EP0096837B1 - Process for the production of a tungsten carbide activated electrode - Google Patents

Process for the production of a tungsten carbide activated electrode Download PDF

Info

Publication number
EP0096837B1
EP0096837B1 EP83105608A EP83105608A EP0096837B1 EP 0096837 B1 EP0096837 B1 EP 0096837B1 EP 83105608 A EP83105608 A EP 83105608A EP 83105608 A EP83105608 A EP 83105608A EP 0096837 B1 EP0096837 B1 EP 0096837B1
Authority
EP
European Patent Office
Prior art keywords
support
tungsten
process according
tungsten carbide
tungsten oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP83105608A
Other languages
German (de)
French (fr)
Other versions
EP0096837A1 (en
Inventor
Aristides Dr. Naoumidis
Herbert Dr. Neumeister
Arno Schirbach
Bernd Dieter Dr. Struck
Dieter Triefenbach
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Forschungszentrum Juelich GmbH
Original Assignee
Forschungszentrum Juelich GmbH
Kernforschungsanlage Juelich GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Forschungszentrum Juelich GmbH, Kernforschungsanlage Juelich GmbH filed Critical Forschungszentrum Juelich GmbH
Priority to AT83105608T priority Critical patent/ATE29155T1/en
Publication of EP0096837A1 publication Critical patent/EP0096837A1/en
Application granted granted Critical
Publication of EP0096837B1 publication Critical patent/EP0096837B1/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/075Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of a single catalytic element or catalytic compound
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/042Electrodes formed of a single material
    • C25B11/043Carbon, e.g. diamond or graphene

Definitions

  • tungsten carbide-activated electrode Another known method for producing a tungsten carbide-activated electrode consists in that active tungsten carbide with graphite powder is cold-pressed to the electrode (H. Böhm, Chem.-Ing.-Techn. 49 (1977, 328).
  • the cathodes produced in this way only result in relatively low cathodic current densities, which suggests an unfavorable structure of the electrodes.
  • an electrode in particular a cathode for the electrolytic decomposition of hydrochloric acid is also known, which has a coating containing tungsten carbide.
  • this coating which is applied to the carrier by flame spraying, contains metallic cobalt or nickel in addition to tungsten carbide.
  • the carrier is a green body formed from a binder-containing graphite powder, the carrier having a binder content of 10 to 40% by weight. Because a binder is added to the filler grains of the green body, there is also a layer of binder on its surface after the carrier has been produced, so that in this case there is no need to apply an additional binder layer.
  • the support may be a porous diaphragm made of graphite.
  • the tungsten compound is expediently applied to the carrier using a binder.
  • a tungsten oxide powder which has been produced from para-ammonium tungstate via a precipitation reaction to tungstic acid and subsequent decomposition in air at approximately 550 ° C. or direct thermal decomposition of para-ammonium tungstate and whose specific surface area is greater than 10 is advantageously used for application to the carrier m 2 / g.
  • the procedure is expediently carried out in such a way that the support with the tungsten oxide thereon is brought to reduce the tungsten oxide under a hydrogen atmosphere or a hydrogen inert gas atmosphere and is heated to a temperature of 370 to 580 ° C.
  • the flowing gas is generally 1 to 3 l hydrogen / h per cm 2 cross-sectional area of the vessel in which the carrier is located.
  • the heating takes place continuously in 1 to 3 hours from 20 ° C.
  • the tungsten oxide (W0 3 ) is reduced to a mixture of different oxide phases with the composition WO X (0.33 ⁇ x ⁇ 3).
  • the sample is expediently carried out in an inert gas atmosphere (e.g. about 21 / h flowing argon per cm 2 cross-sectional area of the vessel) in about 0.7 to 2 hours at 1 to 2 ° K / min Heated up to 620 ° C.
  • an inert gas atmosphere e.g. about 21 / h flowing argon per cm 2 cross-sectional area of the vessel
  • the carrier with the tungsten oxide located thereon is then heated in the temperature range from 620 to 950 ° C. at a temperature rise of approximately 1 ° K / min under a flowing CO / CO 2 atmosphere.
  • the volume ratio of the CO to CO 2 is expediently about 10: 1, the volume flow about 1.5 I / h per cm 2 cross-sectional area of the vessel.
  • the carburization time should last at most until all tungsten oxide has been converted into tungsten carbide. In order to achieve the highest possible electrochemical activity of the electrode, however, it may be expedient not to convert the tungsten oxide applied completely into tungsten carbide, but to leave a portion, albeit very small, of tungsten oxide.
  • the carrier with the tungsten carbide layer formed is kept at 750 ° C. under flowing hydrogen gas in order to reduce any carbon present on the carrier surface.
  • Electrodes produced by the method according to the invention consist in its use as a cathode in an electrolysis cell for carrying out the sulfuric acid hybrid cycle process or as a cathode in an electrolysis cell for the anodic oxidation of SO 2 exhaust gases with simultaneous cathodic H 2 production.
  • Argon (20 l / h) was then passed through the quartz tube and the compacts were further heated up to 500.degree.
  • the heating rate was 2.5 ° K / min.
  • the compacts were heated from 580 ° C with a temperature increase of 1.4 ° K / min to 760 ° C, whereby a gas mixture of CO and C0 2 (CO / C0 2 volume ratio 9: 1; volume flow up to 15 l / h) was passed through the pipe.
  • the finished electrodes with the tungsten carbide-activated surface were examined electrochemically at 80 ° C. in 50% by weight H 2 SO 4 .
  • the cathodic current density of the hydrogen evolution was recorded as a measure of the activity of the electrode.
  • a current density of 210 mA / cm 2 was achieved under the test conditions mentioned.
  • the electrode was operated under the aforementioned conditions for 1000 hours and remained practically without weight loss.
  • a carrier made of electrographite was coated with a 20% (w / w) solution of phenolic resin Spread binder in methanol. The resulting very thin binder layer was then coated uniformly with tungsten oxide powder (170 mg / cm 2 ).
  • the WC1 6 was first heated to about 240 ° C in a stationary argon / hydrogen atmosphere and then the graphite disc was quickly inductively heated to about 650 ° C.
  • the gas flow was then started from bottom to top and an argon / hydrogen gas mixture (4% hydrogen content) was passed through the quartz tube at a rate of 10 l / min.
  • the exhaust gases were neutralized with NaOH in a wash bottle downstream of the quartz tube.
  • the WC1 6 vapor with the H 2 of the carrier gas on the surface of the graphite disc was reduced to tungsten metal and the surface was coated.
  • a layer thickness of about 10 ⁇ m was generated in two minutes, regardless of the roughness of the surface of the graphite disc.
  • a coating time of about 3 minutes a layer thickness of 15 1 1 m was achieved.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

A process is disclosed for the production of a tungsten carbide-activated electrode, particularly an electrode which is utilizable as a cathode, and which consists of an electrically-conductive substrate with an active surface layer of tungsten carbide. The tungsten carbide is adhesively bonded through chemical reaction to the surface of a substrate which is constituted of graphite or a graphite-like material. The graphite-like material is a graphite binder mixture, whose binder material components, other than the graphitic filler granules, are only carbonized, and may not be completely graphited.

Description

Die Erfindung bezieht sich auf ein Verfahren zur Herstellung einer wolframcarbidaktivierten, insbesondere als Kathode verwendbaren Elektrode, die aus einem elektrisch leitfähigen Trägermaterial mit einer oberflächenaktiven Schicht ausschliesslich aus Wolframcarbid besteht.The invention relates to a method for producing a tungsten carbide-activated electrode, which can be used in particular as a cathode and which consists of an electrically conductive carrier material with a surface-active layer consisting exclusively of tungsten carbide.

Elektroden der vorgenannten Art werden als Kathoden benötigt bei der Elektrolyse zur Wasserstofferzeugung im sauren Milieu allgemein und insbesondere bei der Elektrolyse in schwefelsaurer Lösung oder bei der kathodischen Erzeugung von Wasserstoff bei gleichzeitiger anodischer Oxidation von Schwefeldioxid in schwefelsaurem Elektrolyten. Spezielle Beispiele sind die elektrochemische Oxidation von S02 aus Abgasen bei der H2-Erzeugung sowie die analoge Elektrolyse im Schwefelsäure-Hybrid-Kreisprozess.Electrodes of the aforementioned type are required as cathodes in the electrolysis for hydrogen generation in an acidic environment in general and in particular in the electrolysis in sulfuric acid solution or in the cathodic generation of hydrogen with simultaneous anodic oxidation of sulfur dioxide in sulfuric acid electrolyte. Special examples are the electrochemical oxidation of S0 2 from exhaust gases in the production of H 2 as well as the analog electrolysis in the sulfuric acid hybrid cycle.

Ein bekanntes Verfahren zur Herstellung von wolframcarbidaktivierten Elektroden besteht darin, dass zunächst Wolframcarbid hergestellt wird und dieses als Pulver mittels eines Binders (Polyimid oder Polysulphon) auf den Träger aufgebracht wird. Auf diese Weise hergestellte Elektroden zeigen jedoch keine hinreichend hohe elektrochemische Aktivität.A known method for producing tungsten carbide-activated electrodes is that tungsten carbide is first produced and this is applied to the carrier as a powder by means of a binder (polyimide or polysulphone). However, electrodes manufactured in this way do not show a sufficiently high electrochemical activity.

Zwar ist ein weiteres Verfahren bekannt, nach dem Kathoden mit hinreichend hoher elektrochemischer Aktivität hergestellt werden können (P. Cavallotti in Hydrogen as an Energy Vector, edit. A.A. Strub and G. Imarisio, D. Reidel Publishing Company, Dordrecht/Boston/London, 1980, S. 408, EUR 6783). Nach diesem bekannten Verfahren wird eine Wolframcarbid-TeflonbinderBeschichtung auf einen goldbeschichteten Träger aufgebracht. Diese Verfahrensweise ist jedoch infolge der Verwendung des Edelmetalls sehr teuer.A further method is known by which cathodes with a sufficiently high electrochemical activity can be produced (P. Cavallotti in Hydrogen as an Energy Vector, edit. AA Strub and G. Imarisio, D. Reidel Publishing Company, Dordrecht / Boston / London, 1980, p. 408, EUR 6783). According to this known method, a tungsten carbide-Teflon binder coating is applied to a gold-coated carrier. However, this procedure is very expensive due to the use of the noble metal.

Ein weiteres bekanntes Verfahren zur Herstellung einer wolframcarbidaktivierten Elektrode besteht darin, dass aktives Wolframcarbid mit Graphitpulver zu der Elektrode kalt verpresst wird (H. Böhm, Chem.-Ing.-Techn. 49 (1977, 328). Die so hergestellten Kathoden ergeben jedoch nur relativ geringe kathodische Stromdichten, was auf ein ungünstiges Gefüge der Elektroden schliessen lässt.Another known method for producing a tungsten carbide-activated electrode consists in that active tungsten carbide with graphite powder is cold-pressed to the electrode (H. Böhm, Chem.-Ing.-Techn. 49 (1977, 328). However, the cathodes produced in this way only result in relatively low cathodic current densities, which suggests an unfavorable structure of the electrodes.

Aus der DE-B-1 299 287 ist ferner eine Elektrode, insbesondere Kathode für die elektrolytische Zerlegung von Salzsäure bekannt, die eine Wolframcarbid enthaltende Auflage aufweist. Diese Auflage, die durch Flammspritzen auf den Träger aufgebracht wird, enthält jedoch ausser Wolframcarbid noch metallisches Cobalt bzw. Nickel.From DE-B-1 299 287 an electrode, in particular a cathode for the electrolytic decomposition of hydrochloric acid is also known, which has a coating containing tungsten carbide. However, this coating, which is applied to the carrier by flame spraying, contains metallic cobalt or nickel in addition to tungsten carbide.

Es ist Aufgabe der Erfindung, ein Verfahren zur Herstellung einer wolframcarbidaktivierten Elektrode der eingangs bezeichneten Art zu schaffen, bei dem die Verwendung teurer Edelmetalle vermieden wird und das dennoch zu langzeitstabilen Elektroden mit hoher elektrochemischer Aktivität führt.It is an object of the invention to provide a method for producing a tungsten carbide-activated electrode of the type mentioned at the outset, in which the use of expensive precious metals is avoided and which nevertheless leads to electrodes with high electrochemical activity which are stable in the long term.

Diese Aufgabe wird gemäss der Erfindung dadurch gelöst, dass Wolframmetall oder eine Wolframverbindung auf die Oberfläche des aus Graphit oder einem graphitähnlichen Material bestehenden Trägers aufgebracht und in Wolframcarbid umgewandelt und dabei mit dem Träger chemisch adhäsiv verbunden wird. Unter einem graphitähnlichen Material wird dabei ein Graphitbindergemisch verstanden, dessen Binderanteile - anders als die graphitischen Füllerkörner - nur verkokt, zumindest aber nicht vollständig graphitiert sind.According to the invention, this object is achieved in that tungsten metal or a tungsten compound is applied to the surface of the carrier consisting of graphite or a graphite-like material and converted into tungsten carbide and thereby chemically adhesively bonded to the carrier. A graphite-like material is understood to mean a graphite binder mixture whose binder components - unlike the graphite filler grains - are only coked, but at least not completely graphitized.

Das Verfahren gemäss der Erfindung ist auf verschiedene Weise durchführbar. So wird eine adhäsive Bindung zwischen Träger und der Wolframcarbidschicht, die eine durch chemische Reaktion erzielte Bindung zwischen Festkörpern ist, durch Aufdampfen von Wolframmetall und anschliessende Carburierung zu Wolframcarbid, wobei dieses als solches mit dem Träger verbunden wird, erreicht.The method according to the invention can be carried out in various ways. Thus, an adhesive bond between the support and the tungsten carbide layer, which is a bond between solids achieved by chemical reaction, is achieved by evaporating tungsten metal and then carburizing to form tungsten carbide, which as such is bonded to the support.

Eine vorteilhafte Verfahrensweise gemäss der Erfindung besteht ferner darin, dass Wolframoxid oder eine zu Wolframoxid thermisch zersetzbare Wolframverbindung auf den Träger aufgebracht wird, und dass das Wolframoxid oder die Wolframverbindung ggf. unter thermischer Zersetzung zu Wolframoxid durch Reduzieren und Carburieren am Träger in Wolframcarbid umgewandelt und dabei als solches mit dem Träger verbunden wird. Die Menge des auf den Träger aufgebrachten Wolframoxids beträgt dabei 50 bis 350 mg pro cm2.An advantageous procedure according to the invention is furthermore that tungsten oxide or a tungsten compound which is thermally decomposable to tungsten oxide is applied to the carrier, and that the tungsten oxide or the tungsten compound is converted to tungsten oxide by reducing and carburizing on the carrier into tungsten carbide and thereby thereby as such is connected to the carrier. The amount of tungsten oxide applied to the carrier is 50 to 350 mg per cm 2 .

Nach dem Verfahren gemäss der Erfindung kann die Wolframverbindung (das Wolframoxid oder die zu Wolframoxid zersetzbare Wolframverbindung) direkt - also ohne Verwendung eines Binders - oder unter Verwendung eines verkokbaren Binders auf den Träger aufgebracht werden. Dabei wird in vorteilhafter Weise so verfahren, dass zunächst auf den Träger eine dünne Bindemittelschicht aufgetragen und auf diese Bindemittelschicht die Wolframverbindung aufgebracht wird. Die Dicke der Schicht ist dabei so zu bemessen, dass sie zur Haftung der aufzutragenden Wolframverbindung und zur Bildung der adhäsiven Verbindung gerade ausreicht, dabei aber verhindert wird, dass ein Teil des Wolframoxids oder der Wolframverbindung durch Bindemittel abgedeckt wird. Durch diese Verfahrensweise wird eine besonders hohe elektrochemische Aktivität der Elektrode erzielt.According to the method according to the invention, the tungsten compound (the tungsten oxide or the tungsten compound which can be decomposed to tungsten oxide) can be applied directly to the support - that is to say without using a binder - or using a coking binder. The procedure is advantageously such that a thin binder layer is first applied to the carrier and the tungsten compound is applied to this binder layer. The thickness of the layer is to be dimensioned such that it is just sufficient for the adhesion of the tungsten compound to be applied and for the formation of the adhesive compound, but this prevents a part of the tungsten oxide or the tungsten compound from being covered by binders. A particularly high electrochemical activity of the electrode is achieved by this procedure.

Der Binder wird während der Carburierungsphase entweder vollständig verbraucht, oder er wird-soweit ein Teil des Binders, beispielsweise als Schicht zwischen dem gebildeten Wolframcarbid und dem Träger, bestehen bleibt-verkokt. Da - wie sich gezeigt hat - der verkokte Binder leitfähig ist, ist das Entstehen einer aus verkoktem Binder bestehenden Schicht zwischen Wolframcarbid und dem Träger der elektrochemischen Aktivität praktisch nicht abträglich. Es kann jedoch vorteilhaft sein, dass ein Bindemittel verwendet wird, dem zur Erhöhung der Leitfähigkeit des nach dem Carburieren verkokten Bindemittels Graphitpulver beigemischt worden ist. Zweckmässig kann ferner sein, dass das Bindemittel ein Phenolkunstharz ist.The binder is either completely consumed during the carburization phase or, insofar as part of the binder remains, for example as a layer between the tungsten carbide formed and the support, coked. Since - as has been shown - the coked binder is conductive, the formation of a layer consisting of coked binder between tungsten carbide and the carrier of the electrochemical activity is practically not detrimental. However, it may be advantageous to use a binder which has been admixed with graphite powder in order to increase the conductivity of the binder coked after carburizing. It may also be expedient for the binder to be a phenolic resin.

Eine besonders vorteilhafte Variante des Verfahrens gemäss der Erfindung besteht darin, dass der Träger ein aus einem bindemittelhaltigen Graphitpulver geformter Grünkörper ist, wobei der Träger einen Bindemittelgehalt von 10 bis 40 Gew.% aufweist. Dadurch, dass den Füllerkörnern des Grünkörpers ein Bindemittel beigemischt ist, befindet sich nach der Herstellung des Trägers auch auf dessen Oberfläche eine Schicht aus Bindemittel, so dass sich in diesem Falle das Auftragen einer zusätzlichen Bindemittelschicht erübrigt.A particularly advantageous variant of the method according to the invention is that the carrier is a green body formed from a binder-containing graphite powder, the carrier having a binder content of 10 to 40% by weight. Because a binder is added to the filler grains of the green body, there is also a layer of binder on its surface after the carrier has been produced, so that in this case there is no need to apply an additional binder layer.

Für Anwendungsfälle, bei denen eine poröse Elektrode gebraucht wird, kann es zweckmässig sein, dass der Träger ein poröses Diaphragma aus Graphit ist. In einem solchen Falle wird zweckmässigerweise die Wolframverbindung unter Verwendung eines Binders auf den Träger aufgebracht.For applications in which a porous electrode is required, it may be appropriate for the support to be a porous diaphragm made of graphite. In such a case, the tungsten compound is expediently applied to the carrier using a binder.

Vorteilhafterweise wird zum Auftragen auf den Träger ein Wolframoxidpulver verwendet, das aus para-Ammoniumwolframat über eine Fällungsreaktion zu Wolframsäure und anschliessende Zersetzung an Luft bei etwa 550 °C oder direkte thermische Zersetzung von para-Ammoniumwolframat hergestellt worden ist, und dessen spezifische Oberfläche grösser als 10 m2/g ist. Eine weitere Verfahrensweise gemäss der Erfindung besteht jedoch auch darin, dass auf den Träger Wolframsäure oder para-Ammoniumwolframat aufgebracht wird, und dieses vor dem Reduzieren und Carburieren auf dem Träger zu Wolframoxid thermisch zersetzt wird.A tungsten oxide powder which has been produced from para-ammonium tungstate via a precipitation reaction to tungstic acid and subsequent decomposition in air at approximately 550 ° C. or direct thermal decomposition of para-ammonium tungstate and whose specific surface area is greater than 10 is advantageously used for application to the carrier m 2 / g. A further procedure according to the invention, however, is also that tungsten acid or para-ammonium tungstate is applied to the carrier, and this is thermally decomposed to tungsten oxide on the carrier before reducing and carburizing.

Zur Durchführung des Verfahrensschrittes der Reduktion des Wolframoxids wird zweckmässigerweise so verfahren, dass der Träger mit dem darauf befindlichen Wolframoxid zur Reduktion des Wolframoxids unter Wasserstoff-Atmosphäre oder Wasserstoff-Inertgas-Atmosphäre gebracht und auf eine Temperatur von 370 bis 580 °C aufgeheizt wird. Das strömende Gas beträgt dabei im allgemeinen 1 bis 3 I Wasserstoff/h pro cm2 Querschnittsfläche des Gefässes, in welchem sich der Träger befindet. Die Aufheizung erfolgt kontinuierlich in 1 bis 3 Stunden von 20 °C aus. Das Wolframoxid (W03) wird dabei zu einem Gemisch aus verschiedenen Oxidphasen mit der Zusammensetzung WOX (0,33≦x≦3) reduziert.To carry out the step of reducing the tungsten oxide, the procedure is expediently carried out in such a way that the support with the tungsten oxide thereon is brought to reduce the tungsten oxide under a hydrogen atmosphere or a hydrogen inert gas atmosphere and is heated to a temperature of 370 to 580 ° C. The flowing gas is generally 1 to 3 l hydrogen / h per cm 2 cross-sectional area of the vessel in which the carrier is located. The heating takes place continuously in 1 to 3 hours from 20 ° C. The tungsten oxide (W0 3 ) is reduced to a mixture of different oxide phases with the composition WO X (0.33 ≦ x ≦ 3).

Nach der Reduzierung des Wolframoxids und vor der Carburierung wird die Probe zweckmässigerweise in Inertgasatmosphäre (z. B. etwa 21/h strömendes Argon pro cm2 Querschnittsfläche des Gefässes) in etwa 0,7 bis 2 h mit 1 bis 2 °K/min auf 620 °C aufgeheizt. Zur Carburierung wird dann der Träger mit dem darauf befindlichen Wolframoxid im Temperaturbereich von 620 bis 950 °C bei einem Temperaturanstieg von etwa 1 °K/min unter strömender CO/C02-Atmosphäre aufgeheizt. Das Volumenverhältnis des CO zu CO2 beträgt dabei zweckmässigerweise etwa 10:1, der Volumenstrom etwa 1,5 I/h pro cm2 Querschnittsfläche des Gefässes. Nach Erreichen der Endtemperatur wird diese je nach der Art der vorherigen Verfahrensschritte, ob die Wolframverbindung beispielsweise mit oder ohne Binder aufgetragen worden ist, sowie je nach der Dicke der Bindemittelschicht bis zu 4 Stunden beibehalten. Die Carburierungszeit sollte nach Möglichkeit höchstens so lange dauern, bis alles Wolframoxid in Wolframcarbid umgewandelt ist. Zur Erzielung einer möglichst hohen elektrochemischen Aktivität der Elektrode kann es jedoch zweckmässig sein, das aufgebrachte Wolframoxid nicht vollständig in Wolframcarbid umzuwandeln, sondern einen, wenn auch sehr geringen Teil an Wolframoxid zu belassen.After reducing the tungsten oxide and before carburizing, the sample is expediently carried out in an inert gas atmosphere (e.g. about 21 / h flowing argon per cm 2 cross-sectional area of the vessel) in about 0.7 to 2 hours at 1 to 2 ° K / min Heated up to 620 ° C. For carburization, the carrier with the tungsten oxide located thereon is then heated in the temperature range from 620 to 950 ° C. at a temperature rise of approximately 1 ° K / min under a flowing CO / CO 2 atmosphere. The volume ratio of the CO to CO 2 is expediently about 10: 1, the volume flow about 1.5 I / h per cm 2 cross-sectional area of the vessel. After the final temperature has been reached, this is maintained for up to 4 hours, depending on the type of previous process steps, whether the tungsten compound has been applied, for example, with or without a binder, and the thickness of the binder layer. If possible, the carburization time should last at most until all tungsten oxide has been converted into tungsten carbide. In order to achieve the highest possible electrochemical activity of the electrode, however, it may be expedient not to convert the tungsten oxide applied completely into tungsten carbide, but to leave a portion, albeit very small, of tungsten oxide.

Es kann ferner zweckmässig sein, dass nach der Carburierungsphase der Träger mit der gebildeten Wolframcarbidschicht zur Reduktion von ggf. an der Trägeroberfläche befindlichem Kohlenstoff unter strömendem Wasserstoffgas bei 750 °C gehalten wird.It may furthermore be expedient that after the carburization phase, the carrier with the tungsten carbide layer formed is kept at 750 ° C. under flowing hydrogen gas in order to reduce any carbon present on the carrier surface.

Vorteilhafte Verwendungen der nach dem Verfahren gemäss der Erfindung hergestellten Elektrode bestehen in deren Einsatz als Kathode in einer Elektrolysezelle zur Durchführung des Schwefelsäurehybridkreisprozesses oder als Kathode in einer Elektrolysezelle zur anodischen Oxidation von S02 Abgasen bei gleichzeitiger kathodischer H2-Erzeugung.Advantageous uses of the electrode produced by the method according to the invention consist in its use as a cathode in an electrolysis cell for carrying out the sulfuric acid hybrid cycle process or as a cathode in an electrolysis cell for the anodic oxidation of SO 2 exhaust gases with simultaneous cathodic H 2 production.

Ausführungsbeispiel 1Embodiment 1

Aus einer Mischung aus Elektro- und Naturgraphitpulver mit einem Binderanteil von 20 Gew.% (Phenolkunstharz) wurde ein Träger vorgepresst. Auf diesen Träger wurden etwa 170 mg/cm2 Wolframoxid gleichmässig verteilt aufgebracht. Der vorgepresste Träger mit dem aufgebrachten Wolframoxid wurde anschliessend unter einem Druck von 200 MPA 15 Sekunden lang bei Raumtemperatur gepresst. Die Presslinge hatten einen Durchmesser von 16 mm (F = 2 cm2) und eine Dicke von etwa 2,5 mm.A carrier was pre-pressed from a mixture of electrical and natural graphite powder with a binder content of 20% by weight (phenolic resin). About 170 mg / cm 2 of tungsten oxide were applied uniformly to this support. The pre-pressed carrier with the applied tungsten oxide was then pressed under a pressure of 200 MPA for 15 seconds at room temperature. The compacts had a diameter of 16 mm (F = 2 cm 2 ) and a thickness of about 2.5 mm.

Die Presslinge wurden sodann in einem Quarzrohr (Innendurchmesser = 35 mm, F=10 cm2) unter strömendem Wasserstoff (20 I H2/h) kontinuierlich in etwa 2 h von 20 °C auf 370 °C aufgeheizt, so dass das W03 zu WOx (0,33 = x = 3) reduziert wurde.The compacts were then continuously heated in a quartz tube (inner diameter = 35 mm, F = 10 cm 2) under flowing hydrogen (20 IH 2 / h) from 20 ° C. to 370 ° C. in about 2 hours, so that the WO 3 became WO x (0.33 = x = 3) was reduced.

Anschliessend wurde das Quarzrohr mit Argon (20 1/h) durchströmt und die Presslinge bis 500 °C weiter aufgeheizt. Die Aufheizgeschwindigkeit betrug dabei 2,5°K/min. Zur Carburierung wurden die Presslinge von 580 °C ab mit einem Temperaturanstieg von 1,4 °K/min bis auf 760 °C aufgeheizt, wobei ein Gasgemisch aus CO und C02 (CO/C02 Volumenverhältnis 9:1; Volumenstrom bis 15 I/h) durch das Rohr geleitet wurde.Argon (20 l / h) was then passed through the quartz tube and the compacts were further heated up to 500.degree. The heating rate was 2.5 ° K / min. For the carburization, the compacts were heated from 580 ° C with a temperature increase of 1.4 ° K / min to 760 ° C, whereby a gas mixture of CO and C0 2 (CO / C0 2 volume ratio 9: 1; volume flow up to 15 l / h) was passed through the pipe.

Die fertigen Elektroden mit der wolframcarbidaktivierten Oberfläche wurden elektrochemisch bei 80 °C in 50 Gew.% H2S04 untersucht. Bei -100 mV gegen die reversible Wasserstoffelektrode (RHE) in gleicher Lösung wurde die kathodische Stromdichte der Wasserstoffentwicklung als Mass für die Aktivität der Elektrode aufgezeichnet. Unter den genannten Versuchsbedingungen wurde eine Stromdichte von 210 mA/cm2 erreicht. Die Elektrode wurde unter den vorgenannten Bedingungen 1000 Stunden betrieben und blieb praktisch ohne Gewichtsverlust.The finished electrodes with the tungsten carbide-activated surface were examined electrochemically at 80 ° C. in 50% by weight H 2 SO 4 . At -100 mV against the reversible hydrogen electrode (RHE) in the same solution, the cathodic current density of the hydrogen evolution was recorded as a measure of the activity of the electrode. A current density of 210 mA / cm 2 was achieved under the test conditions mentioned. The electrode was operated under the aforementioned conditions for 1000 hours and remained practically without weight loss.

Ausführungsbeispiel 2Embodiment 2

Ein Träger aus Elektrographit wurde mit einer 20%igen (Gew.%) Lösung aus Phenolkunstharzbinder in Methanol bestrichen. Die dabei entstehende, sehr dünne Binderschicht wurde anschliessend gleichmässig mit Wolframoxidpulver (170 mg/cm2) beschichtet.A carrier made of electrographite was coated with a 20% (w / w) solution of phenolic resin Spread binder in methanol. The resulting very thin binder layer was then coated uniformly with tungsten oxide powder (170 mg / cm 2 ).

Die Reduzierung und Carburierung der Wolframoxidschicht wurde wie im Ausführungsbeispiel 1 beschrieben vorgenommen.The reduction and carburization of the tungsten oxide layer was carried out as described in exemplary embodiment 1.

Die anschliessende kathodische Vermessung der Elektrode unter den im Ausführungsbeispiel 1 beschriebenen Versuchsbedingungen ergab eine Stromdichte von 150 mA/cm2 bei - 100 mV gegen RHE.The subsequent cathodic measurement of the electrode under the test conditions described in Example 1 resulted in a current density of 150 mA / cm 2 at -100 mV against RHE.

Ausführungsbeispiel 3Embodiment 3

Als Vorrichtung zur Durchführung des Verfahrens diente ein senkrecht stehendes Quarzrohr mit einem Innendurchmesser von 30 mm und einer Länge von 900 mm, das in seinem unteren Teil mittels eines Widerstandsofens und im oberen Teil mittels einer Induktionsspule beheizbar war. In die Mitte des widerstandsbeheizten Bereichs wurde ein Tiegel mit Wolframhexachlorid (WC16) und in den Bereich der Induktionsspule eine mit Wolframdraht aufgehängte Graphitscheibe mit einem Durchmesser von 16 mm und einer Dicke von 2 mm gebracht.A vertically standing quartz tube with an inner diameter of 30 mm and a length of 900 mm was used as the device for carrying out the method, which could be heated in its lower part by means of a resistance furnace and in the upper part by means of an induction coil. A crucible with tungsten hexachloride (WC1 6 ) was placed in the middle of the resistance-heated area and a graphite disc with a diameter of 16 mm and a thickness of 2 mm hung with tungsten wire was placed in the area of the induction coil.

Zur Vermeidung von Ausheiz- und Abkühlungseffekten wurde in stationärer Argon/Wasserstoff-Atmosphäre erst das WC16 auf etwa 240 °C und anschliessend die Graphitscheibe induktiv schnell auf etwa 650 °C erhitzt. Danach wurde die Gasströmung von unten nach oben in Gang gesetzt und das Quarzrohr mit einem Argon/Wasserstoff-Gasgemisch (Wasserstoffanteil 4%) mit einer Strömung von 10 1/min durchströmt. Die Abgase wurden in einer dem Quarzrohr nachgeschalteten Waschflasche mit NaOH neutralisiert.To avoid heating and cooling effects, the WC1 6 was first heated to about 240 ° C in a stationary argon / hydrogen atmosphere and then the graphite disc was quickly inductively heated to about 650 ° C. The gas flow was then started from bottom to top and an argon / hydrogen gas mixture (4% hydrogen content) was passed through the quartz tube at a rate of 10 l / min. The exhaust gases were neutralized with NaOH in a wash bottle downstream of the quartz tube.

Auf diese Weise wurde der WC16-Dampf mit dem H2 des Trägergases auf der Oberfläche der Graphitscheibe zu Wolframmetall reduziert und die Oberfläche beschichtet. Bei den eingestellten Bedingungen wurde in jeweils zwei Minuten eine Schichtdicke von etwa 10 µm unabhängig von der Rauhigkeit der Oberfläche der Graphitscheibe erzeugt. Bei einer Beschichtungszeit von etwa 3 Minuten wurde eine Schichtdicke von 15 11m erreicht.In this way, the WC1 6 vapor with the H 2 of the carrier gas on the surface of the graphite disc was reduced to tungsten metal and the surface was coated. Under the set conditions, a layer thickness of about 10 µm was generated in two minutes, regardless of the roughness of the surface of the graphite disc. With a coating time of about 3 minutes, a layer thickness of 15 1 1 m was achieved.

Die so beschichtete Graphitscheibe wurde anschliessend in dem gleichen Quarzrohr in einem H2/HCI-Gasgemisch (Mischungsverhältnis 8:2) mit einem Anteil von etwa 1% Propan auf einer Temperatur von 750 °C 30 Minuten lang gehalten, wobei das metallische Wolfram zu Wolframkarbid reagierte und dabei mit der graphitischen Unterlage adhäsiv gebunden wurde.The graphite disc coated in this way was then held in the same quartz tube in a H 2 / HCl gas mixture (mixing ratio 8: 2) with a proportion of about 1% propane at a temperature of 750 ° C. for 30 minutes, during which the metallic tungsten became tungsten carbide reacted and was thereby adhesively bound to the graphitic base.

Die mit Wolframcarbid beschichtete Graphitscheibe wurde auf ihre Eignung als Kathode untersucht. Bei 80 °C in 50 Gew.% H2S04 und bei -100 mV Spannung gegen die reversible Wasserstoffelektrode (RHE) wurde eine kathodische Stromdichte der Wasserstoffentwicklung von 180 mA/cm2 gemessen.The graphite disc coated with tungsten carbide was examined for its suitability as a cathode. At 80 ° C in 50 wt.% H 2 S0 4 and at -100 mV voltage against the reversible hydrogen electrode (RHE), a cathodic current density of hydrogen evolution of 180 mA / cm 2 was measured.

Claims (18)

1. Process for the production of a tungsten carbide activated electrode which is usable especially as a cathode and which consists of an electrically conductive support material with a surface- active layer consisting exclusively of tungsten carbide, characterised in that tungsten metal or a tungsten compound is applied on to the surface of the support consisting of graphite or of a graphite- like material, and converted into tungsten carbide, and in so doing is connected chemically adhesively to the support.
2. Process according to claim 1, characterised in that tungsten metal is applied by vapour coating on to the support, then the tungsten is converted to tungsten carbide by carburisation.
3. Process according to claim 1, characterised in that tungsten oxide is applied on to the support, and converted to tungsten carbide by reduction and carburisation on the support.
4. Process according to claim 1, characterised in that a tungsten compound thermally decomposable to tungsten oxide is applied to the support, thermally decomposed to give tungsten oxide, and converted to tungsten carbide by reduction and carburisation on the support.
5. Process according to claim 3, characterised in that the tungsten oxide powder is applied to the support with the use of a binder which is capable of being coked.
6. Process according to claim 5, characterised in that a binder is used into which graphite powder has been admixed for increasing the conductivity of the binder coked after the carburisation.
7. Process according to claim 5 or 6, characterised in that the binder is a phenol synthetic resin.
8. Process according to one of claims 3 to 7, characterised in that the support is a green body formed from a graphite powder containing binder.
9. Process according to claim 8, characterised in that the support has a binder content of 10 to 40% by weight.
10. Process according to one of claims 1 to 7, characterised in that the support is a porous graphite diaphragm.
11. Process according to one of claims 3 and also 5 to 10, characterised in that a tungsten oxide powder is used which has been produced from para-ammonium tungstate by way of a precipitation reaction to tungstic acid and subsequent decomposition in air at about 550 °C or by direct thermal decomposition of p-ammonium tungstate.
12. Process according to claim 11, characterised in that the specific surface of the tungsten oxide powder is greater than 10 m2/g.
13. Process according to one of claims 4 to 9, characterised in that tungstic acid or para-ammonium tungstate is applied on to the support, and thermally decomposed to give tungsten oxide before reduction and carburisation on the support.
14. Process according to one of claims 3 and 5 to 13, characterised in that the support with the tungsten oxide situated thereon is brought under a hydrogen atmosphere or hydrogen and inert gas atmosphere for reduction of the tungsten oxide, and heated to a temperature of 370 to 580 °C.
15. Process according to one of claims 3 to 14, characterised in that the support with the tungsten oxide situated thereon is heated, for the carburisation of said tungsten oxide, in the temperature range of 620 to 950 °C with a temperature rise of about 1 °K/min under a flowing CO/C02 atmosphere.
16. Process according to claim 15, characterised in that after the carburisation phase the support with the tungsten carbide layer formed thereon is held under flowing hydrogen gas at 750 °C for reduction of carbon possibly present at the support surface.
17. Use of a tungsten carbide activated electrode produced according to the preceding process claims as cathode in an electrolysis cell for carrying out the sulphuric acid hybrid cyclic process.
18. Use of a tungsten carbide activated electrode produced according to the preceding process claims as cathode in an electrolysis cell for anodic oxidation of S02 exhaust gases with simultaneous cathodic H2 production.
EP83105608A 1982-06-15 1983-06-08 Process for the production of a tungsten carbide activated electrode Expired EP0096837B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT83105608T ATE29155T1 (en) 1982-06-15 1983-06-08 PROCESS FOR MANUFACTURE OF A TUNGSTEN CARBIDE ACTIVATED ELECTRODE.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3222436A DE3222436A1 (en) 1982-06-15 1982-06-15 METHOD FOR PRODUCING A TUNGSTEN CARBID-ACTIVATED ELECTRODE
DE3222436 1982-06-15

Publications (2)

Publication Number Publication Date
EP0096837A1 EP0096837A1 (en) 1983-12-28
EP0096837B1 true EP0096837B1 (en) 1987-08-26

Family

ID=6166093

Family Applications (1)

Application Number Title Priority Date Filing Date
EP83105608A Expired EP0096837B1 (en) 1982-06-15 1983-06-08 Process for the production of a tungsten carbide activated electrode

Country Status (6)

Country Link
US (1) US4702784A (en)
EP (1) EP0096837B1 (en)
JP (1) JPS596388A (en)
AT (1) ATE29155T1 (en)
CA (1) CA1203722A (en)
DE (1) DE3222436A1 (en)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3611938C1 (en) * 1986-04-09 1987-10-15 Kernforschungsanlage Juelich Cathode-membrane unit and process for its manufacture
GB2231885A (en) * 1989-05-24 1990-11-28 Atomic Energy Authority Uk Protective carbide coatings for carbon elements
DE4226076A1 (en) * 1992-08-06 1994-02-10 Siemens Ag Electrodes for triggered, low pressure gas discharge switch - has material containing carbide on discharge side of electrodes in discharge affected region
KR100777148B1 (en) * 2000-06-30 2007-11-19 생-고뱅 어브레이시브즈, 인코포레이티드 Process for coating superabrasive with metal
US7727927B2 (en) * 2000-09-29 2010-06-01 Global Tungsten & Powders Corp. Method of making tungsten-containing fuel cell catalysts
US6656870B2 (en) 2000-09-29 2003-12-02 Osram Sylvania Inc. Tungsten-containing fuel cell catalyst and method of making same
JP2004510668A (en) * 2000-09-29 2004-04-08 オスラム・シルバニア・インコーポレイテッド Tungsten carbide material
US6696184B1 (en) * 2000-09-29 2004-02-24 Osram Sylvania Inc. Supported tungsten carbide material
JP2006524897A (en) * 2003-03-26 2006-11-02 オスラム・シルバニア・インコーポレイテッド Tungsten-based electrocatalyst and fuel cell comprising the same
JP2006107987A (en) * 2004-10-07 2006-04-20 Hitachi Maxell Ltd Catalyst for fuel cell, fuel cell and membrane electrode junction using catalyst
KR101602517B1 (en) 2008-08-04 2016-03-10 에이지씨 플랫 글래스 노스 아메리카, 인코퍼레이티드 Plasma source and methods for depositing thin film coatings using plasma enhanced chemical vapor deposition
DE112011103494T5 (en) * 2011-03-30 2013-09-26 Xiamen Golden Egret Special Alloy Co., Ltd. Production process of nanoneedle-shaped purple tungsten oxide for the industry
CN107852805B (en) 2014-12-05 2020-10-16 Agc玻璃欧洲公司 Hollow cathode plasma source
MY191327A (en) * 2014-12-05 2022-06-16 Agc Flat Glass Na Inc Plasma source utilizing a macro-particle reduction coating and method of using a plasma source utilizing a macro-particle reduction coating for deposition of thin film coatings and modification of surfaces
US9721765B2 (en) 2015-11-16 2017-08-01 Agc Flat Glass North America, Inc. Plasma device driven by multiple-phase alternating or pulsed electrical current
US10573499B2 (en) 2015-12-18 2020-02-25 Agc Flat Glass North America, Inc. Method of extracting and accelerating ions
US10242846B2 (en) 2015-12-18 2019-03-26 Agc Flat Glass North America, Inc. Hollow cathode ion source

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1077920A (en) * 1913-01-27 1913-11-04 Us Smelting Refining & Mining Company Electrode.
SU116653A1 (en) * 1957-03-21 1957-11-30 А.Н. Антонов The method of manufacturing large coal and graphitized blocks and products of complex configuration
DE1107578B (en) * 1958-07-18 1961-05-25 Elettrocarbonium S P A Mailand Process for the production of connections between carbon or graphite molded bodies with one another or with metal parts
US3432336A (en) * 1964-08-25 1969-03-11 North American Rockwell Impregnation of graphite with refractory carbides
US3778300A (en) * 1966-10-07 1973-12-11 Atomic Energy Commission Method of forming impermeable carbide coats on graphite
DE1299287B (en) * 1967-04-05 1969-07-17 Metallgesellschaft Ag Electrode for the electrolytic decomposition of hydrochloric acid
US3619286A (en) * 1968-12-18 1971-11-09 Budd Co Cast graphite electrodes for edm applications
DE2027472C3 (en) * 1970-06-04 1982-05-19 Robert Bosch Gmbh, 7000 Stuttgart Process for the production of a fuel catalyst from tungsten carbide for electrochemical fuel cells
US4126489A (en) * 1973-07-17 1978-11-21 Varian Associates, Inc. Method of making cathode heaters
DE2445310A1 (en) * 1974-09-23 1976-04-08 Bosch Gmbh Robert Catalyst electrodes, esp. for fuel cells - by moulding synthetic resin-catalyst mixture, and pyrolytically decomposing synthetic resin
JPS541300Y2 (en) * 1976-02-27 1979-01-22
JPS5373829A (en) * 1976-12-14 1978-06-30 Fuji Ps Concrete Constituent member for concrete board structure
DE2739324C3 (en) * 1977-09-01 1981-09-10 Hoechst Ag, 6000 Frankfurt Method and device for carrying out electrochemical reactions as well as suitable bipolar electrodes
CA1117589A (en) * 1978-03-04 1982-02-02 David E. Brown Method of stabilising electrodes coated with mixed oxide electrocatalysts during use in electrochemical cells
JPS619445Y2 (en) * 1979-04-27 1986-03-25
US4308114A (en) * 1980-07-21 1981-12-29 Aluminum Company Of America Electrolytic production of aluminum using a composite cathode
JPS6022072B2 (en) * 1982-06-30 1985-05-30 ペルメレツク電極株式会社 Cathode for acidic solution electrolysis and its manufacturing method

Also Published As

Publication number Publication date
ATE29155T1 (en) 1987-09-15
DE3222436C2 (en) 1987-02-19
EP0096837A1 (en) 1983-12-28
DE3222436A1 (en) 1983-12-15
CA1203722A (en) 1986-04-29
JPS596388A (en) 1984-01-13
US4702784A (en) 1987-10-27

Similar Documents

Publication Publication Date Title
EP0096837B1 (en) Process for the production of a tungsten carbide activated electrode
DE112010001642B4 (en) METHOD FOR PRODUCING A MATERIAL ON TITANIUM BASE
DE1496176B2 (en) Catalysts for fuel electrodes of fuel elements with acidic electrolytes
Cyr et al. The electrochemical reduction of nitrobenzene and azoxybenzene in neutral and basic aqueous methanolic solutions at polycrystalline copper and nickel electrodes
DE19842396A1 (en) Electrically-conductive diamond layer forming electrode for electrochemical generation of ozone and ultra-pure water
US3212930A (en) Porous carbon electrode preparation
WO2016070862A1 (en) Bipolar plate for electrochemical cells and method for the production thereof
US4384928A (en) Anode for oxygen evolution
DE2752875A1 (en) ELECTRODE FOR ELECTROCHEMICAL PROCESSES AND METHOD FOR THE PRODUCTION THEREOF
DE2328050B2 (en) CATALYST FOR FUEL ELECTRODES OF FUEL ELEMENTS
IE51258B1 (en) Porous nickel coated electrodes
DE2924678C2 (en) Electrode catalyst for a fuel element
Kuleshov et al. High efficiency electrodes for alkaline electrolysis of water
DE19937255B4 (en) Corrosion resistant bipolar plate for PEM fuel cells and use
Swette et al. Oxygen electrodes for rechargeable alkaline fuel cells-II
US3790410A (en) Method for the manufacture of powdered tungsten carbide containing electrode material
DE3325874C2 (en)
KR890002700B1 (en) Low over-voltage electrodes for alkaline electrolytes
DD202457A5 (en) CATHODE COATING WITH A CATALYST FOR HYDROGEN DEVELOPMENT AND A SEMICONDUCTIVE POLYMER
DE2108457C3 (en) Process for the production of powdery tungsten-containing electrode material for electrochemical cells
DE1671826A1 (en) Fuel electrode for a fuel element
DE1571978A1 (en) Metallic anodes for galvanic high-temperature fuel cells with solid electrolyte and process for their production
DE2032645A1 (en) Process for the production of diffusion coatings from tantalum or niobium on metals or metal alloys
US4566957A (en) Use of gas depolarized anodes for the electrochemical production of adiponitrile
DE19718923C2 (en) Electrolytic reduction of sulfuric acid to hydrogen sulfide and use of the reduction

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT FR GB IT

17P Request for examination filed

Effective date: 19840623

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT FR GB IT

REF Corresponds to:

Ref document number: 29155

Country of ref document: AT

Date of ref document: 19870915

Kind code of ref document: T

ET Fr: translation filed
ITF It: translation for a ep patent filed

Owner name: STUDIO JAUMANN

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19910529

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19910613

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19910621

Year of fee payment: 9

ITTA It: last paid annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19920608

Ref country code: AT

Effective date: 19920608

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19920608

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19930226

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST