EP0092690A1 - Noyau de moulage pour la coulée d'un bloc-cylindres de moteur - Google Patents
Noyau de moulage pour la coulée d'un bloc-cylindres de moteur Download PDFInfo
- Publication number
- EP0092690A1 EP0092690A1 EP83103190A EP83103190A EP0092690A1 EP 0092690 A1 EP0092690 A1 EP 0092690A1 EP 83103190 A EP83103190 A EP 83103190A EP 83103190 A EP83103190 A EP 83103190A EP 0092690 A1 EP0092690 A1 EP 0092690A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- core
- evaporative pattern
- cylinder block
- cavity
- cylinder
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22C—FOUNDRY MOULDING
- B22C9/00—Moulds or cores; Moulding processes
- B22C9/02—Sand moulds or like moulds for shaped castings
- B22C9/04—Use of lost patterns
- B22C9/046—Use of patterns which are eliminated by the liquid metal in the mould
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22C—FOUNDRY MOULDING
- B22C9/00—Moulds or cores; Moulding processes
- B22C9/10—Cores; Manufacture or installation of cores
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22C—FOUNDRY MOULDING
- B22C9/00—Moulds or cores; Moulding processes
- B22C9/10—Cores; Manufacture or installation of cores
- B22C9/103—Multipart cores
Definitions
- the present invention relates to a molding core to be used for casting an internal combustion engine cylinder block, and a method for making such a core.
- cores When casting a cylinder block, cores are used to form internal openings such as cylinder bores, a crank chamber, water jackets and lubricating oil passages in a cylinder block casting. Cores are made from a core material such as a mixture of silica sand, a binder and other ingredients by using a core box.
- a cylinder block casting must be provided with one or more main bearing portions for supporting a crankshaft.
- Such a main bearing portion has an intricate shape because it includes a housing of a main bearing, ribs and lubricating oil passages. Therefore, if such an intricate main bearing portion is included in a single piece core for forming a crankcase, it is very difficult or impossible to remove such a single piece core from its core box, especially in the case that the single piece core includes an intermediate main bearing portion lying in between outer walls of the crankcase. If, on the other hand, a core piece for forming a main bearing portion is prepared separately from a main core for forming a crankcase, it is difficult and time-consuming to accurately and reliably attach the core piece to the main core.
- a core to be used, in cooperation with a mold, for casting an internal combustion engine cylinder block which has at least one cylinder bore, a crankcase wall for forming a crank chamber and at least one bearing portion for supporting a crankshaft of the engine comprises a main body and at least one evaporative pattern.
- the main body of the core has at least one cylinder portion for forming the cylinder bore of the cylinder block and a crankcase portion for forming the crank chamber.
- the evaporative pattern has the same shape as the bearing portion or one of the bearing portions of the cylinder block.
- the evaporative pattern is made integral with the main body of the core and is made of a material which is capable of dissipating and leaving a cavity having the shape of the evaporative pattern.
- the evaporative pattern is embedded in the main body of the core by the process comprising the steps of fixing the evaporative pattern in a predetermined position within a core box for shaping the core, packing a core material from which the core is made, in a cavity formed by the core box and the evaporative pattern, and hardening the core material.
- the evaporative pattern may have the same shape as the bearing portion which lies in an intermediate position between two ends of the cylinder block spaced along the axial direction of the crankshaft, and the evaporative pattern may be embedded in a corresponding intermediate position in the main body of the core.
- Fig. 1 shows a casting mold for casting a cylinder block of an internal combustion engine.
- the mold consists of an upper part or cope 1 and a bottom part or drag 2. Between the upper part 1 and the bottom part 2, there are fixed a core 5 for a cylinder block and a core 7 for a water jacket.
- the cylinder block core 5 has a cylinder portion 3 for forming an engine cylinder and a crankcase portion 4 for forming a crankcase.
- a molten metal is poured from a sprue 6 into a cavity 8 formed between the mold and the cores.
- a cylinder block casting having the same shape as the cavity 8 is made.
- the cylinder block core 5 is made of aggregate such as silica sand, a binder, an accelerator of hardening and other ingredients.
- a core binder phenolic resin, linseed oil or other appropriate substances are used.
- the cylinder block core 5 is shaped by using a core box made of metal or other materials.
- Fig. 2 shows a conventional design of the cylinder block core 5.
- the cylinder block core 5 has one or more intermediate bearing portions 9.
- a cylinder block casting is formed with an intermediate bearing portion of the crankcase for supporting a crankshaft.
- the intermediate bearing portion of the cylinder block core 5 has uneven surfaces for making a main bearing housing portion, ribs and lubricating oil passages. Therefore, if the core is made in a single piece including the crankcase portion and the intermediate bearing 'portion, the cylinder block core 5 can not be removed from its core box in which the core is shaped, after the core is hardened.
- the cylinder block core is divided into a main body 5a and core pieces 11, as shown in Fig. 2.
- the main body 5a of the cylinder block core 5 has the cylinder portions 3 and the crankcase portion 4.
- the main body 5a is formed with flat walls 10.
- the core pieces 11 have a shape for making the intermediate bearing portion of the cylinder block casting.
- the core pieces 11 are made by a core box or boxes different from the core box for the main body 5a.
- the core pieces 11 are attached to the flat walls 10 of the main body by adhesive.
- the complete cylinder block core 5 as shown in Fig. 2a is produced.
- the main body 5a having the shape shown in Fig.
- Fig. 3 shows a cylinder block core 15 embodying the present invention.
- the cylinder block core 15 has one or more cylinder portion 13 corresponding to the cylinder bore and a crankcase portion 14 corresponding to the crankcase of the cylinder block.
- the cylinder block core 15 further has a evaporative pattern 18 which is disposed in the middle of the crankcase portion 14.
- the evaporative pattern 18 has the same shape as the intermediate bearing portion of the casting to be produced.
- the main body 16 is made of a mixture of aggregate such as silica sand, a binder, an accelerator and other ingredients, as in the ordinary core molding.
- the evaporative pattern 18 is made of polystyrene foam or the like which is capable of dissipating or evaporating when heat is applied.
- the evaporative pattern 18 has the same shape as the intermediate bearing portion having a bearing housing, ribs and lubricating oil passages.
- the evaporative pattern 18 is incorporated in the main body 16 of the cylinder block core.
- the evaporative pattern 18 has projecting portions 19 for holding the evaporative pattern 18 in place in the core box for molding the core.
- Fig. 4 show a core box 20 for molding the complete cylinder block core 15 shown in Fig. 3a.
- the core box 20 comprises right/left metallic pattern 21, 22, front/rear metallic pattern 23, 24 and an upper metallic pattern (not shown).
- the core box 20 made up of the metallic pattern 21 to 24 has a cavity 25 having a shape corresponding to the shape of the cylinder block core 15 including one or more cylinder portions 13, the crankcase portion 14 integral with the cylinder portions and the evaporative pattern 18.
- Each of the right/left metallic pattern 21 and 22 is formed with a recess portion 26 to be engaged with the projecting portion 19 of the evaporative pattern 18.
- the unshown upper metallic pattern is provided with an opening through which aggregate such as silica sand, a binder and other ingredients are blown into the cavity 25.
- the core box 20 is assembled by first putting the right/left metallic pattern 21, 22 together and then attaching the front/rear metallic pattern 23, 24 to the right/left metallic pattern 21, 22.
- the cavity 25 having the shape corresponding to the cylinder block core 15 including the one or more cylinder portion 13, the crankcase portion 14 integral with the cylinder portions 13 and the evaporative pattern 18.
- the evaporative pattern 18, which is made by forming a foam material such as polystyrene foam into the required shape, is disposed in a predetermined position.
- the evaporative pattern 18 is accurately positioned by engaging the projections 19 of the evaporative pattern 18 with the recesses 26 of the core box 20 and by compressing the projections 19 with the unshown upper metallic pattern. It is optional to use the movable fixing devices 27 for fixing the evaporative pattern 18 to the mettalic pattern 21, 22. In this case, the movable fixing devices 27 are inserted into the evaporative pattern 18 in the sequence of Figs. 5a, 5b and 5c, before or after the upper metallic pattern is attached.
- the core materials for making the main body 16 of the core are blown by air through the opening formed in the upper metallic pattern, into the cavity 25 formed by the core box 20 and the evaporative pattern 18.
- the core materials are then hardened and become integral with the evaporative pattern 18.
- the core box 20 is disassembled and the hardened cylinder block core 15 is removed.
- the core materials may be rammed into the cavity 25 by hand rather than by the air blowing method.
- the projecting portion 19 may be made in the form of a belt-like long narrow strip extending over the full circumferential length, and at the same time, the recess portion of the core box may be made in the form of a long groove having the corresponding size and shape.
- the evaporative pattern can be positioned more accurately, and can be firmly held in position without being shifted during charging of the core materials.
- the thus fabricated core 15 is removed by detaching the metallic pattern 21-24 and the unshown upper pattern, and is set in a predetermined position between the upper part 1 and the lower part 2 of the master mold shown in Fig. 1. Then, a molten metal is poured from the sprue 6. The poured molten metal fills the cavity 8 and dissolves the evaporative pattern 18. Thus, the evaporative pattern 18 disappears and the space of the evaporative pattern 18 is also filled with the molten metal, so that the produced casting has the intermediate bearing portion having the same shape as the evaporative pattern. A finer surface of the cylinder block casting can be obtained by applying a wash to the evaporative pattern 18.
- the core can be made by hardening oil sand by applying heat.
- the carbon dioxide process or the cold box process is preferable because they make it possible to harden the core at nonelevated temperatures.
- the cold box process utilizes polyisocyanate resin and phenolic resin as a binder and amine gas such as triethylamine or dimethylamine as a curing catalyst.
- the evaporative pattern 18 may be dissipated by the heat of a molten metal during pouring, or by heating or burning before a molten metal is poured.
- the present invention is available not only for a two cylinder engine but also for a one cylinder engine, a four cylinder engine and so on.
- the present invention provides a single piece core including main body for forming a cylinder bore and a crankcase, and the evaporative pattern for forming a main bearing portion. Accordingly, the present invention can prevent production of flashes which would be produced when an assembled core is used.
- the present invention can improve the accuracy of a produced casting, especially in the main bearing portion.
- the present invention can reduce the finishing or machining allowance of a cylinder block casting, and serve to reduce the weight of an internal combustion engine.
- the present invention there is no need of production step to attach a separate piece to a main core body by adhesive, as required in the conventional method, so that the present invention can reduce remarkably the man-hour required for making a cylinder block core.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Molds, Cores, And Manufacturing Methods Thereof (AREA)
- Cylinder Crankcases Of Internal Combustion Engines (AREA)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6638582A JPS58184040A (ja) | 1982-04-22 | 1982-04-22 | 内燃機関のシリンダブロツク用中子及びその造型方法 |
JP66385/82 | 1982-04-22 |
Publications (1)
Publication Number | Publication Date |
---|---|
EP0092690A1 true EP0092690A1 (fr) | 1983-11-02 |
Family
ID=13314300
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP83103190A Withdrawn EP0092690A1 (fr) | 1982-04-22 | 1983-03-30 | Noyau de moulage pour la coulée d'un bloc-cylindres de moteur |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP0092690A1 (fr) |
JP (1) | JPS58184040A (fr) |
AU (1) | AU1362983A (fr) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0227308A2 (fr) * | 1985-12-06 | 1987-07-01 | Ford Motor Company Limited | Procédé pour joindre des parties de modèles en mousse afin de former un assemblage pour utilisation dans un procédé évaporatif |
EP0280675A2 (fr) * | 1987-02-25 | 1988-08-31 | AVL Gesellschaft für Verbrennungskraftmaschinen und Messtechnik mbH.Prof.Dr.Dr.h.c. Hans List | Moule pour une boîte de moteur |
FR2672003A1 (fr) * | 1991-01-30 | 1992-07-31 | Snecma | Procede de realisation de noyaux complexes en ceramique pour fonderie. |
US5253615A (en) * | 1992-12-24 | 1993-10-19 | Ford Motor Company | Cylinder block cylinder bore isolator |
EP0924008A1 (fr) * | 1997-12-22 | 1999-06-23 | Ford Global Technologies, Inc. | Production rapide d' articles de forme complexe par moulage de précision à la cire perdue |
FR2819206A1 (fr) * | 2001-01-10 | 2002-07-12 | Peugeot Citroen Automobiles Sa | Procede de moulage a element de moule utilisant un modele tridimensionnel, element de moule mis en oeuvre lors de ce procede, et piece obtenue par ce procede |
WO2004035245A1 (fr) * | 2002-10-04 | 2004-04-29 | Meccanica Bassi S.P.A. | Procede de coulage, en particulier pour culasse de moteur |
US7093341B2 (en) * | 2001-11-28 | 2006-08-22 | Caterpillar Inc. | Method of making an axial piston pump barrel with a cast high pressure collection cavity |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60121038A (ja) * | 1983-12-02 | 1985-06-28 | Mazda Motor Corp | 鋳型の組立方法 |
JPS61144237A (ja) * | 1984-12-17 | 1986-07-01 | Mitsubishi Motors Corp | 消失性原型を使用する鋳造法 |
US4657063A (en) * | 1985-05-17 | 1987-04-14 | Outboard Marin Corporation | Foam pattern for casting an air cooled cylinder head |
US4757857A (en) * | 1985-12-18 | 1988-07-19 | Fritz Winter Eisengiesserei O.H.G. | Mold for casting cylinder blocks of combustion engines |
JPH01122633A (ja) * | 1987-11-06 | 1989-05-15 | Daikin Ind Ltd | シリンダブロックの製造方法 |
JP4557659B2 (ja) * | 2004-09-30 | 2010-10-06 | 株式会社新エィシーイー | 可変スワール吸気装置付きシリンダヘッド鋳造用中子 |
US8555950B2 (en) * | 2011-10-25 | 2013-10-15 | Ford Global Technologies, Llc | Organic-like casting process for water jackets |
CN105081212B (zh) * | 2015-09-22 | 2017-06-23 | 南车戚墅堰机车有限公司 | 一种制作车钩钩体中间芯的模具系统 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AT262524B (de) * | 1965-02-13 | 1968-06-10 | Gruenzweig & Hartmann | Verfahren zur Herstellung von Gußstücken und verlorenes Modell zu dessen Durchführung |
DE2746233A1 (de) * | 1976-10-19 | 1978-04-20 | Deere & Co | Aus mehreren teilen bestehender verlorener kern fuer metallgiessformen und verfahren zu seiner herstellung |
DE3018782A1 (de) * | 1979-06-04 | 1980-12-18 | Deere & Co | Verfahren zum herstellen eines verlorenen, aus mehreren teilen bestehenden kernes fuer metallgiessformen |
-
1982
- 1982-04-22 JP JP6638582A patent/JPS58184040A/ja active Pending
-
1983
- 1983-03-30 EP EP83103190A patent/EP0092690A1/fr not_active Withdrawn
- 1983-04-18 AU AU13629/83A patent/AU1362983A/en not_active Abandoned
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AT262524B (de) * | 1965-02-13 | 1968-06-10 | Gruenzweig & Hartmann | Verfahren zur Herstellung von Gußstücken und verlorenes Modell zu dessen Durchführung |
DE2746233A1 (de) * | 1976-10-19 | 1978-04-20 | Deere & Co | Aus mehreren teilen bestehender verlorener kern fuer metallgiessformen und verfahren zu seiner herstellung |
DE3018782A1 (de) * | 1979-06-04 | 1980-12-18 | Deere & Co | Verfahren zum herstellen eines verlorenen, aus mehreren teilen bestehenden kernes fuer metallgiessformen |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0227308A2 (fr) * | 1985-12-06 | 1987-07-01 | Ford Motor Company Limited | Procédé pour joindre des parties de modèles en mousse afin de former un assemblage pour utilisation dans un procédé évaporatif |
EP0227308A3 (en) * | 1985-12-06 | 1987-10-07 | Ford Motor Company Limited | Method of joining foam pattern members to form an assembly for use in an evaporative casting process |
EP0280675A2 (fr) * | 1987-02-25 | 1988-08-31 | AVL Gesellschaft für Verbrennungskraftmaschinen und Messtechnik mbH.Prof.Dr.Dr.h.c. Hans List | Moule pour une boîte de moteur |
EP0280675A3 (en) * | 1987-02-25 | 1989-02-22 | Avl Gesellschaft Fur Verbrennungskraftmaschinen Und Messtechnik Mbh.Prof.Dr.Dr.H.C. Hans List | Mould for a crankcase |
FR2672003A1 (fr) * | 1991-01-30 | 1992-07-31 | Snecma | Procede de realisation de noyaux complexes en ceramique pour fonderie. |
EP0497682A1 (fr) * | 1991-01-30 | 1992-08-05 | Societe Nationale D'etude Et De Construction De Moteurs D'aviation "Snecma" | Procédé de réalisation de noyaux complexes en céramique pour fonderie |
US5253615A (en) * | 1992-12-24 | 1993-10-19 | Ford Motor Company | Cylinder block cylinder bore isolator |
EP0924008A1 (fr) * | 1997-12-22 | 1999-06-23 | Ford Global Technologies, Inc. | Production rapide d' articles de forme complexe par moulage de précision à la cire perdue |
FR2819206A1 (fr) * | 2001-01-10 | 2002-07-12 | Peugeot Citroen Automobiles Sa | Procede de moulage a element de moule utilisant un modele tridimensionnel, element de moule mis en oeuvre lors de ce procede, et piece obtenue par ce procede |
US7093341B2 (en) * | 2001-11-28 | 2006-08-22 | Caterpillar Inc. | Method of making an axial piston pump barrel with a cast high pressure collection cavity |
WO2004035245A1 (fr) * | 2002-10-04 | 2004-04-29 | Meccanica Bassi S.P.A. | Procede de coulage, en particulier pour culasse de moteur |
Also Published As
Publication number | Publication date |
---|---|
AU1362983A (en) | 1983-11-17 |
JPS58184040A (ja) | 1983-10-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0092690A1 (fr) | Noyau de moulage pour la coulée d'un bloc-cylindres de moteur | |
US5771955A (en) | Core assembly manufacturing apparatus of casting engine blocks and method for making the assembly | |
US7278460B2 (en) | Ceramic casting core and method | |
US7383874B2 (en) | Foundry mold assembly device and method | |
US6347660B1 (en) | Multipiece core assembly for cast airfoil | |
US4093018A (en) | Casting methods with composite molded core assembly | |
US5479981A (en) | Method for casting a hollow camshaft for internal combustion engine | |
CA1269818A (fr) | Methode de mise en forme de pieces coulees a garnitures rapportees | |
EP0436678B1 (fr) | Mandrin de maintien d'un noyau dilatable dans un moule de fonderie | |
US3374827A (en) | Method of using vaporizable core assembly spacers | |
US5050665A (en) | Investment cast airfoil core/shell lock and method of casting | |
USRE31488E (en) | Casting methods with composite molded core assembly | |
US4938802A (en) | Reusable ceramic mold | |
US5904203A (en) | Chill plate and stacked mold | |
US2820267A (en) | Cylinder head coring | |
US4736786A (en) | Method for improving stength of gasifiable patterns | |
US5092390A (en) | Method and mold for sand casting varying thickness articles | |
US6889742B1 (en) | Full mold casting process and device for a differential case with cast-in bolt holes | |
US6715536B1 (en) | Full mold casting process and device for a differential case | |
US2832112A (en) | Shell mold casting and method | |
US2887745A (en) | Casting mold and method and apparatus for making the same | |
SU1507520A1 (ru) | Способ изготовлени сталеразливочных изложниц | |
JPH07195167A (ja) | カムシャフト及びその製造方法 | |
JPS6242701B2 (fr) | ||
US1704384A (en) | Casting magnesium and alloy thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 19830330 |
|
AK | Designated contracting states |
Designated state(s): DE FR GB IT |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: NISSAN MOTOR CO., LTD. |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 19851112 |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: UETA, KIMIOC/O YOKOHAMA PLANT Inventor name: SAKAMOTO, TETSUOC/O YOKOHAMA PLANT |