EP0096822B1 - Procédé pour le fonctionnement d'une pompe à chaleur à absorption bivalente et pompe à chaleur à absorption pour la réalisation de ce procédé - Google Patents

Procédé pour le fonctionnement d'une pompe à chaleur à absorption bivalente et pompe à chaleur à absorption pour la réalisation de ce procédé Download PDF

Info

Publication number
EP0096822B1
EP0096822B1 EP83105566A EP83105566A EP0096822B1 EP 0096822 B1 EP0096822 B1 EP 0096822B1 EP 83105566 A EP83105566 A EP 83105566A EP 83105566 A EP83105566 A EP 83105566A EP 0096822 B1 EP0096822 B1 EP 0096822B1
Authority
EP
European Patent Office
Prior art keywords
boiler
absorber
refrigerant
line
pressure absorber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP83105566A
Other languages
German (de)
English (en)
Other versions
EP0096822A3 (en
EP0096822A2 (fr
Inventor
Robert Dipl.-Ing. Mack
Winfried Prof. Dr.-Ing. Buschulte
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Deutsches Zentrum fuer Luft und Raumfahrt eV
Original Assignee
Deutsche Forschungs und Versuchsanstalt fuer Luft und Raumfahrt eV DFVLR
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Deutsche Forschungs und Versuchsanstalt fuer Luft und Raumfahrt eV DFVLR filed Critical Deutsche Forschungs und Versuchsanstalt fuer Luft und Raumfahrt eV DFVLR
Priority to AT83105566T priority Critical patent/ATE22612T1/de
Publication of EP0096822A2 publication Critical patent/EP0096822A2/fr
Publication of EP0096822A3 publication Critical patent/EP0096822A3/de
Application granted granted Critical
Publication of EP0096822B1 publication Critical patent/EP0096822B1/fr
Expired legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B30/00Heat pumps
    • F25B30/04Heat pumps of the sorption type

Definitions

  • the invention relates to a method for operating a bivalent-operated absorption pump, as described in the preamble of claim 1.
  • the invention further relates to a bivalent absorption pump for carrying out this method with the features of the preamble of claim 7.
  • Absorption heat pumps can only be used effectively for heating purposes if the air temperature has a certain value, e.g. + 3 ° C. not less. At lower temperatures, the performance figure drops sharply, especially due to the icing of the evaporator.
  • An absorption heat pump system is also already known, with which three different operating modes are optionally possible, namely a heat pump operation, a boiler operation or a mixed operation (DE-A-2 908 423).
  • a heat pump operation an absorber is used as a low-pressure absorber, which is also used in boiler operation, but as a high-pressure absorber.
  • the mixed operation takes place in that a further absorber is switched on in the stream of the rich solution leaving the first absorber.
  • the entire rich solution leaving the first absorber is brought to the high pressure prevailing in the cooker by means of a pump and then again passed through an absorber in which the rich solution is mixed with a branched-off partial flow of the refrigerant.
  • the two absorbers are therefore connected in series with respect to the supply of the poor solution.
  • This mode of operation can, for example in the case of a brine-loaded evaporator, lead to considerable malfunctions due to the risk of icing.
  • the coefficient of performance of the heat pump component is reduced by the decrease in the concentration in mixed operation, since the coefficient of performance decreases with decreasing solution concentration.
  • an absorption heat pump with the features of claim 7 is proposed for carrying out this method.
  • the solvent flow from the cooker to the absorber and the refrigerant flow leaving the condenser are each split into two partial flows.
  • a partial flow of the solvent and a partial flow of the refrigerant are carried out in the manner typical for pure heat pump operation, while the other other partial flows are conducted in the manner typical for pure boiler operation.
  • the absorber is divided into a low-pressure absorber, which is used purely for heat pump operation, and a high-pressure absorber, which serves purely for boiler operation.
  • the heat exchange with the heating system takes place in the condenser and in both absorbers. In this way, it is possible to use both the advantages of pure heat pump operation and the advantages of pure boiler operation together, the proportion of pure heat pump operation relative to the proportion of pure boiler operation being continuously adjustable according to the ratio of the splitting of the two flows into partial flows .
  • the gas flow cross section of the evaporator is preferably reduced compared to pure heat pump operation. Due to the smaller active area of the evaporator, it is possible to keep it free of ice and effectively for longer, so that heat pump operation can be maintained down to lower temperatures.
  • the poor solution and the refrigerant are combined in the low-pressure absorber in pure heat pump operation and the resulting rich solution is then passed through the high-pressure absorber.
  • both absorbers are used for heat exchange even in pure heat pump operation.
  • the throttles In order to make the throttling effect of the throttles in the refrigerant line and in the solvent line variable, they can be designed as expansion valves that are variable in volume flow.
  • the chokes comprise at least two parallel lines with throttle valves, the parallel lines being able to be opened alternately or together by switching valves.
  • the high-pressure absorber can be switched on in the pure heat pump mode between the low-pressure absorber and the first return line.
  • the heat pump shown in the drawing comprises, in the manner customary for heat pumps, a stove or expeller 1, in which a refrigerant-solvent mixture is heated by means of a heating source not shown in the drawing.
  • the evaporating refrigerant is fed via a refrigerant line 2 through a reflux condenser 3 to a condenser 4 and from there in the liquid state it passes through a heat exchanger 5 via a refrigerant throttle 6 to an evaporator 7.
  • a solvent line 9 leads from the cooker 1 through a temperature changer 10 and via a solvent throttle 11 to the first absorber 8, in which the refrigerant supplied via the refrigerant line 2 and the solvent supplied via the solvent line 9 are combined.
  • a second absorber 18 is provided, which is referred to below as a high-pressure absorber.
  • a by-pass line 19 leads into this high-pressure absorber, which feeds the solution from the cooker 1 directly to the high-pressure absorber 18, bypassing the temperature changer 10 and the solvent throttle 11.
  • a branch 20 is provided in the refrigerant line 2 downstream of the condenser; here, a bypass line 21 branches off from the refrigerant line 2, which either opens directly into the cooker or preferably according to the broken line in the high-pressure absorber 18.
  • a bypass line 21 branches off from the refrigerant line 2, which either opens directly into the cooker or preferably according to the broken line in the high-pressure absorber 18.
  • a second return line 23 is switched on. The second return line 23 opens directly into the cooker 1.
  • a completely closable metering valve 25 is located in the solvent line 9, and a completely closable metering valve 26 is likewise arranged in the by-pass line 19. Another fully closable metering valve 27 is switched into the bypass line 21.
  • a further fully closable metering valve 28 is located in the refrigerant line downstream of the branch 20.
  • Closing valves 29 and 30 are arranged in the return lines 13 and 23, respectively, and the outlet 22 of the absorber 18 is connected downstream of the closing valve 29 by means of a connecting line 31, in which a closing valve 32 is located.
  • a branch line provided with a closing valve 33 branches off from the by-pass line 19 to the first absorber 8; A further closing valve 35 is arranged in the by-pass line downstream of this branch.
  • a further connecting line 36 in which a closing valve 37 is arranged, connects the outlet 12 of the first absorber 8 to the inlet of the second absorber 18.
  • the two throttles 6 and 11 are adjustable in their throttling action, this is in the drawing indicated by a motorized actuator. These throttles can also be designed as expansion valves variable in volume flow.
  • FIG. 2 Another possible configuration of the chokes results from the exemplary embodiment in FIG. 2, which differs from the exemplary embodiment in FIG. 1 only in the configuration of the chokes. Corresponding parts therefore have the same reference numerals.
  • the refrigerant throttle 6 comprises two parallel lines 38 and 39. In each of these lines, a closing valve 40 or 41 is connected in series with a throttle valve 42 or 43 with a fixed throttle effect.
  • the solvent throttle 11 comprises two parallel lines 44 and 45, in each of which a closing valve 46 or 47 and a throttle valve 48 or 49 with a fixed throttle effect are switched on.
  • the heat pump shown in the drawing can be operated in three different ways, which are explained below.
  • valves 26, 27, 30, 32, 33, 35 and 37 are closed, while only the valves 25, 28 and 29 are open.
  • the refrigerant evaporated by the cooker is supplied to the low-pressure absorber 8 through the refrigerant line 2 via the condenser, the refrigerant throttle and the evaporator.
  • the poor solution passes from the cooker through the solvent line 9 through the temperature changer, the solvent throttle 11 also into the low pressure absorber. After the two components have been combined, the rich solution is fed back to the cooker via the first return line 13 and the two lines 16 and 17.
  • the rich solution only penetrates the low-pressure absorber 8; the high-pressure absorber 18 is not switched into the circuit in this operating mode.
  • valve 29 In an alternative mode of operation of pure heat pump operation, the valve 29 is closed while the valves 32 and 37 are opened.
  • the rich solution then flows through the high-pressure absorber 18 before entering the first return line 13, so that heat can also be exchanged with the heating system in this high-pressure absorber.
  • valves 25, 28, 29, 32, 33 and 37 are closed, while valves 26, 27, 30 and 35 are open.
  • the refrigerant leaving the cooker passes via the bypass line 21 either directly into the cooker or into the high-pressure absorber 18.
  • the refrigerant throttle and the evaporator are bypassed because of the closed valve 28.
  • the solvent passes via the by-pass line 19 directly into the high-pressure absorber 18, the temperature changer 10 and the solvent throttle 11 being bridged.
  • the heat is exchanged with the heating system, and the cooled solvent, to which the coolant, which is also cooled, is added, then reaches the cooker via the second return line 23. Since both the refrigerant choke and the solvent choke are bridged, the pressure in the entire circuit is the same as in the stove, i.e. a relatively high pressure.
  • the pump 24 is therefore designed as a pure circulation pump, while the pump 14 is designed in the manner customary in absorption heat pumps as a pressure pump which has to work against the pressure in the stove.
  • valves 32, 33 and 37 are closed, the other valves 25, 26, 27, 28, 29, 30 and 35 are open. This divides both the refrigerant flow and the solvent flow. Part of the refrigerant flow reaches the low-pressure absorber via the refrigerant line, the refrigerant throttle 6 and the evaporator 7, the other part of the refrigerant is supplied to either the cooker 1 or the high-pressure absorber 18 via the bypass line 21.
  • Heat is exchanged with the heating system in the condenser and in both absorbers.
  • the heating system in the condenser and in the high-pressure absorber is supplied directly with heat which comes from the heating of the cooker, while the heating in the low-pressure absorber is supplied with heat which is taken from the surroundings via the evaporator.
  • the ratio of the two partial refrigerant flows to one another and the ratio of the two partial solvent flows to one another can be adjusted continuously by a suitable choice of the opening of the valves 27 and 28 or 25 and 26 assigned to one another from pure heat pump operation to pure boiler operation.
  • the throttling effect of the refrigerant throttle 6 and the solvent throttle 11 is to be changed in accordance with the size of the partial flow flowing through the throttles, so that the relaxation required for the heat pump effect occurs.
  • this throttling is achieved by opening or closing the closing valves 40 and 41 or 46 and 47 accordingly.
  • the entire system can be optimally adapted to the external conditions, in particular it is possible at any time to choose a larger proportion of heat pumps and a lower proportion of the boiler in mixed operation or vice versa.
  • valve 35 is closed while valves 33 and 37 are opened.
  • the throughput of both the refrigerant expelled from the cooker and the poor solution flowing from the cooker to the absorber is not controlled in a manner known per se by control valves with a variable throttle effect, but by a different pumping capacity of the circulation pump or pumps in the Return lines 13 and 23.
  • these pumps can advantageously be of multi-stage or volumetric flow.
  • the main advantage here is that there is no pressure drop in the line caused by controllable throttle valves, but the pressure level in the entire line system is approximately the same. To circulate the solution, therefore, only low pumping capacities are required, which are altogether significantly lower than those which had to be applied in conventional processes in which the throughput was achieved by different throttling of the flows.
  • control of the circulation pumps can be accomplished in the simplest way and can therefore be optimally adapted to the respective requirements.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Sorption Type Refrigeration Machines (AREA)

Claims (12)

1. Procédé pour l'exploitation d'une pompe à chaleur par absorption à exploitation bivalente, dans lequel, en mode d'exploitation en pompe à chaleur pure, on amène le réfrigérant, extrait dans le bouilleur, en passant par un condenseur, un robinet à étranglement sur réfrigérant et un évaporateur, à un absorbeur, on le réunit alors avec une solution pauvre amenée, depuis le bouilleur, à l'absorbeur, en passant par un échangeur de température et un robinet à étranglement sur solvant et on amène la solution riche qui en résulte au bouilleur, en passant par l'échangeur de température et éventuellement par un radiateur sur circuit de retour servant au refroidissement du flux de réfrigérant sortant du bouilleur ; dans lequel, en mode d'exploitation en chaudière pure, on amène directement le réfrigérant extrait du bouilleur, après le condenseur, à l'absorbeur, on amène directement à l'absorbeur la solution pauvre venant du bouilleur et on amène directement au bouilleur la solution riche sortant de l'absorbeur; et dans lequel, en exploitation mixte, on divise le flux de réfrigérant après le condenseur, en précisant qu'un flux partiel de réfrigérant est amené, en passant par le robinet à étranglement sur réfrigérant et par l'évaporateur. à un absorbeur basse pression, tandis que t'autre flux partiel du réfrigérant est amené à un absorbeur haute pression, caractérisé en ce qu en mode d'exploitation en pompe à chaleur pure. on n'emploie que l'absorbeur basse pression et. en mode d'exploitation en chaudière pure. que l'absorbeur haute pression ; en ce qu'en exploitation mixte, on divise le flux de la solution pauvre sortant du bouilleur, on envoie un premier flux partiel de la solution pauvre dans l'absorbeur basse pression, en passant par l'échangeur de température et le robinet à étranglement sur solvant et on envoie un second flux partiel directement dans l'absorbeur haute pression : et en ce que l'on envoie la solution riche, sortant de l'absorbeur basse pression, dans le bouilleur en passant par l'échangeur de température et/ou le radiateur sur circuit de retour, tandis que ron envoie directement dans le bouilleur la solution sortant de l'absorbeur haute pression.
2. Procédé selon la revendication 1, caractérisé en ce qu'en mode d'exploitation mixte, on accroît l'action d'étranglement des deux robinets à étranglement par rapport au mode d'exploitation en pompe à chaleur pure.
3. Procédé selon la revendication 1 ou la revendication 2, caractérisé en ce qu'en exploitation mixte on ne fait passer le flux partiel du réfrigérant qu'à travers une partie de l'évaporateur.
4. Procédé selon l'une des revendications précédentes, caractérisé en ce qu'en exploitation mixte on réduit la section de passage de gaz de l'évaporateur par rapport au mode d'exploitation en pompe à chaleur pure.
5. Procédé selon l'une des revendications précédentes, caractérisé en ce qu'en exploitation en pompe à chaleur pure on réunit la solution pauvre et le réfrigérant dans l'absorbeur basse pression et on envoie ensuite la solution riche qui en résulte dans l'absorbeur haute pression.
6. Procédé selon l'une des revendications précédentes, caractérisé en ce qu'en exploitation en chaudière pure, on n'assure pas avec des robinets à étranglement la régulation du débit du réfrigérant extrait du bouilleur ni celle du débit de la solution pauvre qui s'écoule depuis le bouilleur vers l'absorbeur ; mais que l'on commande ces débits par une puissance différentielle de la pompe de recirculation ou des pompes de recirculation qui font circuler la solution riche sortant de l'absorbeur.
7. Pompe à chaleur par absorption, bivalente, pour l'exécution du procédé de la revendication 1, comportant une conduite de réfrigérant qui conduit d'un bouilleur à un premier absorbeur et sur laquelle sont montés, l'un derrière l'autre, un condenseur, un robinet à étranglement sur réfrigérant et un évaporateur ; comportant aussi une conduite de solvant qui amène une solution pauvre venant du bouilleur au premier absorbeur par l'intermédiaire d'un échangeur de température et d'un robinet à étranglement sur solvant ; comportant aussi une conduite de retour qui amène la solution riche, venant du premier absorbeur, au bouilleur par l'intermédiaire de l'échangeur de température et/ou d'un radiateur sur circuit de retour servant au refroidissement du réfrigérant extrait du bouilleur et sur laquelle est montée une pompe de circulation ; comportant aussi une conduite de dérivation obturable avec laquelle on peut amener directement le réfrigérant, depuis la sortie du condenseur, en shuntant le robinet à étranglement sur réfrigérant et l'évaporateur, à un second absorbeur auquel correspond une conduite de retour qui ramène directement au bouilleur la solution riche sortant du second absorbeur ; et comportant aussi une autre conduite de bypass obturable, pour la solution pauvre, pour shunter l'échangeur de température, caractérisée en ce que la conduite de bypass (19) pour la solution pauvre conduit directement dans le second absorbeur (18) en shuntant le robinet à étranglement sur solvant (11), de sorte que l'on peut mettre en circuit en parallèle l'un à l'autre les deux absorbeurs (8, 18) dans le flux de solvant, en ce que les deux conduites de retour (13, 23) conduisent, en parallèle l'une avec l'autre, au bouilleur (1), en précisant qu'une pompe d'alimentation (24) est également montée sur la conduite de retour (23) du second absorbeur (18) ; et en ce que, sur la conduite de réfrigérant (2) après la dérivation (20) de la conduite de dérivation (21), sur la conduite de dérivation (21), sur la conduite de solvant (9) après la dérivation de la conduite de bypass (19), sur la conduite de bypass (19) ainsi que sur les deux conduites de retour (13 et 23), sont prévus des robinets d'arrêt (25, 26, 27, 28, 30, 32) qui, en mode d'exploitation en pompe à chaleur pure, . n'ouvrent de voies d'écoulement pour le solvant et pour le réfrigérant que par le premier absorbeur travaillant comme absorbeur basse pression ; en mode d'exploitation en chaudière pure, n'ouvrent de voies d'écoulement que par le second absorbeur travaillant comme absorbeur haute pression ; et en exploitation mixte, ouvrent des voies d'écoulement par les deux absorbeurs dans lesquels circulent en parallèle le réfrigérant et le solvant.
8. Pompe à chaleur selon la revendication 7, caractérisée en ce que l'on peut modifier l'action d'étranglement des robinets à étranglement (6, 11) qui sont sur la conduite de réfrigérant (2) et sur la conduite de solvant (9).
9. Pompe à chaleur selon la revendication 8, caractérisée en ce que les robinets à étranglement (6, 11) sont des soupapes de détente à variation de débit volumique.
10. Pompe à chaleur selon la revendication 8, caractérisée en ce que les robinets à étranglement (6,11) comportent au moins deux conduites parallèles (38, 39 ; 44, 45) présentant des robinets à étranglement (42, 43 ; 48, 49), en précisant que les conduites parallèles (38, 39 ; 44, 45) peuvent être ouvertes, alternativement ou ensemble, par des robinets d'arrêt (40, 41 ; 46, 47).
11. Pompe à chaleur selon l'une des revendications 7 à 10, caractérisée en ce qu'en mode d'exploitation en pompe à chaleur pure, on peut mettre en circuit l'absorbeur haute pression (18) entre l'absorbeur basse pression (8) et la première conduite de retour (13).
12. Pompe à chaleur selon l'une des revendications 7 à 11, caractérisée en ce que les pompes de circulation (14, 24) sont conçues à plusieurs étages ou à variation de débit volumique.
EP83105566A 1982-06-11 1983-06-07 Procédé pour le fonctionnement d'une pompe à chaleur à absorption bivalente et pompe à chaleur à absorption pour la réalisation de ce procédé Expired EP0096822B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT83105566T ATE22612T1 (de) 1982-06-11 1983-06-07 Verfahren zum betrieb einer bivalent betreibbaren absorptionswaermepumpe und absorptionswaermepumpe zur durchfuehrung dieses verfahrens.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3222067 1982-06-11
DE19823222067 DE3222067A1 (de) 1982-06-11 1982-06-11 Verfahren zum betrieb einer bivalent betreibbaren absorptionswaermepumpe und absorptionswaermepumpe zur durchfuehrung dieses verfahrens

Publications (3)

Publication Number Publication Date
EP0096822A2 EP0096822A2 (fr) 1983-12-28
EP0096822A3 EP0096822A3 (en) 1984-07-25
EP0096822B1 true EP0096822B1 (fr) 1986-10-01

Family

ID=6165872

Family Applications (1)

Application Number Title Priority Date Filing Date
EP83105566A Expired EP0096822B1 (fr) 1982-06-11 1983-06-07 Procédé pour le fonctionnement d'une pompe à chaleur à absorption bivalente et pompe à chaleur à absorption pour la réalisation de ce procédé

Country Status (6)

Country Link
US (1) US4464907A (fr)
EP (1) EP0096822B1 (fr)
AT (1) ATE22612T1 (fr)
CA (1) CA1206766A (fr)
DE (2) DE3222067A1 (fr)
DK (1) DK158322C (fr)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4524759A (en) * 1983-10-28 1985-06-25 Butler Robert F Process for the reversible transfer of thermal energy and heat transfer system useful therein
DE3432888A1 (de) * 1984-09-07 1986-03-13 Borsig Gmbh, 1000 Berlin Absorptionskaelteanlage mit raeumlich getrenntem hochdruck- und niederdruckteil
NL8403517A (nl) * 1984-11-19 1986-06-16 Rendamax Ag Absorptie-resorptie warmtepomp.
US4593531A (en) * 1985-01-15 1986-06-10 Ebara Corporation Absorption cooling and heating apparatus and method
NL8501039A (nl) * 1985-04-09 1986-11-03 Tno Werkwijze voor het bedrijven van een absorptiewarmtepomp of koelinrichting, alsmede absorptiewarmtepomp of -koelinrichting.
DE3518276C1 (de) * 1985-05-22 1991-06-27 Deutsche Forschungs- und Versuchsanstalt für Luft- und Raumfahrt e.V., 5300 Bonn Verfahren zum Betrieb einer Waermepumpenanlage und zur Durchfuehrung dieses Verfahrens geeignete Waermepumpenanlage
DE3619735C1 (de) * 1986-01-24 1987-07-02 Peter Dr-Ing Vinz Verfahren und Einrichtung zur energiesparenden automatischen Einhaltung der Konzentration von verdampfenden Kaeltemittelgemischen
US4748830A (en) * 1986-02-28 1988-06-07 Hitachi, Ltd. Air-cooled absorption heating and cooling system
US5009086A (en) * 1989-03-30 1991-04-23 Gas Research Institute Passive refrigeration fluids condition
US4926659A (en) * 1989-03-30 1990-05-22 Gas Research Institute Double effect air conditioning system
US4972679A (en) * 1990-02-09 1990-11-27 Columbia Gas Service Corporation Absorption refrigeration and heat pump system with defrost
US5024063A (en) * 1990-05-11 1991-06-18 Erickson Donald C Branched gax absorption vapor compressor
JP2897587B2 (ja) * 1993-04-07 1999-05-31 株式会社日立製作所 吸収式冷凍機
KR0132391B1 (ko) * 1994-02-25 1998-04-20 김광호 흡수식 냉방기
US5584193A (en) * 1994-04-26 1996-12-17 York International Corporation Absorption-type refrigeration systems and methods
US5901567A (en) * 1996-12-18 1999-05-11 Honda Giken Kogyo Kabushiki Kaisha Absorption refrigerating/heating apparatus
JP3393780B2 (ja) * 1997-01-10 2003-04-07 本田技研工業株式会社 吸収式冷暖房装置
DE19813157C2 (de) * 1998-03-19 2000-07-27 Hansa Ventilatoren Masch Raumlufttechnische Anlage zur bivalenten Klimatisierung eines Raumes
US6170279B1 (en) * 1999-07-28 2001-01-09 Li Ding-Yu Fisherman refrigerating device using engine exhaust
DE10237851A1 (de) * 2002-08-19 2004-03-04 ZAE Bayern Bayerisches Zentrum für angewandte Energieforschung e.V. Ein- oder mehrstufige Absorptionskältemaschine (AKM) oder Absorptionswärmepumpe (AWP) sowie Verfahren zur Steuerung der Verdampferleistung in einer solchen AKP/AWP
CN101101161B (zh) * 2007-07-30 2010-05-19 李华玉 复合第二类吸收式热泵
CN101694331A (zh) * 2009-08-27 2010-04-14 李华玉 单级基础上的复合第二类吸收式热泵
CN101957093B (zh) * 2010-08-13 2013-05-29 李华玉 吸收-再吸收-发生系统与第一类吸收式热泵
CN103471282B (zh) * 2013-04-03 2015-11-25 李华玉 分路循环第一类吸收式热泵
CN103940142B (zh) * 2013-04-03 2016-08-17 李华玉 分路循环第一类吸收式热泵

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2272871A (en) * 1938-01-10 1942-02-10 Honeywell Regulator Co Absorption heating system
US3638452A (en) * 1969-10-20 1972-02-01 Whirlpool Co Series water-cooling circuit for gas heat pump
US3817050A (en) * 1972-12-26 1974-06-18 Texaco Inc Two-stage ammonia absorption refrigeration system with at least three evaporation stages
DE2743488A1 (de) * 1977-09-28 1979-03-29 Karl Friedrich Prof Dr Knoche Verfahren und vorrichtung zur nutzung von sonnenenergie fuer raumheizung
DE2758773C2 (de) * 1977-12-29 1981-12-17 Ask August Schneider Gmbh & Co Kg, 8650 Kulmbach Bivalente Heizanlage
DE2856767A1 (de) * 1978-12-29 1980-07-17 Alefeld Georg Absorptions-waermepumpe veraenderbarer ausgangs-waermeleistung
DE2908423A1 (de) * 1979-03-03 1980-09-11 Alefeld Georg Absorptions- waermepumpe veraenderbarer ausgangs- waermeleistung

Also Published As

Publication number Publication date
US4464907A (en) 1984-08-14
DE3222067A1 (de) 1983-12-15
ATE22612T1 (de) 1986-10-15
DK266383A (da) 1983-12-12
CA1206766A (fr) 1986-07-02
DK158322B (da) 1990-04-30
EP0096822A3 (en) 1984-07-25
DK158322C (da) 1990-10-01
EP0096822A2 (fr) 1983-12-28
DE3366562D1 (en) 1986-11-06
DK266383D0 (da) 1983-06-10

Similar Documents

Publication Publication Date Title
EP0096822B1 (fr) Procédé pour le fonctionnement d'une pompe à chaleur à absorption bivalente et pompe à chaleur à absorption pour la réalisation de ce procédé
DE19838880C5 (de) Einrichtung zum Kühlen eines Innenraumes eines Kraftfahrzeugs
DE3220335C2 (de) Wärmepumpensystem mit einer Kältemittelmischung
DE10062174B4 (de) Adsorptionskühlvorrichtung
DE2163139C2 (de) Verfahren zum Betreiben eines geschlossenen Kältekreislaufes und Einrichtung zur Durchführung des Verfahrens
EP0054792A2 (fr) Dispositif de refroidissement pour refroidir un moteur à combustion et la charge
CH510237A (de) Verfahren zum Regeln von Heizungsanlagen und Heizungsanlage zur Ausführung des Verfahrens
DE3229779C2 (fr)
EP3417213A1 (fr) Appareil de froid pourvu d'une pluralité de compartiments de stockage
DE3518276C1 (de) Verfahren zum Betrieb einer Waermepumpenanlage und zur Durchfuehrung dieses Verfahrens geeignete Waermepumpenanlage
DE19747316B4 (de) Modulares Bauteil für einen Kältemittelkreislauf, insbesondere für die Klimatisierung des Fahrgastraums eines Kraftfahrzeuges
EP1110039B1 (fr) Machine frigorifique a absorption
EP2108099A1 (fr) Procédé de réglage de la puissance d'une installation frigorifique à sorption et son dispositif
DE2856767A1 (de) Absorptions-waermepumpe veraenderbarer ausgangs-waermeleistung
WO2019215240A1 (fr) Système de chauffage et/ou de production d'eau chaude sanitaire
DE102008005076A1 (de) Kältemittelkreis und Verfahren zum Betreiben eines Kältemittelkreises
DE2754132A1 (de) Kuehlvorrichtung
CH636184A5 (de) Verfahren zur rektivikation des kaeltemittel-dampfes in einer absorptionskaelteanlage.
DE3341853C2 (de) Einrichtung zum Kühlen von Innenräumen
DE668922C (de) Kontinuierlich arbeitende Absorptionskaeltemaschine
DE102013204188A1 (de) Kältemittelkreis
DE3431452A1 (de) Als waermepumpe genutztes kuehl- oder gefriergeraet
DE19746773A1 (de) Klimatisierungsvorrichtung für Fahrzeuge mit einer Heizschleife, die einen Verstellkompressor umfaßt
DE4420162B4 (de) Luftaufbereitungsvorrichtung für den Fahrgastraum eines Kraftfahrzeugs
DE3428704A1 (de) Verfahren zum regeln der kuehlleistung einer kaelteanlage und kaelteanlage hierzu

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT BE CH DE FR LI LU NL

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Designated state(s): AT BE CH DE FR LI LU NL

17P Request for examination filed

Effective date: 19840829

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE FR LI LU NL

REF Corresponds to:

Ref document number: 22612

Country of ref document: AT

Date of ref document: 19861015

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3366562

Country of ref document: DE

Date of ref document: 19861106

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19920629

Year of fee payment: 10

Ref country code: CH

Payment date: 19920629

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19920630

Year of fee payment: 10

Ref country code: LU

Payment date: 19920630

Year of fee payment: 10

Ref country code: AT

Payment date: 19920630

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19920703

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19920717

Year of fee payment: 10

EPTA Lu: last paid annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19930607

Ref country code: AT

Effective date: 19930607

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19930630

Ref country code: CH

Effective date: 19930630

Ref country code: BE

Effective date: 19930630

BERE Be: lapsed

Owner name: DEUTSCHE FORSCHUNGS- UND VERSUCHSANSTALT FUR LUFT

Effective date: 19930630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19940101

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19940228

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19940301

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST