EP0096822B1 - Method of operating a bivalent absorption heat pump, and absorption heat pump for carrying out this method - Google Patents

Method of operating a bivalent absorption heat pump, and absorption heat pump for carrying out this method Download PDF

Info

Publication number
EP0096822B1
EP0096822B1 EP83105566A EP83105566A EP0096822B1 EP 0096822 B1 EP0096822 B1 EP 0096822B1 EP 83105566 A EP83105566 A EP 83105566A EP 83105566 A EP83105566 A EP 83105566A EP 0096822 B1 EP0096822 B1 EP 0096822B1
Authority
EP
European Patent Office
Prior art keywords
boiler
absorber
refrigerant
line
pressure absorber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP83105566A
Other languages
German (de)
French (fr)
Other versions
EP0096822A3 (en
EP0096822A2 (en
Inventor
Robert Dipl.-Ing. Mack
Winfried Prof. Dr.-Ing. Buschulte
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Deutsches Zentrum fuer Luft und Raumfahrt eV
Original Assignee
Deutsche Forschungs und Versuchsanstalt fuer Luft und Raumfahrt eV DFVLR
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Deutsche Forschungs und Versuchsanstalt fuer Luft und Raumfahrt eV DFVLR filed Critical Deutsche Forschungs und Versuchsanstalt fuer Luft und Raumfahrt eV DFVLR
Priority to AT83105566T priority Critical patent/ATE22612T1/en
Publication of EP0096822A2 publication Critical patent/EP0096822A2/en
Publication of EP0096822A3 publication Critical patent/EP0096822A3/en
Application granted granted Critical
Publication of EP0096822B1 publication Critical patent/EP0096822B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B30/00Heat pumps
    • F25B30/04Heat pumps of the sorption type

Definitions

  • the invention relates to a method for operating a bivalent-operated absorption pump, as described in the preamble of claim 1.
  • the invention further relates to a bivalent absorption pump for carrying out this method with the features of the preamble of claim 7.
  • Absorption heat pumps can only be used effectively for heating purposes if the air temperature has a certain value, e.g. + 3 ° C. not less. At lower temperatures, the performance figure drops sharply, especially due to the icing of the evaporator.
  • An absorption heat pump system is also already known, with which three different operating modes are optionally possible, namely a heat pump operation, a boiler operation or a mixed operation (DE-A-2 908 423).
  • a heat pump operation an absorber is used as a low-pressure absorber, which is also used in boiler operation, but as a high-pressure absorber.
  • the mixed operation takes place in that a further absorber is switched on in the stream of the rich solution leaving the first absorber.
  • the entire rich solution leaving the first absorber is brought to the high pressure prevailing in the cooker by means of a pump and then again passed through an absorber in which the rich solution is mixed with a branched-off partial flow of the refrigerant.
  • the two absorbers are therefore connected in series with respect to the supply of the poor solution.
  • This mode of operation can, for example in the case of a brine-loaded evaporator, lead to considerable malfunctions due to the risk of icing.
  • the coefficient of performance of the heat pump component is reduced by the decrease in the concentration in mixed operation, since the coefficient of performance decreases with decreasing solution concentration.
  • an absorption heat pump with the features of claim 7 is proposed for carrying out this method.
  • the solvent flow from the cooker to the absorber and the refrigerant flow leaving the condenser are each split into two partial flows.
  • a partial flow of the solvent and a partial flow of the refrigerant are carried out in the manner typical for pure heat pump operation, while the other other partial flows are conducted in the manner typical for pure boiler operation.
  • the absorber is divided into a low-pressure absorber, which is used purely for heat pump operation, and a high-pressure absorber, which serves purely for boiler operation.
  • the heat exchange with the heating system takes place in the condenser and in both absorbers. In this way, it is possible to use both the advantages of pure heat pump operation and the advantages of pure boiler operation together, the proportion of pure heat pump operation relative to the proportion of pure boiler operation being continuously adjustable according to the ratio of the splitting of the two flows into partial flows .
  • the gas flow cross section of the evaporator is preferably reduced compared to pure heat pump operation. Due to the smaller active area of the evaporator, it is possible to keep it free of ice and effectively for longer, so that heat pump operation can be maintained down to lower temperatures.
  • the poor solution and the refrigerant are combined in the low-pressure absorber in pure heat pump operation and the resulting rich solution is then passed through the high-pressure absorber.
  • both absorbers are used for heat exchange even in pure heat pump operation.
  • the throttles In order to make the throttling effect of the throttles in the refrigerant line and in the solvent line variable, they can be designed as expansion valves that are variable in volume flow.
  • the chokes comprise at least two parallel lines with throttle valves, the parallel lines being able to be opened alternately or together by switching valves.
  • the high-pressure absorber can be switched on in the pure heat pump mode between the low-pressure absorber and the first return line.
  • the heat pump shown in the drawing comprises, in the manner customary for heat pumps, a stove or expeller 1, in which a refrigerant-solvent mixture is heated by means of a heating source not shown in the drawing.
  • the evaporating refrigerant is fed via a refrigerant line 2 through a reflux condenser 3 to a condenser 4 and from there in the liquid state it passes through a heat exchanger 5 via a refrigerant throttle 6 to an evaporator 7.
  • a solvent line 9 leads from the cooker 1 through a temperature changer 10 and via a solvent throttle 11 to the first absorber 8, in which the refrigerant supplied via the refrigerant line 2 and the solvent supplied via the solvent line 9 are combined.
  • a second absorber 18 is provided, which is referred to below as a high-pressure absorber.
  • a by-pass line 19 leads into this high-pressure absorber, which feeds the solution from the cooker 1 directly to the high-pressure absorber 18, bypassing the temperature changer 10 and the solvent throttle 11.
  • a branch 20 is provided in the refrigerant line 2 downstream of the condenser; here, a bypass line 21 branches off from the refrigerant line 2, which either opens directly into the cooker or preferably according to the broken line in the high-pressure absorber 18.
  • a bypass line 21 branches off from the refrigerant line 2, which either opens directly into the cooker or preferably according to the broken line in the high-pressure absorber 18.
  • a second return line 23 is switched on. The second return line 23 opens directly into the cooker 1.
  • a completely closable metering valve 25 is located in the solvent line 9, and a completely closable metering valve 26 is likewise arranged in the by-pass line 19. Another fully closable metering valve 27 is switched into the bypass line 21.
  • a further fully closable metering valve 28 is located in the refrigerant line downstream of the branch 20.
  • Closing valves 29 and 30 are arranged in the return lines 13 and 23, respectively, and the outlet 22 of the absorber 18 is connected downstream of the closing valve 29 by means of a connecting line 31, in which a closing valve 32 is located.
  • a branch line provided with a closing valve 33 branches off from the by-pass line 19 to the first absorber 8; A further closing valve 35 is arranged in the by-pass line downstream of this branch.
  • a further connecting line 36 in which a closing valve 37 is arranged, connects the outlet 12 of the first absorber 8 to the inlet of the second absorber 18.
  • the two throttles 6 and 11 are adjustable in their throttling action, this is in the drawing indicated by a motorized actuator. These throttles can also be designed as expansion valves variable in volume flow.
  • FIG. 2 Another possible configuration of the chokes results from the exemplary embodiment in FIG. 2, which differs from the exemplary embodiment in FIG. 1 only in the configuration of the chokes. Corresponding parts therefore have the same reference numerals.
  • the refrigerant throttle 6 comprises two parallel lines 38 and 39. In each of these lines, a closing valve 40 or 41 is connected in series with a throttle valve 42 or 43 with a fixed throttle effect.
  • the solvent throttle 11 comprises two parallel lines 44 and 45, in each of which a closing valve 46 or 47 and a throttle valve 48 or 49 with a fixed throttle effect are switched on.
  • the heat pump shown in the drawing can be operated in three different ways, which are explained below.
  • valves 26, 27, 30, 32, 33, 35 and 37 are closed, while only the valves 25, 28 and 29 are open.
  • the refrigerant evaporated by the cooker is supplied to the low-pressure absorber 8 through the refrigerant line 2 via the condenser, the refrigerant throttle and the evaporator.
  • the poor solution passes from the cooker through the solvent line 9 through the temperature changer, the solvent throttle 11 also into the low pressure absorber. After the two components have been combined, the rich solution is fed back to the cooker via the first return line 13 and the two lines 16 and 17.
  • the rich solution only penetrates the low-pressure absorber 8; the high-pressure absorber 18 is not switched into the circuit in this operating mode.
  • valve 29 In an alternative mode of operation of pure heat pump operation, the valve 29 is closed while the valves 32 and 37 are opened.
  • the rich solution then flows through the high-pressure absorber 18 before entering the first return line 13, so that heat can also be exchanged with the heating system in this high-pressure absorber.
  • valves 25, 28, 29, 32, 33 and 37 are closed, while valves 26, 27, 30 and 35 are open.
  • the refrigerant leaving the cooker passes via the bypass line 21 either directly into the cooker or into the high-pressure absorber 18.
  • the refrigerant throttle and the evaporator are bypassed because of the closed valve 28.
  • the solvent passes via the by-pass line 19 directly into the high-pressure absorber 18, the temperature changer 10 and the solvent throttle 11 being bridged.
  • the heat is exchanged with the heating system, and the cooled solvent, to which the coolant, which is also cooled, is added, then reaches the cooker via the second return line 23. Since both the refrigerant choke and the solvent choke are bridged, the pressure in the entire circuit is the same as in the stove, i.e. a relatively high pressure.
  • the pump 24 is therefore designed as a pure circulation pump, while the pump 14 is designed in the manner customary in absorption heat pumps as a pressure pump which has to work against the pressure in the stove.
  • valves 32, 33 and 37 are closed, the other valves 25, 26, 27, 28, 29, 30 and 35 are open. This divides both the refrigerant flow and the solvent flow. Part of the refrigerant flow reaches the low-pressure absorber via the refrigerant line, the refrigerant throttle 6 and the evaporator 7, the other part of the refrigerant is supplied to either the cooker 1 or the high-pressure absorber 18 via the bypass line 21.
  • Heat is exchanged with the heating system in the condenser and in both absorbers.
  • the heating system in the condenser and in the high-pressure absorber is supplied directly with heat which comes from the heating of the cooker, while the heating in the low-pressure absorber is supplied with heat which is taken from the surroundings via the evaporator.
  • the ratio of the two partial refrigerant flows to one another and the ratio of the two partial solvent flows to one another can be adjusted continuously by a suitable choice of the opening of the valves 27 and 28 or 25 and 26 assigned to one another from pure heat pump operation to pure boiler operation.
  • the throttling effect of the refrigerant throttle 6 and the solvent throttle 11 is to be changed in accordance with the size of the partial flow flowing through the throttles, so that the relaxation required for the heat pump effect occurs.
  • this throttling is achieved by opening or closing the closing valves 40 and 41 or 46 and 47 accordingly.
  • the entire system can be optimally adapted to the external conditions, in particular it is possible at any time to choose a larger proportion of heat pumps and a lower proportion of the boiler in mixed operation or vice versa.
  • valve 35 is closed while valves 33 and 37 are opened.
  • the throughput of both the refrigerant expelled from the cooker and the poor solution flowing from the cooker to the absorber is not controlled in a manner known per se by control valves with a variable throttle effect, but by a different pumping capacity of the circulation pump or pumps in the Return lines 13 and 23.
  • these pumps can advantageously be of multi-stage or volumetric flow.
  • the main advantage here is that there is no pressure drop in the line caused by controllable throttle valves, but the pressure level in the entire line system is approximately the same. To circulate the solution, therefore, only low pumping capacities are required, which are altogether significantly lower than those which had to be applied in conventional processes in which the throughput was achieved by different throttling of the flows.
  • control of the circulation pumps can be accomplished in the simplest way and can therefore be optimally adapted to the respective requirements.

Abstract

In an absorption heat pump capable of bivalent operation, to make possible a combined operation in addition to the pure heat pump operation and the pure boiler operation, it is proposed to divide the refrigerant stream after the condenser and the stream of weak solution leaving the boiler, with one component stream of the refrigerant being fed through the refrigerant throttle and the vaporizer to a low-pressure absorber, into which a component stream of the weak solution is introduced through the temperature changer and the solvent throttle, while the other component stream of the refrigerant is fed either directly to the boiler or to a high-pressure absorber, to which the other component stream of the weak solution is fed directly in both cases, and to feed the strong solution from the low-pressure absorber through the temperature changer and/or the reflux condenser to the boiler, but on the other hand to feed the solution from the high-pressure absorber directly to the boiler.

Description

Die Erfindung betrifft ein Verfahren zum Betrieb einer bivalent betreibbaren Absorptionspumpe, wie es im Oberbegriff des Anspruches 1 beschrieben ist.The invention relates to a method for operating a bivalent-operated absorption pump, as described in the preamble of claim 1.

Ferner betrifft die Erfindung eine bivalente Absorptionspumpe zur Durchführung dieses Verfahrens mit den Merkmalen des Oberbegriffs des Anspruches 7.The invention further relates to a bivalent absorption pump for carrying out this method with the features of the preamble of claim 7.

Absorptionswärmepumpen können zu Heizungszwecken nur dann wirkungsvoll eingesetzt werden, wenn die Lufttemperatur einen bestimmten Wert, beispielsweise + 3 °C. nicht unterschreitet. Bei niedrigeren Temperaturen fällt die Leistungsziffer stark ab, insbesondere durch die Vereisung des Verdampfers.Absorption heat pumps can only be used effectively for heating purposes if the air temperature has a certain value, e.g. + 3 ° C. not less. At lower temperatures, the performance figure drops sharply, especially due to the icing of the evaporator.

Es ist bereits bekannt, unter diesen ungünstigen Betriebsbedingungen die Absorptionswärmepumpe so umzuschalten, daß sie im reinen Kesselbetrieb betrieben werden kann, d. h. mittels des Kältemittels und/oder des Lösungsmittels wird die von einer Wärmequelle dem Kocher zugeführte Wärme unmittelbar einer Wärmetauscherfläche zugeführt, über welche das Heizungsmedium erwärmt wird (DE-A-28 56 767 ; DE-A-27 58 773).It is already known to switch the absorption heat pump under these unfavorable operating conditions so that it can be operated in pure boiler mode, i.e. H. by means of the refrigerant and / or the solvent, the heat supplied to the cooker from a heat source is fed directly to a heat exchanger surface via which the heating medium is heated (DE-A-28 56 767; DE-A-27 58 773).

Diese bekannten Absorptionswärmepumpen können dabei nur entweder im reinen Wärmepumpenbetrieb oder im reinen Kesselbetrieb betrieben werden, wobei die Umschaltung von einer Betriebsart auf die andere mit einem erheblichen Regel- und Steueraufwand verbunden ist und eine geraume Zeit in Anspruch nimmt. Beim reinen Kesselbetrieb ergibt sich insgesamt eine nicht vollständige Ausnutzung der Primärenergie, die auf Verluste im Kreislaufsystem zurückzuführen ist. Schließlich muß bei diesem Betrieb eine Umschaltung vom reinen Wärmepumpenbetrieb auf den reinen Kesselbetrieb bereits bei einer Temperatur erfolgen, bei welcher über den Verdampfer durchaus noch der Umgebung Wärme entzogen werden könnte, wenn auch nicht in voll ausreichendem Maße für einen reinen Wärmepumpenbetrieb. Wenn bei den bekannten Anlagen bereits bei dieser Temperatur auf den reinen Kesselbetrieb umgeschaltet wird, muß man auf die Zufuhr der am Verdampfer an sich noch verfügbaren Wärme vollständig verzichten.These known absorption heat pumps can only be operated either in pure heat pump operation or in pure boiler operation, the changeover from one operating mode to the other being associated with considerable regulation and control expenditure and taking up a considerable amount of time. In the case of pure boiler operation, there is an overall incomplete utilization of the primary energy, which can be attributed to losses in the circulatory system. Finally, in this operation, a switch from pure heat pump operation to pure boiler operation must already take place at a temperature at which heat could still be extracted from the surroundings via the evaporator, if not to a sufficient extent for pure heat pump operation. If, in the known systems, a switch is made to the pure boiler operation at this temperature, the supply of the heat still available per se on the evaporator must be completely dispensed with.

Es ist auch bereits eine Absorptionswärmepumpenanlage bekannt, mit der wahlweise drei verschiedene Betriebsarten möglich sind, nämlich ein Wärmepumpenbetrieb, ein Kesselbetrieb oder ein Mischbetrieb (DE-A-2 908 423). Im Wärmepumpenbetrieb wird ein Absorber als Niederdruckabsorber verwendet, der auch im Kesselbetrieb verwendet wird, dabei jedoch als Hochdruckabsorber. Der Mischbetrieb erfolgt dadurch, daß in den Strom der den ersten Absorber verlassenden reichen Lösung ein weiterer Absorber eingeschaltet wird. Es wird also die gesamte den ersten Absorber verlassende reiche Lösung durch eine Pumpe auf den hohen im Kocher herrschenden Druck gebracht und dann nocheinmal durch einen Absorber geleitet, in dem die reiche Lösung mit einem abgezweigten Teilstrom des Kältemittels vermischt wird. Die beiden Absorber sind bei dieser bekannten Lösung also in Bezug auf die Zufuhr der armen Lösung in Reihe geschaltet. Damit ändert sich im Mischbetrieb der Niederdruck und dementsprechend die Verdampfungstemperatur. Diese Betriebsweise kann zum Beispiel bei einem solebeaufschlagten Verdampfer wegen Vereisungsgefahr zu erheblichen Betriebsstörungen führen. Außerdem wird bei dem bekannten Verfahren durch das Absinken der Konzentration im Mischbetrieb die Leistungszahl des Wärmepumpenanteils abgesenkt, da die Leistungszahl mit abnehmender Lösungskonzentration abnimmt.An absorption heat pump system is also already known, with which three different operating modes are optionally possible, namely a heat pump operation, a boiler operation or a mixed operation (DE-A-2 908 423). In heat pump operation, an absorber is used as a low-pressure absorber, which is also used in boiler operation, but as a high-pressure absorber. The mixed operation takes place in that a further absorber is switched on in the stream of the rich solution leaving the first absorber. The entire rich solution leaving the first absorber is brought to the high pressure prevailing in the cooker by means of a pump and then again passed through an absorber in which the rich solution is mixed with a branched-off partial flow of the refrigerant. In this known solution, the two absorbers are therefore connected in series with respect to the supply of the poor solution. This changes the low pressure and the evaporation temperature accordingly in mixed operation. This mode of operation can, for example in the case of a brine-loaded evaporator, lead to considerable malfunctions due to the risk of icing. In addition, in the known method, the coefficient of performance of the heat pump component is reduced by the decrease in the concentration in mixed operation, since the coefficient of performance decreases with decreasing solution concentration.

Ausgehend von diesem Stand der Technik ist es Aufgabe der Erfindung ein Verfahren zum Betrieb einer Absorptionswärmepumpe derart zu verbessern, daß neben einem reinen Wärmepumpenbetrieb und einem reinen Kesselbetrieb ein Mischbetrieb mit erhöhter Leistungszahl in einfacher Weise ermöglicht werden kann.Starting from this prior art, it is an object of the invention to improve a method for operating an absorption heat pump such that, in addition to pure heat pump operation and pure boiler operation, mixed operation with an increased coefficient of performance can be made possible in a simple manner.

Diese Aufgabe wird bei einem Verfahren der eingangs beschriebenen Art durch die im kennzeichnenden Teil des Anspruches 1 angegebenen Merkmale gelöst.This object is achieved in a method of the type described in the introduction by the features specified in the characterizing part of claim 1.

Erfindungsgemäß wird zur Durchführung dieses Verfahrens eine Absorptionswärmepumpe mit den Merkmalen des Anspruches 7 vorgeschlagen.According to the invention, an absorption heat pump with the features of claim 7 is proposed for carrying out this method.

Gemäß der Erfindung werden also zu einem Mischbetrieb der Lösungsmittelstrom vom Kocher zum Absorber und der den Verflüssiger verlassende Kältemittelstrom in jeweils zwei Teilströme aufgespalten. Ein Teilstrom des Lösungsmittels und ein Teilstrom des Kältemittels werden in der für den reinen Wärmepumpenbetrieb typischen Weise geführt, während die jeweils anderen Teilströme in der für den reinen Kesselbetrieb typischen Weise geführt werden. Um dies zu ermöglichen, wird der Absorber aufgeteilt in einen Niederdruckabsorber, der dem reinen Wärmepumpenbetrieb dient, und einen Hochdruckabsorber, der dem reinen Kesselbetrieb dient.According to the invention, for mixed operation, the solvent flow from the cooker to the absorber and the refrigerant flow leaving the condenser are each split into two partial flows. A partial flow of the solvent and a partial flow of the refrigerant are carried out in the manner typical for pure heat pump operation, while the other other partial flows are conducted in the manner typical for pure boiler operation. To make this possible, the absorber is divided into a low-pressure absorber, which is used purely for heat pump operation, and a high-pressure absorber, which serves purely for boiler operation.

Der Wärmetausch mit dem Heizungssystem erfolgt im Verflüssiger sowie in beiden Absorbern. Auf diese Weise ist es möglich, sowohl die Vorteile des reinen Wärmepumpenbetriebes als auch die Vorteile des reinen Kesselbetriebes gemeinsam zu nutzen, wobei der Anteil des reinen Wärmepumpenbetriebes relativ zum Anteil des reinen Kesselbetriebes entsprechend dem Verhältnis der Aufspaltung der beiden Ströme in Teilströme stufenlos eingestellt werden kann.The heat exchange with the heating system takes place in the condenser and in both absorbers. In this way, it is possible to use both the advantages of pure heat pump operation and the advantages of pure boiler operation together, the proportion of pure heat pump operation relative to the proportion of pure boiler operation being continuously adjustable according to the ratio of the splitting of the two flows into partial flows .

Vorteilhaft ist es, wenn man im Mischbetrieb die Drosselwirkung der beiden Drosseln gegenüber dem reinen Wärmepumpenbetrieb erhöht, so daß man die Drosselwirkung dem geringeren Mengenstromdurchsatz des Wärmepumpenkreislaufes anpassen kann.It is advantageous if, in mixed operation, the throttling effect of the two throttles is increased compared to pure heat pump operation, so that the throttling effect can be adapted to the lower flow rate throughput of the heat pump circuit.

Vorteilhaft ist es weiterhin, wenn man im Mischbetrieb den Teilstrom des Kältemittels nur durch einen Teil des Verdampfers führt.It is also advantageous if you are in Mixed operation leads the partial flow of the refrigerant only through part of the evaporator.

Vorzugsweise verringert man im Mischbetrieb den Gasdurchströmquerschnitt des Verdampfers gegenüber dem reinen Wärmepumpenbetrieb. Durch die geringere aktive Fläche des Verdampfers gelingt es länger, diesen eisfrei und wirksam zu halten, so daß der Wärmepumpenbetrieb bis zu niedrigeren Temperaturen hin aufrechterhalten werden kann.In mixed operation, the gas flow cross section of the evaporator is preferably reduced compared to pure heat pump operation. Due to the smaller active area of the evaporator, it is possible to keep it free of ice and effectively for longer, so that heat pump operation can be maintained down to lower temperatures.

Es kann vorgesehen sein, daß man beim reinen Wärmepumpenbetrieb die arme Lösung und das Kältemittel im Niederdruckabsorber vereinigt und die entstehende reiche Lösung anschließend durch den Hochdruckabsorber leitet. In diesem Falle werden auch im reinen Wärmepumpenbetrieb beide Absorber zum Wärmetausch herangezogen.It can be provided that the poor solution and the refrigerant are combined in the low-pressure absorber in pure heat pump operation and the resulting rich solution is then passed through the high-pressure absorber. In this case, both absorbers are used for heat exchange even in pure heat pump operation.

Um die Drosseln in der Kältemittelleitung und in der Lösungsmittelleitung in ihrer Drosselwirkung veränderbar auszugestalten, können diese als volumenstromvariable Expansionsventile ausgebildet sein. Bei einem abgewandelten Ausführungsbeispiel kann vorgesehen sein, daß die Drosseln mindestens zwei Parallelleitungen mit Drosselventilen umfassen, wobei die Parallelleitungen durch Schaltventile abwechselnd oder gemeinsam geöffnet werden können. Durch geeignete Wahl der Drosselstärken in den einzelnen Parallelleitungen, können durch Umschalten die Drosselwirkungen jeweils einer Leitung oder auch die Drosselwirkung der parallel geschalteten Leitungen gemeinsam ausgenutzt werden.In order to make the throttling effect of the throttles in the refrigerant line and in the solvent line variable, they can be designed as expansion valves that are variable in volume flow. In a modified exemplary embodiment it can be provided that the chokes comprise at least two parallel lines with throttle valves, the parallel lines being able to be opened alternately or together by switching valves. Through a suitable choice of the throttle strengths in the individual parallel lines, the throttling effects of one line or the throttling effect of the parallel lines can be jointly used by switching.

Bei einer vorteilhaften Ausgestaltung der Erfindung ist vorgesehen, daß der Hochdruckabsorber im reinen Wärmepumpenbetrieb zwischen Niederdruckabsorber und die erste Rückführleitung einschaltbar ist.In an advantageous embodiment of the invention, it is provided that the high-pressure absorber can be switched on in the pure heat pump mode between the low-pressure absorber and the first return line.

Die nachfolgende Beschreibung bevorzugter Ausführungsformen der Erfindung dient im Zusammenhang mit der Zeichnung der näheren Erläuterung. Es zeigen :

  • Figur 1 eine schematische Darstellung einer Absorptionspumpe zur Durchführung des erfindungsgemäBen Verfahrens und
  • Figur 2 eine Ansicht ähnlich Fig. '1 mit einer anderen Ausgestaltung der Kältemitteldrossei und der Lösungsmittetdrossei.
The following description of preferred embodiments of the invention serves in conjunction with the drawing for a more detailed explanation. Show it :
  • Figure 1 is a schematic representation of an absorption pump for performing the inventive method and
  • Figure 2 is a view similar to Fig. '1 with a different embodiment of the refrigerant dosing and the solvent dosing.

Die in der Zeichnung dargestellte Wärmepumpe umfaßt in der für Wärmepumpen üblichen Weise einen Kocher oder Austreiber 1, in dem mittels einer in der Zeichnung nicht dargestellten Heizquelle ein Kältemittel-Lösungsmittel-Gemisch aufgeheizt wird. Das dabei verdampfende Kältemittel wird über eine Kältemittelleitung 2 durch einen Rücklaufkühler 3 einem Verflüssiger 4 zugeführt und gelangt von diesem im flüssigen Zustand durch einen Wärmetauscher 5 über eine Kältemitteldrossel 6 zu einem Verdampfer 7. Das wieder verdampfte Kältemittel, das nunmehr unter niedrigem Druck steht, wird im Gegenstrom durch den Wärmetauscher 5 einem ersten Absorber 8 zugeführt, der im folgenden als Niederdruckabsorber bezeichnet wird.The heat pump shown in the drawing comprises, in the manner customary for heat pumps, a stove or expeller 1, in which a refrigerant-solvent mixture is heated by means of a heating source not shown in the drawing. The evaporating refrigerant is fed via a refrigerant line 2 through a reflux condenser 3 to a condenser 4 and from there in the liquid state it passes through a heat exchanger 5 via a refrigerant throttle 6 to an evaporator 7. The refrigerant which has been evaporated again and is now under low pressure fed in countercurrent through the heat exchanger 5 to a first absorber 8, which is referred to below as a low-pressure absorber.

Aus dem Kocher 1 führt eine Lösungsmittelleitung 9 durch einen Temperaturwechsler 10 und über eine Lösungsmitteldrossel 11 ebenfalls zum ersten Absorber 8, in welchem das über die Kältemittelleitung 2 zugeführte Kältemittel und das über die Lösungsmittelleitung 9 zugeführte Lösungsmittel vereinigt werden.A solvent line 9 leads from the cooker 1 through a temperature changer 10 and via a solvent throttle 11 to the first absorber 8, in which the refrigerant supplied via the refrigerant line 2 and the solvent supplied via the solvent line 9 are combined.

Vom Auslaß 12 des ersten Absorbers 8 führt eine erste Rückführleitung 13, in die eine Förderpumpe 14 eingeschaltet ist, zu einer Verzweigung 15. Von dieser Verzweigung führt eine erste Leitung 16 im Gegenstrom durch den Temperaturwechsler 10 zum Kocher 1, während eine zweite Leitung 17 durch den Rücklaufkühler 3 zum Kocher 1 geführt ist.From the outlet 12 of the first absorber 8, a first return line 13, into which a feed pump 14 is switched on, leads to a branch 15. From this branch, a first line 16 leads in counterflow through the temperature changer 10 to the cooker 1, while a second line 17 the return cooler 3 is led to the cooker 1.

Die bisher beschriebenen Teile der Absorptionswärmepumpe entsprechen dem üblichen Aufbau mit verzweigter Rückführung der reichen Lösung. Gemäß der Erfindung ist neben dem Niederdruckabsorber 8 ein zweiter Absorber 18 vorgesehen, der im folgenden als Hochdruckabsorber bezeichnet wird. In diesen Hochdruckabsorber führt eine By-Pass-Leitung 19, die die Lösung aus dem Kocher 1 unter Umgehung des Temperaturwechslers 10 und der Lösungsmitteldrossel 11 unmittelbar dem Hochdruckabsorber 18 zuführt.The parts of the absorption heat pump described so far correspond to the usual structure with branched return of the rich solution. According to the invention, in addition to the low-pressure absorber 8, a second absorber 18 is provided, which is referred to below as a high-pressure absorber. A by-pass line 19 leads into this high-pressure absorber, which feeds the solution from the cooker 1 directly to the high-pressure absorber 18, bypassing the temperature changer 10 and the solvent throttle 11.

Stromabwärts des Verflüssigers ist eine Verzweigung 20 in der Kältemittelleitung 2 vorgesehen ; hier zweigt eine Umgehungsleitung 21 von der Kältemittelleitung 2 ab, die entweder unmittelbar in den Kocher oder vorzugsweise entsprechend der gestrichelten Darstellung in den Hochdruckabsorber 18 mündet. Am Auslaß 22 des Hochdruckabsorbers 18 schließt sich eine zweite Rückführleitung 23 an, in welche eine zweite Förderpumpe 24 eingeschaltet ist. Die zweite Rückführleitung 23 mündet unmittelbar in den Kocher 1.A branch 20 is provided in the refrigerant line 2 downstream of the condenser; here, a bypass line 21 branches off from the refrigerant line 2, which either opens directly into the cooker or preferably according to the broken line in the high-pressure absorber 18. At the outlet 22 of the high-pressure absorber 18 there is a second return line 23, into which a second feed pump 24 is switched on. The second return line 23 opens directly into the cooker 1.

In der Lösungsmittelleitung 9 befindet sich ein vollständig schließbares Dosierventil 25, ebenso ist in der By-Pass-Leitung 19 ein vollständig verschließbares Dosierventil 26 angeordnet. Ein weiteres vollständig verschlieBbares Dosierventil 27 ist in die Umgehungsleitung 21 eingeschaltet.A completely closable metering valve 25 is located in the solvent line 9, and a completely closable metering valve 26 is likewise arranged in the by-pass line 19. Another fully closable metering valve 27 is switched into the bypass line 21.

In der Kältemittelleitung befindet sich ein weiteres vollständig verschließbares Dosierventil 28 stromabwärts der Verzweigung 20.A further fully closable metering valve 28 is located in the refrigerant line downstream of the branch 20.

In den Rückführleitungen 13 bzw. 23 sind SchlieBventile 29 bzw. 30 angeordnet, und der Auslaß 22 des Absorbers 18 ist mittels einer Verbindungsleitung 31, in der sich ein Schließventil 32 befindet, stromabwärts des SchIieBventils 29 verbunden.Closing valves 29 and 30 are arranged in the return lines 13 and 23, respectively, and the outlet 22 of the absorber 18 is connected downstream of the closing valve 29 by means of a connecting line 31, in which a closing valve 32 is located.

Von der By-Pass-Leitung 19 zweigt eine mit einem Schließventil 33 versehene Abzweigleitung zum ersten Absorber 8 ab ; stromabwärts dieser Abzweigung ist in der By-Pass-Leitung ein weiteres Schließventil 35 angeordnet.A branch line provided with a closing valve 33 branches off from the by-pass line 19 to the first absorber 8; A further closing valve 35 is arranged in the by-pass line downstream of this branch.

Eine weitere Verbindungsleitung 36, in der ein Schließventil 37 angeordnet ist, verbindet den AuslaB 12 des ersten Absorbers 8 mit dem Einlaß des zweiten Absorbers 18.A further connecting line 36, in which a closing valve 37 is arranged, connects the outlet 12 of the first absorber 8 to the inlet of the second absorber 18.

Die beiden Drosseln 6 und 11 sind in ihrer Drosselwirkung verstellbar, dies ist in der Zeichnung durch einen motorischen Stellantrieb angedeutet. Diese Drosseln können auch als volumenstromvariable Expansionsventile ausgebildet sein.The two throttles 6 and 11 are adjustable in their throttling action, this is in the drawing indicated by a motorized actuator. These throttles can also be designed as expansion valves variable in volume flow.

Eine weitere mögliche Ausgestaltung der Drosseln ergibt sich aus dem Ausführungsbeispiel der Fig. 2, welches sich nur durch die Ausgestaltung der Drosseln von dem Ausführungsbeispiel der Fig. 1 unterscheidet. Entsprechende Teile tragen daher auch gleiche Bezugszeichen.Another possible configuration of the chokes results from the exemplary embodiment in FIG. 2, which differs from the exemplary embodiment in FIG. 1 only in the configuration of the chokes. Corresponding parts therefore have the same reference numerals.

Die Kältemitteldrossel 6 umfaßt bei dem Ausführungsbeispiel der Fig. 2 zwei parallele Leitungen 38 und 39. In jede dieser Leitungen ist ein Schließventil 40 bzw. 41 mit einem Drosselventil 42 bzw. 43 mit fester Drosselwirkung in Reihe geschaltet.In the exemplary embodiment in FIG. 2, the refrigerant throttle 6 comprises two parallel lines 38 and 39. In each of these lines, a closing valve 40 or 41 is connected in series with a throttle valve 42 or 43 with a fixed throttle effect.

In gleicher Weise umfaßt die Lösungsmitteldrossel 11 zwei parallele Leitungen 44 und 45, in die jeweils ein Schließventil 46 bzw. 47 und ein Drosselventil 48 bzw. 49 mit fester Drosselwirkung eingeschaltet sind.In the same way, the solvent throttle 11 comprises two parallel lines 44 and 45, in each of which a closing valve 46 or 47 and a throttle valve 48 or 49 with a fixed throttle effect are switched on.

Die in der Zeichnung dargestellte Wärmepumpe kann auf drei verschiedene Arten betrieben werden, die im folgenden erläutert sind.The heat pump shown in the drawing can be operated in three different ways, which are explained below.

Im reinen Wärmepumpenbetrieb sind die Ventile 26, 27, 30, 32, 33, 35 und 37 geschlossen, während lediglich die Ventile 25, 28 und 29 geöffnet sind. Bei diesem Betrieb wird das vom Kocher verdampfte Kältemittel durch die Kältemittelleitung 2 über den Verflüssiger, die Kältemitteldrossel und den Verdampfer dem Niederdruckabsorber 8 zugeführt. Die arme Lösung gelangt vom Kocher über die Lösungsmittelleitung 9 durch den Temperaturwechsler, die Lösungsmitteldrossel 11 ebenfalls in den Niederdruckabsorber. Nach der Vereinigung der beiden Bestandteile wird die reiche Lösung über die erste Rückführleitung 13 und die beiden Leitungen 16 und 17 wieder dem Kocher zugeführt.In pure heat pump operation, the valves 26, 27, 30, 32, 33, 35 and 37 are closed, while only the valves 25, 28 and 29 are open. In this operation, the refrigerant evaporated by the cooker is supplied to the low-pressure absorber 8 through the refrigerant line 2 via the condenser, the refrigerant throttle and the evaporator. The poor solution passes from the cooker through the solvent line 9 through the temperature changer, the solvent throttle 11 also into the low pressure absorber. After the two components have been combined, the rich solution is fed back to the cooker via the first return line 13 and the two lines 16 and 17.

Bei der beschriebenen Leitungsführung durchsetzt die reiche Lösung lediglich den Niederdruckabsorber 8, der Hochdruckabsorber 18 ist bei dieser Betriebsweise nicht in den Kreislauf eingeschaltet.In the line routing described, the rich solution only penetrates the low-pressure absorber 8; the high-pressure absorber 18 is not switched into the circuit in this operating mode.

Bei einer alternativen Betriebsweise des reinen Wärmepumpenbetriebes wird das Ventil 29 geschlossen, während die Ventile 32 und 37 geöffnet werden. Die reiche Lösung durchfließt dann vor dem Eintritt in die erste Rückführleitung 13 auch den Hochdruckabsorber 18, so daß auch in diesem Hochdruckabsorber ein Wärmetausch mit dem Heizungssystem erfolgen kann.In an alternative mode of operation of pure heat pump operation, the valve 29 is closed while the valves 32 and 37 are opened. The rich solution then flows through the high-pressure absorber 18 before entering the first return line 13, so that heat can also be exchanged with the heating system in this high-pressure absorber.

Beim reinen Kesselbetrieb sind die Ventile 25, 28, 29, 32, 33 und 37 geschlossen, während die Ventile 26, 27, 30 und 35 geöffnet sind. In diesem Falle gelangt das den Kocher verlassende Kältemittel über die Umgehungsleitung 21 entweder unmittelbar in den Kocher oder in den Hochdruckabsorber 18. Die Kältemitteldrossel und der Verdampfer werden dabei wegen des geschlossenen Ventils 28 überbrückt.In pure boiler operation, valves 25, 28, 29, 32, 33 and 37 are closed, while valves 26, 27, 30 and 35 are open. In this case, the refrigerant leaving the cooker passes via the bypass line 21 either directly into the cooker or into the high-pressure absorber 18. The refrigerant throttle and the evaporator are bypassed because of the closed valve 28.

Das Lösungsmittel gelangt über die By-Pass-Leitung 19 unmittelbar in den Hochdruckabsorber 18, wobei der Temperaturwechsler 10 und die Lösungsmitteldrossel 11 überbrückt werden. Im Hochdruckabsorber erfolgt der Wärmeaustausch mit dem Heizungssystem, das abgekühlte Lösungsmittel, dem gegebenenfalls das ebenfalls abgekühlte Kältemittel beigefügt ist, gelangen daraufhin über die zweite Rückführleitung 23 in den Kocher. Da sowohl die Kältemitteldrossel als auch die Lösungsmitteldrossel überbrückt sind, herrscht im gesamten Kreislauf derselbe Druck wie im Kocher, also ein relativ hoher Druck. Die Pumpe 24 ist daher als reine Umwälzpumpe ausgestaltet, während die Pumpe 14 in der bei Absorptionswärmepumpen üblichen Weise als Druckpumpe ausgebildet ist, die gegen den Druck im Kocher arbeiten muß.The solvent passes via the by-pass line 19 directly into the high-pressure absorber 18, the temperature changer 10 and the solvent throttle 11 being bridged. In the high-pressure absorber, the heat is exchanged with the heating system, and the cooled solvent, to which the coolant, which is also cooled, is added, then reaches the cooker via the second return line 23. Since both the refrigerant choke and the solvent choke are bridged, the pressure in the entire circuit is the same as in the stove, i.e. a relatively high pressure. The pump 24 is therefore designed as a pure circulation pump, while the pump 14 is designed in the manner customary in absorption heat pumps as a pressure pump which has to work against the pressure in the stove.

Im erfindungsgemäßen Mischbetrieb, in dem sowohl eine Wärmepumpenwirkung als auch eine Kesselwirkung erzielt werden, sind lediglich die Ventile 32, 33 und 37 geschlossen, die übrigen Ventile 25, 26, 27, 28, 29, 30 und 35 sind hingegen geöffnet. Dadurch erfolgt eine Aufteilung sowohl des Kältemittelstromes als auch des Lösungsmittelstromes. Ein Teil des Kältemittelstromes gelangt über die Kältemittelleitung, die Kältemitteldrossel 6 und den Verdampfer 7 zum Niederdruckabsorber, der andere Teil des Kältemittels wird über die Umgehungsleitung 21 entweder dem Kocher 1 oder dem Hochdruckabsorber 18 zugeführt.In the mixed operation according to the invention, in which both a heat pump effect and a boiler effect are achieved, only the valves 32, 33 and 37 are closed, the other valves 25, 26, 27, 28, 29, 30 and 35 are open. This divides both the refrigerant flow and the solvent flow. Part of the refrigerant flow reaches the low-pressure absorber via the refrigerant line, the refrigerant throttle 6 and the evaporator 7, the other part of the refrigerant is supplied to either the cooker 1 or the high-pressure absorber 18 via the bypass line 21.

Ein Teil des Lösungsmittels gelangt über die Lösungsmittelleitung 9, den Temperaturwechsler 10 und die Lösungsmitteldrossel 11 zum Niederdruckabsorber 8, der andere Teilstrom fließt über die By-Pass-Leitung 19 unmittelbar dem Hochdruckabsorber 8 zu. Die aus dem Niederdruckabsorber austretende arme Lösung wird über die erste Rückführleitung 13 von der Pumpe 14 wieder dem Kocher zugeführt, die aus dem Hochdruckabsorber 18 austretende Lösung, der gegebenenfalls Kältemittel beigemischt ist, gelangt über die zweite Rückführleitung 23 mittels der Umwälzpumpe 24 zurück in den Kocher 1.Part of the solvent reaches the low-pressure absorber 8 via the solvent line 9, the temperature changer 10 and the solvent throttle 11, the other partial flow flows directly to the high-pressure absorber 8 via the by-pass line 19. The poor solution emerging from the low-pressure absorber is returned to the cooker via the first return line 13 by the pump 14, the solution emerging from the high-pressure absorber 18, which is optionally mixed with refrigerant, returns to the cooker via the second return line 23 by means of the circulation pump 24 1.

Wärmetausch mit dem Heizungssystem erfolgt im Verflüssiger sowie in beiden Absorbern. Dabei wird dem Heizungssystem im Verflüssiger und im Hochdruckabsorber direkt Wärme zugeführt, die von der Heizung des Kochers herrührt, während der Heizung im Niederdruckabsorber Wärme zugeführt wird, die über den Verdampfer der Umgebung entnommen ist.Heat is exchanged with the heating system in the condenser and in both absorbers. In this case, the heating system in the condenser and in the high-pressure absorber is supplied directly with heat which comes from the heating of the cooker, while the heating in the low-pressure absorber is supplied with heat which is taken from the surroundings via the evaporator.

Das Verhältnis der beiden Kältemittelteilströme zueinander und das Verhältnis der beiden Lösungsmittelteilströme zueinander kann durch geeignete Wahl der Öffnung der einander zugeordneten Ventile 27 und 28 bzw. 25 und 26 stufenlos vom reinen Wärmepumpenbetrieb bis zum reinen Kesselbetrieb eingestellt werden. Dabei ist die Drosselwirkung der Kältemitteldrossel 6 und der Lösungsmitteldrossel 11 entsprechend der GröBe des durch die Drosseln hindurchfließenden Teilstromes zu verändern, damit die für die Wärmepumpenwirkung notwendige Entspannung eintritt.The ratio of the two partial refrigerant flows to one another and the ratio of the two partial solvent flows to one another can be adjusted continuously by a suitable choice of the opening of the valves 27 and 28 or 25 and 26 assigned to one another from pure heat pump operation to pure boiler operation. The throttling effect of the refrigerant throttle 6 and the solvent throttle 11 is to be changed in accordance with the size of the partial flow flowing through the throttles, so that the relaxation required for the heat pump effect occurs.

Dies kann in der oben erwähnten Weise je nach Bauart der Drosseln verschieden erfolgen, bei dem Ausführungsbeispiel der Fig. 2 wird diese Drosselung durch entsprechende Öffnung bzw. Schließung der SchlieBventile 40 und 41 bzw. 46 und 47 erreicht.This can be done differently in the manner mentioned above, depending on the type of chokes 2, this throttling is achieved by opening or closing the closing valves 40 and 41 or 46 and 47 accordingly.

Um die beschriebene Wärmepumpe zwischen dem reinen Wärmepumpenbetrieb und dem reinen Kesselbetrieb kontinuierlich steuern zu können, genügt es, den Öffnungszustand der Ventile 25 und 26 bzw. 27 und 28 kontinuierlich zu verändern sowie die Ventile 29, 30 und 35 zu öffnen bzw. zu schliessen. Ferner muß die Drosselwirkung der Drosseln 6 und 11 entsprechend dem Öffnungszustand der Ventile 25, 26, 27 und 28 angepaßt werden. Weitere Veränderungen sind nicht notwendig.In order to be able to continuously control the described heat pump between the pure heat pump operation and the pure boiler operation, it is sufficient to continuously change the opening state of the valves 25 and 26 or 27 and 28 and to open or close the valves 29, 30 and 35. Furthermore, the throttling effect of the throttles 6 and 11 must be adjusted in accordance with the open state of the valves 25, 26, 27 and 28. No further changes are necessary.

Da die Veränderung kontinuierlich zwischen beiden extremen Betriebszuständen erfolgen kann, kann die gesamte Anlage optimal an die äußeren Gegebenheiten angepaßt werden, insbesondere ist es jederzeit möglich, beim Mischbetrieb je nach den Anforderungen einen gröBeren Wärmepumpen- und einen geringeren Kesselanteil zu wählen oder umgekehrt.Since the change can take place continuously between the two extreme operating states, the entire system can be optimally adapted to the external conditions, in particular it is possible at any time to choose a larger proportion of heat pumps and a lower proportion of the boiler in mixed operation or vice versa.

Beim reinen Kesselbetrieb wäre es auch möglich, das Lösungsmittel zusätzlich durch den Niederdruckabsorber 8 hindurchzuführen, um auch in diesem einen Wärmetausch mit dem Heizungssystem zu ermöglichen. In diesen Falle wird das Ventil 35 geschlossen, während die Ventile 33 und 37 geöffnet werden.In the case of pure boiler operation, it would also be possible to additionally pass the solvent through the low-pressure absorber 8 in order to enable heat exchange with the heating system there as well. In this case, valve 35 is closed while valves 33 and 37 are opened.

Beim reinen Kesselbetrieb wird der Durchsatz sowohl des aus dem Kocher ausgetriebenen Kältemittels als auch der aus dem Kocher zum Absorber fließenden armen Lösung nicht in an sich bekannter Weise durch Regelventile mit veränderbarer Drosselwirkung gesteuert, sondern durch eine unterschiedliche Pumpleistung der Umwälzpumpe bzw. der Umwälzpumpen in den Rückführleitungen 13 und 23. Diese Pumpen können dazu vorteilhaft mehrstufig oder volumstromvariabel ausgebildet sein. Dabei ergibt sich als wesentlicher Vorteil, daß kein durch regelbare Drosselventile verursachter Druckabfall in der Leitung auftritt, sondern das Druckniveau im gesamten Leitungssystem etwa gleich ist. Zur Umwälzung der Lösung benötigt man daher nur geringe Pumpieistungen, die insgesamt wesentlich geringer sind als die, die bei herkömmlichen Verfahren aufzubringen waren, bei denen der Durchsatz durch unterschiedliche Drosselung der Ströme erzielt wurde.In pure boiler operation, the throughput of both the refrigerant expelled from the cooker and the poor solution flowing from the cooker to the absorber is not controlled in a manner known per se by control valves with a variable throttle effect, but by a different pumping capacity of the circulation pump or pumps in the Return lines 13 and 23. For this purpose, these pumps can advantageously be of multi-stage or volumetric flow. The main advantage here is that there is no pressure drop in the line caused by controllable throttle valves, but the pressure level in the entire line system is approximately the same. To circulate the solution, therefore, only low pumping capacities are required, which are altogether significantly lower than those which had to be applied in conventional processes in which the throughput was achieved by different throttling of the flows.

Durch diese Maßnahme können auch komplizierte Regelarmaturen vermieden werden, die zu Störungen Anlaß geben könnten. Die Steuerung der Umwälzpumpen läßt sich in einfachster Weise bewerkstelligen und kann daher den jeweiligen Erfordernissen optimal angepaßt werden.This measure also avoids complicated control fittings that could give rise to faults. The control of the circulation pumps can be accomplished in the simplest way and can therefore be optimally adapted to the respective requirements.

Claims (12)

1. A method of operating a two-way operable absorption heat pump, in which, during heat-pump-only operation, the refrigerant expelled in the boiler is supplied via a liquefier, a refrigerant throttle, and an evaporator to an absorber, is combined there with a lean solution supplied from the boiler to the absorber via a temperature changer and a solvent throttle, and the resulting rich solution is supplied to the boiler via the temperature changer, and if required, via a reflux condenser for cooling the stream of refrigerant leaving the boiler, whereas during boiler-only operation the refrigerant expelled from the boiler on leaving the liquefier is supplied directly to the absorber, the lean solution from the boiler is supplied directly to the absorber, and the rich solution leaving the absorber is supplied directly to the boiler, characterised in that during mixed operation the stream of refrigerant leaving the liquefier and the stream of lean solution leaving the boiler are divided, a partial stream of refrigerant being supplied through the refrigerant throttle and the evaporator to a low-pressure absorber in which a partial stream of the lean solution is supplied via the temperature changer and the solvent throttle, whereas the other partial stream of refrigerant is supplied either directly to the boiler or to a high-pressure absorber which in both cases is directly supplied with the other partial stream of lean solution, and the rich solution from the low-pressure absorber is sent through the temperature changer and/or the reflux condenser whereas the solution from the high-pressure absorber is sent directly to the boiler.
2. A method according to claim 1, characterised in that during mixed operation the throttling action of the two throttles is made greater than during heat-pump-only operation.
3. A method according to claim 1 or 2, characterised in that during mixed operation the partial stream of refrigerant is sent through only part of the evaporator.
4. A method according to any of the preceding claims, characterised in that during mixed operation the gas flow cross-section of the evaporator is made less than during heat-pump-only operation.
5. A method according to any of the preceding claims, characterised in that during heat-pump-only operation the lean solution and the refrigerant are combined in the low-pressure absorber and the resulting rich solution is then conveyed through the high-pressure absorber.
6. A method according to any of the preceding claims, characterised in that during boiler-only operation the flow rate of refrigerant expelled from the boiler and the flow rate of lean solution flowing from the boiler to the absorber are not adjusted by means of throttle valves but are controlled by varying the delivery of the circulating pump or pumps conveying the rich solution leaving the absorber.
7. A two-way operable absorption heat pump for working the method according to claims 1 to 5, comprising a refrigerant line leading from a boiler to an absorber and containing a liquefier, a refrigerant throttle, and an evaporator in series, a solvent line supplying a lean solution from the boiler to the absorber via a temperature changer and a solvent throttle, a return line supplying the rich solution from the absorber to the boiler via the temperature changer and/or a reflux condenser for cooling the refrigerant expelled from the boiler, the return line containing a feed pump, a closable by-pass line through which the coolant leaving the liquefier outlet can be conveyed directly to the boiler or absorber so as to by-pass the coolant throttle and evaporator, and an additional closable by-pass line for supplying the lean solution directly to the absorber by-passing the temperature changer and the solvent throttle, characterised in that the absorber is divided into a low-pressure absorber (8) and a high-pressure absorber (18), the refrigerant line (2) coming from the evaporator (7) opens into the low-pressure absorber (8) and the by-pass line (21) opens into the boiler (1) or the high-pressure absorber (18), the solvent line (9) opens into the low-pressure absorber (8) whereas as the by-pass line (19) opens into the high-pressure absorber (18) a second return line (23) leads directly to the boiler (1) and comprises a second feed pump (24) and is connectable to the outlet (22) of the high-pressure absorber (18) whereas the first return line (13) is connectable to the low-pressure absorber (8), and on-off valves (25, 26, 27, 28, 30, 32) are disposed in the refrigerant line (2) after the branching-off (20) of the by-pass line (21), in the by-pass line (21), in the solvent line (9) after the branching-off of the by-pass line (19), in the by- pass line (19), and in both return lines (13 and 23).
8. A heat pump according to claim 7, characterised in that the throttling action of the throttles (6, 11) in the refrigerant line (2) and the solvent line (9) is variable.
9. A heat pump according to claim 8, characterised in that the throttles (6, 11) are expansion valves having a variable volumetric flow.
10. A heat pump according to claim 8, characterised in that the throttles (6, 11) comprise at least two parallel lines (38, 39: 44, 45) with throttle valves (42, 43 ; 48, 49), the parallel lines (38, 39 ; 44, 45) being openable alternately or together by on-off valves (40, 41 ; 46, 47).
11. A heat pump according to any of claims 7 to 10, characterised in that in heat-pump-only operation the high-pressure absorber (18) is insertable between the low-pressure absorber (8) and the first return line (13).
12. A heat pump according to any of claims 7 to 11, characterised in that the feed pumps (14, 24) are multi-stage or have a variable volumetric flow.
EP83105566A 1982-06-11 1983-06-07 Method of operating a bivalent absorption heat pump, and absorption heat pump for carrying out this method Expired EP0096822B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT83105566T ATE22612T1 (en) 1982-06-11 1983-06-07 PROCEDURE FOR OPERATING A DUAL OPERATION ABSORPTION HEAT PUMP AND ABSORPTION HEAT PUMP FOR CARRYING OUT THIS PROCEDURE.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19823222067 DE3222067A1 (en) 1982-06-11 1982-06-11 METHOD FOR OPERATING A BIVALENTALLY OPERATING ABSORPTION HEAT PUMP AND ABSORPTION HEAT PUMP FOR CARRYING OUT THIS METHOD
DE3222067 1982-06-11

Publications (3)

Publication Number Publication Date
EP0096822A2 EP0096822A2 (en) 1983-12-28
EP0096822A3 EP0096822A3 (en) 1984-07-25
EP0096822B1 true EP0096822B1 (en) 1986-10-01

Family

ID=6165872

Family Applications (1)

Application Number Title Priority Date Filing Date
EP83105566A Expired EP0096822B1 (en) 1982-06-11 1983-06-07 Method of operating a bivalent absorption heat pump, and absorption heat pump for carrying out this method

Country Status (6)

Country Link
US (1) US4464907A (en)
EP (1) EP0096822B1 (en)
AT (1) ATE22612T1 (en)
CA (1) CA1206766A (en)
DE (2) DE3222067A1 (en)
DK (1) DK158322C (en)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4524759A (en) * 1983-10-28 1985-06-25 Butler Robert F Process for the reversible transfer of thermal energy and heat transfer system useful therein
DE3432888A1 (en) * 1984-09-07 1986-03-13 Borsig Gmbh, 1000 Berlin ABSORPTION REFRIGERATION SYSTEM WITH SPACIOUSLY SEPARATE HIGH PRESSURE AND LOW PRESSURE PART
NL8403517A (en) * 1984-11-19 1986-06-16 Rendamax Ag ABSORPTION-RESORPTION HEAT PUMP.
US4593531A (en) * 1985-01-15 1986-06-10 Ebara Corporation Absorption cooling and heating apparatus and method
NL8501039A (en) * 1985-04-09 1986-11-03 Tno METHOD FOR OPERATING AN ABSORPTION HEAT PUMP OR COOLING DEVICE, AND ABSORPTION HEAT PUMP OR COOLING DEVICE
DE3518276C1 (en) * 1985-05-22 1991-06-27 Deutsche Forschungs- und Versuchsanstalt für Luft- und Raumfahrt e.V., 5300 Bonn Process for operating a heat pump system and suitable heat pump system for carrying out this process
DE3619735C1 (en) * 1986-01-24 1987-07-02 Peter Dr-Ing Vinz Process and device for energy-saving automatic compliance with the concentration of evaporating refrigerant mixtures
US4748830A (en) * 1986-02-28 1988-06-07 Hitachi, Ltd. Air-cooled absorption heating and cooling system
US5009086A (en) * 1989-03-30 1991-04-23 Gas Research Institute Passive refrigeration fluids condition
US4926659A (en) * 1989-03-30 1990-05-22 Gas Research Institute Double effect air conditioning system
US4972679A (en) * 1990-02-09 1990-11-27 Columbia Gas Service Corporation Absorption refrigeration and heat pump system with defrost
US5024063A (en) * 1990-05-11 1991-06-18 Erickson Donald C Branched gax absorption vapor compressor
JP2897587B2 (en) * 1993-04-07 1999-05-31 株式会社日立製作所 Absorption refrigerator
KR0132391B1 (en) * 1994-02-25 1998-04-20 김광호 Absorptive refrig
US5584193A (en) * 1994-04-26 1996-12-17 York International Corporation Absorption-type refrigeration systems and methods
US5901567A (en) * 1996-12-18 1999-05-11 Honda Giken Kogyo Kabushiki Kaisha Absorption refrigerating/heating apparatus
JP3393780B2 (en) * 1997-01-10 2003-04-07 本田技研工業株式会社 Absorption air conditioner
DE19813157C2 (en) * 1998-03-19 2000-07-27 Hansa Ventilatoren Masch Ventilation system for bivalent air conditioning of a room
US6170279B1 (en) * 1999-07-28 2001-01-09 Li Ding-Yu Fisherman refrigerating device using engine exhaust
DE10237851A1 (en) * 2002-08-19 2004-03-04 ZAE Bayern Bayerisches Zentrum für angewandte Energieforschung e.V. Single or multi-stage absorption chiller (AKM) or absorption heat pump (AWP) as well as a process for controlling the evaporator output in such an AKP / AWP
CN101101161B (en) * 2007-07-30 2010-05-19 李华玉 Composite second category absorption heat pump
CN101694331A (en) * 2009-08-27 2010-04-14 李华玉 Compound second type absorption heat pump based on single-stage
CN101957093B (en) * 2010-08-13 2013-05-29 李华玉 Absorption-reabsorption-generation system and first-class absorption heat pump
CN103940142B (en) * 2013-04-03 2016-08-17 李华玉 Branch-cycle first-class absorption type heat pump
CN103486757B (en) * 2013-04-03 2016-02-03 李华玉 Branch-cycle first-class absorption type heat pump

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2272871A (en) * 1938-01-10 1942-02-10 Honeywell Regulator Co Absorption heating system
US3638452A (en) * 1969-10-20 1972-02-01 Whirlpool Co Series water-cooling circuit for gas heat pump
US3817050A (en) * 1972-12-26 1974-06-18 Texaco Inc Two-stage ammonia absorption refrigeration system with at least three evaporation stages
DE2743488A1 (en) * 1977-09-28 1979-03-29 Karl Friedrich Prof Dr Knoche METHOD AND DEVICE FOR USE OF SOLAR ENERGY FOR SPACE HEATING
DE2758773C2 (en) * 1977-12-29 1981-12-17 Ask August Schneider Gmbh & Co Kg, 8650 Kulmbach Bivalent heating system
DE2856767A1 (en) * 1978-12-29 1980-07-17 Alefeld Georg Variable-output absorption heat pump - has adjustable heater for ejector and auxiliary cycle with heat exchanger
DE2908423A1 (en) * 1979-03-03 1980-09-11 Alefeld Georg Variable output absorption heat pump - has heat exchanger formed by auxiliary absorber fed from conveyor outlet

Also Published As

Publication number Publication date
EP0096822A3 (en) 1984-07-25
DE3222067A1 (en) 1983-12-15
US4464907A (en) 1984-08-14
DK266383D0 (en) 1983-06-10
DE3366562D1 (en) 1986-11-06
DK158322C (en) 1990-10-01
CA1206766A (en) 1986-07-02
DK158322B (en) 1990-04-30
DK266383A (en) 1983-12-12
EP0096822A2 (en) 1983-12-28
ATE22612T1 (en) 1986-10-15

Similar Documents

Publication Publication Date Title
EP0096822B1 (en) Method of operating a bivalent absorption heat pump, and absorption heat pump for carrying out this method
DE19838880C5 (en) Device for cooling an interior of a motor vehicle
DE3220335C2 (en) Heat pump system with a refrigerant mixture
DE10062174B4 (en) An adsorptive
DE2163139C2 (en) Method for operating a closed refrigeration circuit and device for carrying out the method
DE3332611A1 (en) AIR CONDITIONING AND HOT WATER GENERATION SYSTEM
EP0054792A2 (en) Cooling device for cooling a combustion engine and the charge
CH510237A (en) Procedure for regulating heating systems and heating systems for carrying out the procedure
DE3229779C2 (en)
EP3417213A1 (en) Refrigeration device comprising multiple storage chambers
DE3518276C1 (en) Process for operating a heat pump system and suitable heat pump system for carrying out this process
DE19747316B4 (en) Modular component for a refrigerant circuit, in particular for the air conditioning of the passenger compartment of a motor vehicle
EP1110039B1 (en) Absorption refrigeration machine
EP2108099A1 (en) Method for controlling the power of a sorption refrigeration system and device therefor
DE2856767A1 (en) Variable-output absorption heat pump - has adjustable heater for ejector and auxiliary cycle with heat exchanger
WO2019215240A1 (en) Heating and/or hot water supply system
DE102008005076A1 (en) Refrigerant circuit and method for operating a refrigerant circuit
DE2754132A1 (en) COOLING DEVICE
CH636184A5 (en) METHOD FOR REACTIVATING THE REFRIGERANT VAPOR IN AN ABSORPTION REFRIGERATION SYSTEM.
DE3341853C2 (en) Interior cooling device
DE668922C (en) Continuously working absorption refrigeration machine
DE102013204188A1 (en) Refrigerant circuit
DE3431452A1 (en) Cooling or freezing apparatus used as a heat pump
DE19746773A1 (en) Motor vehicle air-conditioning system
DE4420162B4 (en) Air treatment device for the passenger compartment of a motor vehicle

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT BE CH DE FR LI LU NL

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Designated state(s): AT BE CH DE FR LI LU NL

17P Request for examination filed

Effective date: 19840829

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE FR LI LU NL

REF Corresponds to:

Ref document number: 22612

Country of ref document: AT

Date of ref document: 19861015

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3366562

Country of ref document: DE

Date of ref document: 19861106

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19920629

Year of fee payment: 10

Ref country code: CH

Payment date: 19920629

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19920630

Year of fee payment: 10

Ref country code: LU

Payment date: 19920630

Year of fee payment: 10

Ref country code: AT

Payment date: 19920630

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19920703

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19920717

Year of fee payment: 10

EPTA Lu: last paid annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19930607

Ref country code: AT

Effective date: 19930607

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19930630

Ref country code: CH

Effective date: 19930630

Ref country code: BE

Effective date: 19930630

BERE Be: lapsed

Owner name: DEUTSCHE FORSCHUNGS- UND VERSUCHSANSTALT FUR LUFT

Effective date: 19930630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19940101

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19940228

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19940301

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST