nl) * 1979-12-17 1980-06-16 Cerberus Ag Meldingsstelsel

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3728615A (en) * 1969-10-29 1973-04-17 Eaton Yale & Towne Smoke, gas, or rapid temperature increase detector utilizing a periodic electric field to create a self-sustained avalanche current
US3673586A (en) * 1970-02-19 1972-06-27 Statitrol Corp Resistance controlled timed pulse generator
FR2129380A5 (fr) * 1971-03-16 1972-10-27 Tif Instr Inc
US3978397A (en) * 1973-12-06 1976-08-31 National Research Development Corporation Apparatus for sensing particles
US3949390A (en) * 1974-06-05 1976-04-06 Rca Corporation High voltage aerosol detector

Also Published As

Publication number Publication date
FI80804B (fi) 1990-03-30
FR2528980B1 (fr) 1985-01-25
DE3379756D1 (en) 1989-06-01
US4629992A (en) 1986-12-16
DK163152C (da) 1992-06-22
ES8404511A1 (es) 1984-04-16
AU571838B2 (en) 1988-04-28
FI80804C (fi) 1990-07-10
FI840623A0 (fi) 1984-02-15
JPS59501124A (ja) 1984-06-28
ATE42648T1 (de) 1989-05-15
DK59084D0 (da) 1984-02-10
DK59084A (da) 1984-02-10
CA1212784A (fr) 1986-10-14
AU1607183A (en) 1984-01-16
DK163152B (da) 1992-01-27
JPH0331387B2 (fr) 1991-05-02
EP0099776B1 (fr) 1989-04-26
FR2528980A1 (fr) 1983-12-23
ES523393A0 (es) 1984-04-16
FI840623A (fi) 1984-02-15
WO1984000074A1 (fr) 1984-01-05

Similar Documents

Publication Publication Date Title
EP0025725A2 (fr) Dispositif électronique pour l'utilisation d'une source de très faible tension et application à un détecteur-émetteur d'incendie
FR2689280A1 (fr) Circuit de mise en silence d'alarme pour détecteur photoélectrique de fumée.
EP3039439A1 (fr) Detection d'arcs electriques dans les installations photovoltaïques
EP0192000A1 (fr) Paratonnerre à décharge couronne impulsionnelle intermittente
EP0099776A1 (fr) Détecteur de niveau d'ionisation d'un milieu gazeux contrôlé par arc électrique
FR2428289A1 (fr) Dispositif de detection d'incendie
EP0705447B1 (fr) Procede et dispositif pour detecter et identifier des cables electriques
EP0252801B1 (fr) Dispositif de détection d'une impulsion électromagnétique, due notamment à une explosion nucléaire
FR2473201A1 (fr) Detecteur de fumees capacitif a faible source d'ionisation
EP0827250B1 (fr) Déclencheur électronique comportant une memoire thermique
EP3384594A1 (fr) Procede et dispositif d'evaluation de l'energie produite par un arc electrique dans une installation photovoltaïque
FR2628591A1 (fr) Procede de declenchement d'un electrificateur de cloture et son dispositif de mise en oeuvre
CH442538A (fr) Circuit d'alimentation d'un détecteur de radiations à tube de Geiger
EP2463669B1 (fr) Module de détection de tension
EP0159244B1 (fr) Détecteur électrique de particules pour la détection d'incendie
CH406451A (fr) Dispositif électrométrique
US3987423A (en) Ionization-chamber smoke detector system
CH625356A5 (fr)
FR2634559A1 (fr) Procede de mesure de courants faibles a grande dynamique par conversion courant frequence et dispositif de mise en oeuvre
FR2848351A1 (fr) Paratonnerre a amorcage equipe de moyens de maintenance distants
EP0070941B1 (fr) Circuit contrôlé de détection d'incendie par semi conducteur sensible au gaz et à faible consommation
EP2775803A1 (fr) Electrificateur de cloture électrique
CH623423A5 (en) Ionisation fire detector device
JPS598873B2 (ja) イオン式煙感知器
FR2461266A1 (fr) Procede et appareil pour la mesure de rayonnements ionisants

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT BE CH DE GB IT LI LU NL SE

17P Request for examination filed

Effective date: 19840710

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE GB IT LI LU NL SE

REF Corresponds to:

Ref document number: 42648

Country of ref document: AT

Date of ref document: 19890515

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3379756

Country of ref document: DE

Date of ref document: 19890601

ITF It: translation for a ep patent filed

Owner name: SAIC BREVETTI S.R.L.

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19930528

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19930604

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19930615

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19930629

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19930630

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19930717

Year of fee payment: 11

EPTA Lu: last paid annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19940617

Ref country code: AT

Effective date: 19940617

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19940618

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19940630

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 19940630

Year of fee payment: 12

BERE Be: lapsed

Owner name: PGEP S.A. PROFESSIONAL GENERAL ELECTRONIC PRODUCT

Effective date: 19940630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19950101

EUG Se: european patent has lapsed

Ref document number: 83401258.5

Effective date: 19950110

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19940617

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19950301

EUG Se: european patent has lapsed

Ref document number: 83401258.5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19950617

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20010709

Year of fee payment: 19

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020630

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020630

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL