EP0090187A2 - Screwing device - Google Patents

Screwing device Download PDF

Info

Publication number
EP0090187A2
EP0090187A2 EP83101975A EP83101975A EP0090187A2 EP 0090187 A2 EP0090187 A2 EP 0090187A2 EP 83101975 A EP83101975 A EP 83101975A EP 83101975 A EP83101975 A EP 83101975A EP 0090187 A2 EP0090187 A2 EP 0090187A2
Authority
EP
European Patent Office
Prior art keywords
output shaft
screwing device
drive shaft
segment
angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP83101975A
Other languages
German (de)
French (fr)
Other versions
EP0090187A3 (en
Inventor
Friedrich Dipl.-Ing. Hornung
Wolfgang Ing. Grad. Jundt
Fritz Dipl.-Ing. Schädlich
Hans-Joachim Vogt
Steffen Ing. grad. Wünsch
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP0090187A2 publication Critical patent/EP0090187A2/en
Publication of EP0090187A3 publication Critical patent/EP0090187A3/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25BTOOLS OR BENCH DEVICES NOT OTHERWISE PROVIDED FOR, FOR FASTENING, CONNECTING, DISENGAGING OR HOLDING
    • B25B23/00Details of, or accessories for, spanners, wrenches, screwdrivers
    • B25B23/14Arrangement of torque limiters or torque indicators in wrenches or screwdrivers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25BTOOLS OR BENCH DEVICES NOT OTHERWISE PROVIDED FOR, FOR FASTENING, CONNECTING, DISENGAGING OR HOLDING
    • B25B21/00Portable power-driven screw or nut setting or loosening tools; Attachments for drilling apparatus serving the same purpose
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25BTOOLS OR BENCH DEVICES NOT OTHERWISE PROVIDED FOR, FOR FASTENING, CONNECTING, DISENGAGING OR HOLDING
    • B25B21/00Portable power-driven screw or nut setting or loosening tools; Attachments for drilling apparatus serving the same purpose
    • B25B21/007Attachments for drilling apparatus for screw or nut setting or loosening
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25BTOOLS OR BENCH DEVICES NOT OTHERWISE PROVIDED FOR, FOR FASTENING, CONNECTING, DISENGAGING OR HOLDING
    • B25B23/00Details of, or accessories for, spanners, wrenches, screwdrivers
    • B25B23/14Arrangement of torque limiters or torque indicators in wrenches or screwdrivers
    • B25B23/147Arrangement of torque limiters or torque indicators in wrenches or screwdrivers specially adapted for electrically operated wrenches or screwdrivers

Definitions

  • the invention relates to a screw device according to the preamble of the main claim.
  • a screw device is already known with which screw connections can be produced.
  • the known screwing device has a torque measuring device and a clutch, by means of which the driving speed of the screwdriver is reduced shortly before tightening.
  • electrical or pneumatic drive devices are known which screw in the screw at a high speed in order to tighten the screw shortly before the final strength is reached at a slow speed.
  • the known screwing devices have the disadvantage that the speed is reduced shortly before completion of the screwing process by means of a gearbox or by changing the supply frequency in AC motors, since otherwise the screw connection is over-tightened is possible because the shutdown process takes a certain amount of time. Because of the switching devices required, the known screwing devices are expensive, and it also takes a relatively long time for the screwing process to be completed.
  • the screwing device according to the invention with the characterizing features of the main claim has the advantage that the screwing process can be carried out without changing the speed. A two-step tightening at high speeds and with reduced SPEED 'ahl can thus be avoided. This significantly reduces the effort required for gearboxes and clutches. Another advantage is that the weight of the screwdriver is reduced so that it is easier to handle.
  • the segment sleeve advantageously serves on one side as a segment ring for an encoder. This achieves a cost-saving construction of the screwing device that requires few parts. It is also favorable to arrange the sensors spatially adjacent, which leads to a particularly simple construction.
  • FIG. 1 shows an embodiment of a screwing device
  • FIG. 2 shows another embodiment with a screwing device with adjacently arranged sensors.
  • FIG. 1 shows a drive shaft 2 and an output shaft 3 in a housing 1.
  • a transmission (not shown) with a motor is connected to the drive shaft 2, which can be designed, for example, as an electric motor or compressed air motor.
  • the tool is attachable to the output shaft 3.
  • the drive shaft 2 and the output shaft 3 are connected to one another via a spring 4.
  • the spring 4 engages in a groove 5 of the output shaft 3 and in a groove 6 of the drive shaft 2.
  • the grooves 5 and 6 are chamfered in the direction of rotation so that the spring can be removed from the groove in the event of an overload.
  • the groove 5 is in the output shaft 3, the groove 6 are embedded in a thickening 23 of the drive shaft 2.
  • the spring 4 is surrounded by a segment sleeve 7 which is fastened to the output shaft 3.
  • a guide sleeve 8 is also provided between the spring 4 and the drive shaft 2 or the output shaft 3 in order to increase the stability of the screwing device and to prevent axial pressure on the spring 4.
  • the segment sleeve 7 is formed at its upper end 12 as a segment ring, the segment ring 12 having two or even multiple millings that are evenly distributed over the circumference.
  • the segment ring 12 rotates with the output shaft 3.
  • a coil body 9 with a coil 10, which surround the drive shaft 2 in a ring, is also fixedly attached to the housing.
  • Another segment ring 11 is fixedly connected to the drive shaft 2.
  • the segment ring 11 also has two or even multiple millings that are uniform over the circumference of the segment ring 11 are distributed.
  • the connections of the coil 10 are guided to a plug connection 13, to the connection of which a torque measuring device 14 can be connected.
  • the spring offers the possibility of obtaining a measurement signal for the torque in a simple manner. Since the angle of rotation of the spring 4 is proportional to the torque to be transmitted in each case, the torque can be easily determined if the angle of rotation is known. This is determined by the torque sensor.
  • the torque transmitter essentially consists of the coil 10 on the coil body 9, and the two segment rings 11 and 12, which are arranged coaxially with one another, the coil 10 being fixedly mounted on the housing and the two segment rings 11 and 12 being rotatable relative to one another.
  • the segment rings 11 and 12 are preferably made of aluminum.
  • the torque signal is generated by changes in the impedance of the coil. The impedance change of the coil takes place by rotating the two segment rings 11 and 12 relative to one another. This makes it possible to obtain a torque signal in a simple manner.
  • the output shaft 3 is preferably mounted in an annular groove bearing 15. If an angle measurement is desired, a further encoder is to be attached to the output shaft 3, which is essentially similar to the torque transmitter.
  • a coil 18, which surrounds the output shaft in a ring, is attached to a coil body 17 which is fixedly connected to the housing.
  • a segment ring 20 is firmly connected to the coil former.
  • the segment ring 20 has irei recesses that are evenly distributed over its circumference.
  • Another segment ring 19 is fixedly connected to the output shaft.
  • the segment ring 19 also has three recesses which are evenly distributed over the circumference.
  • Another bearing 16 causes the segment rings 19 and 20 to be securely supported relative to one another.
  • An angle signal can be tapped at a connection socket 21. This is evaluated in an evaluation circuit 22.
  • the signal size is also generated in the angular encoder by changes in the impedance of the coil 18.
  • the change in impedance again takes place by turning the segment rings 19 and 20, which are preferably designed as aluminum cylinders. Since the segment ring 20 is fixed, an angle-proportional signal results.
  • the angle encoder delivers. a triangular voltage, for example, as an electrical signal voltage, three periods occurring during one revolution of the output shaft 3.
  • the torque measurement can also take place in that both encoders are designed as protractors. This means, for example, that the segment ring 11 is firmly connected to the coil former 9. The difference between the output signals of the two angle sensors is then to be regarded as the torque. Although this arrangement brings certain mechanical simplifications, the evaluation is more difficult because the measuring inaccuracies increase with increasing angle.
  • the spring 4 which is designed for the maximum torque to be transmitted with regard to its angle of rotation, has the task of temporally stretching the screwing process, particularly in the case of "hard” screwing cases. Hard screwdriving are given, for example, when two metallic unyielding bodies are joined together.
  • the spring action turns every "hard” screwing case into a “soft” screwing case, so that there is sufficient time for the engine to be switched off. As soon as a predetermined rotation and thus a certain torque is reached, the motor on the drive shaft 2 is switched off. Since this deactivation does not take place immediately due to the inertia of the moving masses and the switching delays, the delay is absorbed by a further rotation of the spring 4.
  • the signal of the angle encoder with the coil 18 is mainly used for checking in order to identify faulty screws which, for example, have already reached the yield point when the prescribed torque is reached.
  • FIG. 1 A further screwing device is shown in FIG.
  • the drive shaft, to which a motor (not shown) is connected, is again identified by 2.
  • One end of the spring 4 is in turn mounted in a groove of the drive shaft 2.
  • the other end of the spring 4 is mounted in the groove 5 of the thickening 23.
  • the thickening 23 is the thickening of the output shaft 3.
  • a guide sleeve is not provided, but the drive shaft 3 is formed at the end as a blind hole into which the pin of the drive shaft 2 projects.
  • the segment sleeve 7 is now non-positively connected to the drive shaft 2.
  • the coil 33 on the one hand and the coil 44, on the other hand, which enclose the output shaft 3, are applied.
  • the segment rings 30 and 31 belong to the coil 33.
  • the segment ring 31 is the upper end of the segment sleeve T, which in turn has two or even multiple recesses on its circumference.
  • the segment sleeve 30 is in turn connected to the output shaft 3.
  • Two connecting wires lead from the part of the coil holder 34 designed as a coil former 32 to a connection 42, where a signal proportional to the torque is output to the torque measuring device 14.
  • part of the coil holder 34 is designed as a coil former 43, on which a coil 44 is arranged axially to the output shaft 3.
  • the connections of the coils 44 in turn lead to the connection 42.
  • the coil 44 is assigned the segment rings 38 and 37, the segment ring 37 being firmly connected to the coil holder 34.
  • the segment ring 38 is rotatable and connected to the output shaft 3.
  • the entire encoder arrangement is supported on bearings 35 and 36.
  • the segmented ring 38 which is designed to be movable and fastened to the output shaft 3, is pressed against the transmitter system by means of a plate spring 39.
  • An annular groove bearing 40 guided in a sleeve 41, serves to mount the output shaft 3.
  • the housing is closed off on the output side by a threaded ring 45.
  • the exemplary embodiment shown in FIG. 2 fulfills the same function as the exemplary embodiment according to FIG. 1.
  • Changes in impedance of the coil 33, its segment ring 31 by the drive shaft 2 and its segment ring 30 is moved by the output shaft 3 serve to indicate the torque.
  • the coil 44 and the segment rings 37 and 38. the angle can be measured by changing the impedance.
  • the assembly of this device is simple since the sensors are arranged on a common holder 34 and can therefore be used together. With this arrangement, the connections can be led out at one point of the housing. It is also possible to preassemble the entire transmitter device before installing it in the housing 1.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Details Of Spanners, Wrenches, And Screw Drivers And Accessories (AREA)

Abstract

Es wird eine Vorrichtung zur Durchführung von Schraubverbindungen vorgeschlagen, wobei die Antriebswelle und die Abtriebsspindel über eine Torsionsfeder miteinandern verbunden sind. Dadurch wird erreicht, speziell harte Schraubfälle zeitlich zu strecken, so daß Zeit für das Abschalten der Antriebsvorrichtung bleibt. Gleichzeitig sind Gebereinrichtungen vorgesehen, mit denen das Drehmoment und der Drehwinkel erfaßbar sind.A device for carrying out screw connections is proposed, the drive shaft and the output spindle being connected to one another via a torsion spring. This ensures that particularly hard screwing is stretched over time, so that there is time for the drive device to be switched off. At the same time, encoder devices are provided with which the torque and the angle of rotation can be detected.

Description

Stand der TechnikState of the art

Die Erfindung geht aus von einer Schraubvorrichtung nach der Gattung des Hauptanspruchs. Beispielsweise aus der DE-OS 27 31 090 ist bereits eine Schraubvorrichtung bekannt, mit der Schraubverbindungen herstellbar sind. Die bekannte Schraubvorrichtung weist eine Drehmomentmeßeinrichtung auf und eine Kupplung, durch die die Antriebsgeschwindigkeit des Schraubers kurz vor dem Festziehen herabgesetzt wird. Weiterhin sind elektrische oder pneumatische Antriebsgeräte bekannt, die mit einer hohen Drehzahl die Schraube eindrehen, um kurz vor Erreichen der Endfestigkeit mit langsamer Drehzahl die Schraube festziehen. Die bekannten Schraubvorrichtungen haben den Nachteil, daß mittels eines Getriebes oder durch Änderungen der Speisefrequenz bei Wechselstrommotoren die Drehzahl kurz vor Beendigung des Schraubvorganges herabgesetzt wird, da ansonsten ein Überdrehen der Schraubverbindung möglich ist, da der Abschaltvorgang eine gewisse Zeit in Anspruch nimmt. Durch die benötigten Umschaltvorrichtungen sind die bekannten Schraubvorrichtungen teuer, außerdem vergeht eine relativ lange Zeit, bis der Schraubvorgang beendet ist.The invention relates to a screw device according to the preamble of the main claim. For example, from DE-OS 27 31 090 a screw device is already known with which screw connections can be produced. The known screwing device has a torque measuring device and a clutch, by means of which the driving speed of the screwdriver is reduced shortly before tightening. Furthermore, electrical or pneumatic drive devices are known which screw in the screw at a high speed in order to tighten the screw shortly before the final strength is reached at a slow speed. The known screwing devices have the disadvantage that the speed is reduced shortly before completion of the screwing process by means of a gearbox or by changing the supply frequency in AC motors, since otherwise the screw connection is over-tightened is possible because the shutdown process takes a certain amount of time. Because of the switching devices required, the known screwing devices are expensive, and it also takes a relatively long time for the screwing process to be completed.

Vorteile der ErfindungAdvantages of the invention

Die erfindungsgemäße Schraubvorrichtung mit den kennzeichnenden Merkmalen des Hauptanspruchs hat demgegenüber den Vorteil, daß ohne Geschwindigkeitsumschaltung der Verschraubungsvorgang durchgeführt werden kann. Ein zweistufiges Anziehen mit höherer Drehzahl und mit verminderter Drehz'ahl kann somit umgangen werden. Damit reduziert sich der Aufwand an Getriebe und Schaltkupplungen erheblich. Als weiterer Vorteil ist anzusehen, daß das Gewicht des Schraubers verringert wird, so daß er leichter handhabbar ist.The screwing device according to the invention with the characterizing features of the main claim has the advantage that the screwing process can be carried out without changing the speed. A two-step tightening at high speeds and with reduced SPEED 'ahl can thus be avoided. This significantly reduces the effort required for gearboxes and clutches. Another advantage is that the weight of the screwdriver is reduced so that it is easier to handle.

Durch die in den Unteransprüchen aufgeführten Maßnahmen sind vorteilhafte Weiterbildungen und Verbesserungen der im Hauptanspruch gegebenen Schraubvorrichtung möglich. Besonders vorteilhaft ist es, die Feder in Kupplungsnuten der Antriebswelle und der Abtriebswelle eingreifen zu lassen. Dadurch wird erreicht, daß eine gute kraftschlüssige Verbindung zwischen Antriebswellle und Abtriebswelle gegeben ist. Sind die Kupplungsnuten in Drehrichtung angeschrägt, ergibt sich der Vorteil, daß bei einer Überlast ein Ausrasten der Feder aus der Nut möglich ist.Advantageous further developments and improvements of the screwing device given in the main claim are possible through the measures listed in the subclaims. It is particularly advantageous to have the spring engage in the coupling grooves of the drive shaft and the output shaft. This ensures that there is a good non-positive connection between the drive shaft and the output shaft. If the coupling grooves are chamfered in the direction of rotation, there is the advantage that the spring can be disengaged from the groove in the event of an overload.

Günstig ist es auch, an der Abtriebswelle und/oder an der Antriebswelle Geber anzuordnen, mit denen der Drehwinkel zu messen ist. Zur Messung eines Drehmomentwinkels ist günstig, den Verdrehwinkel der Feder zu bestimmen, in dem ein Segment des Gebers auf der Antriebswelle und ein weiteres Segment des Gebers auf der Abtriebswelle angebracht ist. Günstig ist es auch, den gesamten Drehwinkel zu bestimmen, in dem ein Geber auf der Antriebswelle und/oder ein Geber auf der Abtriebswelle befestigt ist. Mit einem Geber kann nun der Gesamtdrehwinkel bestimmt werden, während durch Differenzbildung beider Gebersignale, das der Federverdrehung proportionale Drehmoment bestimmbar ist. Die Feder ist vorteilhafterweise durch eine Segmenthülse geschützt, so daß eine Verschmutzung der Vorrichtung nicht auftreten kann. Die Segmenthülse dient vorteilhafterweise einseitig als Segmentring für einen Geber. Dadurch wird ein kostensparender und wenige Teile benötigender Aufbau der Schraubvorrichtung erzielt. Günstig ist es auch, die Geber räumlich benachbart anzuordnen, was zu einer besonders einfachen Konstruktion führt.It is also favorable to arrange sensors on the output shaft and / or on the drive shaft with which the angle of rotation can be measured. To measure a torque angle, it is advantageous to determine the angle of rotation of the spring, in which a segment of the encoder is attached to the drive shaft and another segment of the encoder is attached to the output shaft. It is also expedient to determine the entire angle of rotation in which an encoder is fastened on the drive shaft and / or an encoder on the output shaft. The total angle of rotation can now be determined with one encoder, while the torque proportional to the spring rotation can be determined by forming the difference between the two encoder signals. The spring is advantageously protected by a segment sleeve so that contamination of the device cannot occur. The segment sleeve advantageously serves on one side as a segment ring for an encoder. This achieves a cost-saving construction of the screwing device that requires few parts. It is also favorable to arrange the sensors spatially adjacent, which leads to a particularly simple construction.

Zeichnungdrawing

Zwei Ausführungsbeispiele der Erfindung sind in der Zeichnung dargestellt und in der nachfolgenden Beschreibung näher erläutert. Es zeigen Figur 1 ein Ausführungsbeispiel einer Schraubvorrichtung und Figur 2 ein weiteres Ausführungsbeispiel mit einer Schraubvorrichtung mit benachbart angeordneten Gebern.Two embodiments of the invention are shown in the drawing and explained in more detail in the following description. FIG. 1 shows an embodiment of a screwing device and FIG. 2 shows another embodiment with a screwing device with adjacently arranged sensors.

Beschreibung der AusführungsbeispieleDescription of the embodiments

Die Figur 1 zeigt in einem Gehäuse 1 eine Antriebswelle 2 und eine Abtriebswelle 3. An die Antriebswelle 2 ist ein nicht dargestelltes Getriebe mit einem Motor angeschlossen, der beispielsweise als Elektromotor oder Druckluftmotor ausgebildet sein kann. An die Abtriebswelle 3 ist das Werkzeug aufsteckbar anzubringen. Die Antriebswelle 2 und die Abtriebswelle 3 sind über eine Feder 4 miteinander verbunden. Die Feder 4 greift in eine Nut 5 der Abtriebswelle 3 und in eine Nut 6 der Antriebswelle 2 ein. Die Nuten 5 und 6 sind in Drehrichtung angeschrägt, so daß die Feder im Überlastfall aus der Nut ausdrehbar ist. Die Nut 5 ist in der Abtriebswelle 3, die Nut 6 sind in einer Verdickung 23 der Antriebswelle 2 eingelassen. Die Feder 4 ist von einer Segmenthülse 7 umgeben, die an der Abtriebswelle 3 befestigt ist. Zwischen der Feder 4 und der Antriebswelle 2 bzw. der Abtriebswelle 3 ist des weiteren eine Führungshülse 8 vorgesehen, um die Stabilität der Schraubvorrichtung zu erhöhen und um einen axialen Druck auf die Feder 4 zu verhindern. Die Segmenthülse 7 ist an ihrem oberen Ende 12 als Segmentring ausgebildet, wobei der Segmentring 12 zwei oder geradzahlig vielfache Ausfräsungen aufweist, die über den Umfang gleichmäßig verteilt sind. Der Segmentring 12 dreht sich mit der Abtriebswelle 3. Ortsfest am Gehäuse angebracht ist des weiteren ein Spulenkörper 9, mit einer Spule 10, die die Antriebswelle 2 ringförmig umschließen. Ein weiterer Segmentring 11 ist mit der Antriebswelle 2 fest verbunden. Der Segmentring 11 weist ebenfalls zwei oder geradzahlig vielfache Ausfräsungen auf, die gleichmäßig über dem Umfang des Segmentrings 11 verteilt sind. Die Anschlüsse der Spule 10 sind zu einer Steckverbindung 13 geführt, an dessen Anschluß eine Drehmomentmeßvorrichtung 14 anschließbar ist.FIG. 1 shows a drive shaft 2 and an output shaft 3 in a housing 1. A transmission (not shown) with a motor is connected to the drive shaft 2, which can be designed, for example, as an electric motor or compressed air motor. The tool is attachable to the output shaft 3. The drive shaft 2 and the output shaft 3 are connected to one another via a spring 4. The spring 4 engages in a groove 5 of the output shaft 3 and in a groove 6 of the drive shaft 2. The grooves 5 and 6 are chamfered in the direction of rotation so that the spring can be removed from the groove in the event of an overload. The groove 5 is in the output shaft 3, the groove 6 are embedded in a thickening 23 of the drive shaft 2. The spring 4 is surrounded by a segment sleeve 7 which is fastened to the output shaft 3. A guide sleeve 8 is also provided between the spring 4 and the drive shaft 2 or the output shaft 3 in order to increase the stability of the screwing device and to prevent axial pressure on the spring 4. The segment sleeve 7 is formed at its upper end 12 as a segment ring, the segment ring 12 having two or even multiple millings that are evenly distributed over the circumference. The segment ring 12 rotates with the output shaft 3. A coil body 9 with a coil 10, which surround the drive shaft 2 in a ring, is also fixedly attached to the housing. Another segment ring 11 is fixedly connected to the drive shaft 2. The segment ring 11 also has two or even multiple millings that are uniform over the circumference of the segment ring 11 are distributed. The connections of the coil 10 are guided to a plug connection 13, to the connection of which a torque measuring device 14 can be connected.

Die Feder bietet die Möglichkeit, auf einfache Art und Weise ein Meßsignal für das Drehmoment zu erhalten. Da der Verdrehwinkel der Feder 4 proportional dem jeweils zu übertragenden Drehmoment ist, läßt sich das Drehmoment leicht bestimmen, wenn der Verdrehwinkel bekannt ist. Dieser wird durch den Drehmomentgeber bestimmt. Der Drehmomentgeber besteht im wesentlichen aus der Spule 10 auf dem Spulenkörper 9, sowie den beiden Segmentringen 11 und 12, die zueinander koaxial angeordnet sind, wobei die Spule 10 feststehend am Gehäuse gelagert ist und die beiden Segmentringe 11 und 12 zueinander drehbar sind. Die Segmentringe 11 und 12 bestehen vorzugsweise aus Aluminium. Das Drehmomentsignal wird durch Impedanzänderungen der Spule generiert. Die Impedanzänderung der Spule erfolgt durch das Verdrehen der beiden Segmentringe 11 und 12 zueinander. Dadurch ist es auf einfache Art und Weise möglich, ein Drehmomentsignal zu gewinnen.The spring offers the possibility of obtaining a measurement signal for the torque in a simple manner. Since the angle of rotation of the spring 4 is proportional to the torque to be transmitted in each case, the torque can be easily determined if the angle of rotation is known. This is determined by the torque sensor. The torque transmitter essentially consists of the coil 10 on the coil body 9, and the two segment rings 11 and 12, which are arranged coaxially with one another, the coil 10 being fixedly mounted on the housing and the two segment rings 11 and 12 being rotatable relative to one another. The segment rings 11 and 12 are preferably made of aluminum. The torque signal is generated by changes in the impedance of the coil. The impedance change of the coil takes place by rotating the two segment rings 11 and 12 relative to one another. This makes it possible to obtain a torque signal in a simple manner.

Die Abtriebswelle 3 ist vorzugsweise in einem Ringrillenlager 15 gelagert. Ist eine Winkelmessung erwünscht, so ist an der Abtriebswelle 3 ein weiterer Geber anzubringen, der im wesentlichen ähnlich wie der Drehmomentgeber aufgebaut ist. Auf ein mit dem Gehäuse festverbundenen Spulenkörper 17 ist eine Spule 18 angebracht, die die Abtriebswelle ringförmig umschließt. Ein Segmentring 20 ist fest mit dem Spulenkörper verbunden. Der Segmentring 20 weist irei Aussparungen auf, die gleichmäßig über seinem Umfang verteilt sind. Ein weiterer Segmentring 19 ist fest mit der Abtriebswelle verbunden. Der Segmentring 19 weist ebenfalls drei Aussparungen auf, die gleichmäßig über dem Umfang verteilt sind. Ein weiteres Lager 16 bewirkt eine sichere Lagerung der Segmentringe 19 und 20 zueinander. An einer Anschlußbuchse 21 ist ein Winkelsignal abgreifbar. Dieses wird in einer Auswerteschaltung 22 ausgewertet. Die Signalgröße wird beim Winkelgeber ebenfalls durch Impedanzänderungen der Spule 18 generiert. Die Impedanzänderung erfolgt wiederum durch Verdrehen der vorzugsweise als Aluminiumzylinder ausgebildeten Segmentringe 19 und 20. Da der Segmentring 20 feststehend gelagert ist, ergibt sich ein winkelproportionales Signal. Der Winkelgeber liefert. beispielsweise als elektrisches Signalspannung eine Dreiecksspannung, wobei drei Perioden bei einer Umdrehung der Abtriebswelle 3 auftreten.The output shaft 3 is preferably mounted in an annular groove bearing 15. If an angle measurement is desired, a further encoder is to be attached to the output shaft 3, which is essentially similar to the torque transmitter. A coil 18, which surrounds the output shaft in a ring, is attached to a coil body 17 which is fixedly connected to the housing. A segment ring 20 is firmly connected to the coil former. The segment ring 20 has irei recesses that are evenly distributed over its circumference. Another segment ring 19 is fixedly connected to the output shaft. The segment ring 19 also has three recesses which are evenly distributed over the circumference. Another bearing 16 causes the segment rings 19 and 20 to be securely supported relative to one another. An angle signal can be tapped at a connection socket 21. This is evaluated in an evaluation circuit 22. The signal size is also generated in the angular encoder by changes in the impedance of the coil 18. The change in impedance again takes place by turning the segment rings 19 and 20, which are preferably designed as aluminum cylinders. Since the segment ring 20 is fixed, an angle-proportional signal results. The angle encoder delivers. a triangular voltage, for example, as an electrical signal voltage, three periods occurring during one revolution of the output shaft 3.

Die Drehmomentmessung kann auch dadurch erfolgen, daß beide Geber als Winkelmesser ausgebildet sind. Dies bedeutet beispielsweise, daß der Segmentring 11 fest mit dem Spulenkörper 9 verbunden ist. Als Drehmoment ist dann die Differenz der Ausgangssignale der beiden Winkelgeber anzusehen. Diese Anordnung bringt zwar gewisse mechanische Vereinfachungen, jedoch gestaltet sich die Auswertung schwieriger, da mit steigendem Winkel die Meßungenauigkeiten zunehmen.The torque measurement can also take place in that both encoders are designed as protractors. This means, for example, that the segment ring 11 is firmly connected to the coil former 9. The difference between the output signals of the two angle sensors is then to be regarded as the torque. Although this arrangement brings certain mechanical simplifications, the evaluation is more difficult because the measuring inaccuracies increase with increasing angle.

Die Feder 4, die hinsichtlich ihres Verdrehwinkels auf das maximale zu übertragende Moment ausgelegt ist, hat die Aufgabe, den Schraubvorgang speziell bei "harten" Schraubfällen zeitlich zu strecken. Harte Schraubfälle sind beispielsweise gegeben, wenn zwei metallische unnachgiebige Körper miteinander verbunden werden. Durch die Federwirkung wird aus jedem "hartem" Schraubfall ein "weicher" Schraubfall, so daß genügend Zeit für den Abschaltvorgang des Motors verbleibt. Sobald eine vorgegebene Verdrehung und somit ein gewisses Drehmoment erreicht ist, wird der Motor an der Antriebswelle 2 abgeschaltet. Da aufgrund der Trägheit der bewegten Massen und der Schaltverzögerungen diese Abschaltung nicht sofort erfolgt, wird die Verzögerung durch eine weitere Verdrehung der Feder 4 aufgefangen. Dadurch ist es möglich, ohne Umschaltvorgänge vom Eindrehen bis zum Anziehen dieselbe Geschwindigkeit des Schraubers beizubehalten. Das Signal des Winkelgebers mit der Spule 18 dient dabei in der Hauptsache zur Kontrolle, um fehlerhafte Schrauben zu erkennen, die beispielsweise beim Erreichen des vorgeschriebenen Drehmoments bereits die Fließgrenze erreicht haben.The spring 4, which is designed for the maximum torque to be transmitted with regard to its angle of rotation, has the task of temporally stretching the screwing process, particularly in the case of "hard" screwing cases. Hard screwdriving are given, for example, when two metallic unyielding bodies are joined together. The spring action turns every "hard" screwing case into a "soft" screwing case, so that there is sufficient time for the engine to be switched off. As soon as a predetermined rotation and thus a certain torque is reached, the motor on the drive shaft 2 is switched off. Since this deactivation does not take place immediately due to the inertia of the moving masses and the switching delays, the delay is absorbed by a further rotation of the spring 4. This makes it possible to maintain the same speed of the screwdriver without changing over from screwing in to tightening. The signal of the angle encoder with the coil 18 is mainly used for checking in order to identify faulty screws which, for example, have already reached the yield point when the prescribed torque is reached.

In Figur 2 ist eine weitere Schraubvorrichtung dargestellt. Die Antriebswelle, an die ein nicht dargestellter Motor angeschlossen wird, ist wiederum mit 2 gekennzeichnet. In einer Nut der Antriebswelle 2 ist wiederum ein Ende der Feder 4 gelagert. Das andere Ende der Feder 4 ist in der Nut 5 der Verdikkung 23 gelagert. Die Verdickung 23 ist die Verdikkung der Abtriebswelle 3. Bei diesem Ausführungsbeispiel ist eine Führungshülse nicht vorgesehen, sondern die Antriebswelle 3 ist am Ende als Sackloch ausgebildet, in die der Zapfen der Antriebswelle 2 hineinragt. Die Segmenthülse 7 ist jetzt mit der Antriebswelle 2 kraftschlüssig verbunden. Auf einer Spulenhalterung 34, die fest mit dem Gehäuse 1 der Schraubvorrichtung verbunden ist, ist einerseits die Spule 33 und andererseits die Spule 44, die die Abtriebswelle 3 umschließen, aufgebracht. Zur Spule 33 gehören die Segmentringe 30 und 31. Der Segmentring 31 ist das obere Ende der Segmenthülse T, die wiederum an ihrem Umfang zwei oder geradzahlig vielfache Aussparungen aufweist. Die Segmenthülse 30 ist ihrerseits mit der Abtriebswelle 3 verbunden. Zwei Anschlußdrähte führen von dem als Spulenkörper 32 ausgebildeten Teil der Spulenhalterung 34 zu einem Anschluß 42, wo ein dem Drehmoment proportionales Signal an die Drehmomentmeßvorrichtung 14 abgegeben wird. Weiterhin ist ein Teil der Spulenhalterung 34 als Spulenkörper 43 ausgebildet, auf der eine Spule.44 axial zur Abtriebswelle 3 angeordnet ist. Die Anschlüsse der Spulen 44 führen wiederum zum Anschluß 42. Der Spule 44 zugeordnet sind die Segmentringe 38 und 37, wobei der Segmentring 37 fest mit der Spulenhalterung 34 verbunden ist. Der Segmentring 38 ist drehbar und mit der Abtriebswelle 3 verbunden. Die gesamte Geberanordnung ist auf Lagern 35 und 36 gelagert. Mittels einer Tellerfeder 39 wird der beweglich ausgebildete und an der Abtriebswelle 3 befestigte Segementring 38 an das Gebersystem gepresst. Ein Ringrillenlager 40, geführt in einer Hülse 41, dient zur Lagerung der Abtriebswelle 3. Das Gehäuse wird zur abtriebsseitigen Seite hin durch einen Gewindering 45 abgeschlossen.A further screwing device is shown in FIG. The drive shaft, to which a motor (not shown) is connected, is again identified by 2. One end of the spring 4 is in turn mounted in a groove of the drive shaft 2. The other end of the spring 4 is mounted in the groove 5 of the thickening 23. The thickening 23 is the thickening of the output shaft 3. In this exemplary embodiment, a guide sleeve is not provided, but the drive shaft 3 is formed at the end as a blind hole into which the pin of the drive shaft 2 projects. The segment sleeve 7 is now non-positively connected to the drive shaft 2. On a Coil holder 34, which is fixedly connected to the housing 1 of the screwing device, the coil 33 on the one hand and the coil 44, on the other hand, which enclose the output shaft 3, are applied. The segment rings 30 and 31 belong to the coil 33. The segment ring 31 is the upper end of the segment sleeve T, which in turn has two or even multiple recesses on its circumference. The segment sleeve 30 is in turn connected to the output shaft 3. Two connecting wires lead from the part of the coil holder 34 designed as a coil former 32 to a connection 42, where a signal proportional to the torque is output to the torque measuring device 14. Furthermore, part of the coil holder 34 is designed as a coil former 43, on which a coil 44 is arranged axially to the output shaft 3. The connections of the coils 44 in turn lead to the connection 42. The coil 44 is assigned the segment rings 38 and 37, the segment ring 37 being firmly connected to the coil holder 34. The segment ring 38 is rotatable and connected to the output shaft 3. The entire encoder arrangement is supported on bearings 35 and 36. The segmented ring 38, which is designed to be movable and fastened to the output shaft 3, is pressed against the transmitter system by means of a plate spring 39. An annular groove bearing 40, guided in a sleeve 41, serves to mount the output shaft 3. The housing is closed off on the output side by a threaded ring 45.

Das in Figur 2 gezeigte Ausführungsbeispiel erfüllt die gleiche Funktion wie das Ausführungsbeispiel nach Figur 1. Impedanzänderungen der Spule 33, deren Segmentring 31 durch die Antriebswelle 2 und deren Segmentring 30 durch die Abtriebswelle 3 bewegt wird, dienen dazu, das Drehmoment anzuzeigen. Mit der Spule 44 und den Segmentringen 37 und 38. ist der Winkel durch Impedanzänderung meßbar. Die Montage von dieser Vorrichtung gestaltet sich jedoch einfach, da die Geber auf einer gemeinsamen Halterung 34 angeordnet sind und somit zusammen eingesetzt werden können. Durch diese Anordnung lassen sich die Anschlüsse an einer Stelle des Gehäuses herausführen. Weiterhin ist möglich, die gesamte Gebervorrichtung vor dem Einbau in das Gehäuse 1 vorzumontieren.The exemplary embodiment shown in FIG. 2 fulfills the same function as the exemplary embodiment according to FIG. 1. Changes in impedance of the coil 33, its segment ring 31 by the drive shaft 2 and its segment ring 30 is moved by the output shaft 3 serve to indicate the torque. With the coil 44 and the segment rings 37 and 38. the angle can be measured by changing the impedance. However, the assembly of this device is simple since the sensors are arranged on a common holder 34 and can therefore be used together. With this arrangement, the connections can be led out at one point of the housing. It is also possible to preassemble the entire transmitter device before installing it in the housing 1.

Claims (12)

1. Schraubvorrichtung mit einer Antriebsvorrichtung die in Abhängigkeit von einem Drehmoment abschaltbar ist, dadurch gekennzeichnet, daß die Antriebswelle (2) und die Abtriebswelle (3) über eine Feder (4) miteinander verbunden sind.1. Screwing device with a drive device which can be switched off as a function of a torque, characterized in that the drive shaft (2) and the output shaft (3) are connected to one another via a spring (4). 2. Schraubvorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß die Feder (4) in Kupplungsnuten (5, 6) der Antriebswelle (2) und der Abtriebswelle (3) eingreift.2. Screwing device according to claim 1, characterized in that the spring (4) engages in coupling grooves (5, 6) of the drive shaft (2) and the output shaft (3). 3. Schraubvorrichtung nach Anspruch 2, dadurch gekennzeichnet, daß die Kupplungsnuten (5, 6) in Drehrichtung angeschrägt sind.3. Screwing device according to claim 2, characterized in that the coupling grooves (5, 6) are chamfered in the direction of rotation. 4. Schraubvorrichtung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß der Verdrehwinkel zwischen der Antriebswelle (2) und der Abtriebswelle (3) gemessen wird.4. Screwing device according to one of claims 1 to 3, characterized in that the angle of rotation between the drive shaft (2) and the output shaft (3) is measured. 5. Schraubvorrichtung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß die Umdrehungswinkel der Antriebswelle (2) und/oder der Abtriebswelle (3) und/oder der Verdrehungswinkel zwischen der Antriebswelle (2) und der Abtriebswelle (3) durch induktive Geber (10, 18, 33, 44) gemessen werden.5. Screwing device according to one of claims 1 to 3, characterized in that the angle of rotation of the drive shaft (2) and / or the output shaft (3) and / or the angle of rotation between the drive shaft (2) and the output shaft (3) by inductive sensors (10, 18, 33, 44) can be measured. 6. Schraubvorrichtung nach Anspruch 5, dadurch gekennzeichnet, daß zur Bestimmung des Drehmoments ein Segmentring (12, 31) des Gebers auf der Abtriebswelle (3) und ein anderer Segmentring (11, 30) des Gebers auf der Antriebswelle (2) befestigt ist.6. Screwing device according to claim 5, characterized in that for determining the torque, a segment ring (12, 31) of the encoder on the output shaft (3) and another segment ring (11, 30) of the encoder on the drive shaft (2) is attached. 7. Schraubvorrichtung nach Anspruch 5 oder 6, dadurch gekennzeichnet, daß zu mindestens ein Geber (18, 44) zur Bestimmung des Drehwinkels vorgesehen ist.7. Screwing device according to claim 5 or 6, characterized in that at least one encoder (18, 44) is provided for determining the angle of rotation. 8. Schraubvorrichtung nach einem der Ansprüche 5 bis 7, dadurch gekennzeichnet, daß ein Geber (10) im Bereich der Antriebswelle (2) und ein Geber (18) im Bereich der Abtriebswelle (3) befestigt ist.8. Screwing device according to one of claims 5 to 7, characterized in that a sensor (10) in the region of the drive shaft (2) and a sensor (18) in the region of the output shaft (3) is attached. 9. Schraubvorrichtung nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß die Feder (4) durch eine Segmenthülse (7) geschützt ist.9. Screwing device according to one of claims 1 to 8, characterized in that the spring (4) is protected by a segment sleeve (7). 10. Schraubvorrichtung nach Anspruch 9, dadurch gekennzeichnet, daß die Segmenthülse (7) zumindest einseitig als Segmentring (12, 31) für einen Geber (10, 33) ausgebildet ist.10. Screwing device according to claim 9, characterized in that the segment sleeve (7) is formed at least on one side as a segment ring (12, 31) for a transmitter (10, 33). 11. Schraubvorrichtung nach Anspruch 9 oder 10, dadurch gekennzeichnet, daß die Segmenthülse (7) mit einer Welle (3 bzw. 2) starr verbunden ist.11. Screwing device according to claim 9 or 10, characterized in that the segment sleeve (7) with a shaft (3 or 2) is rigidly connected. 12. Schraubvorrichtung nach einem der Ansprüche 4 bis 11, dadurch gekennzeichnet, daß die Geber (33, 44) räumlich benachbart angeordnet sind und daß die Bewegungsübertragung zu einem der Geber (33) über die fest mit einer Welle (2) verbundene Segmenthülse (7) erfolgt.12. Screwing device according to one of claims 4 to 11, characterized in that the sensors (33, 44) are arranged spatially adjacent and in that the transmission of motion to one of the sensors (33) via the segment sleeve (7) fixedly connected to a shaft (2) ) he follows.
EP83101975A 1982-03-25 1983-03-01 Screwing device Withdrawn EP0090187A3 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19823210889 DE3210889A1 (en) 1982-03-25 1982-03-25 SCREW DEVICE
DE3210889 1982-03-25

Publications (2)

Publication Number Publication Date
EP0090187A2 true EP0090187A2 (en) 1983-10-05
EP0090187A3 EP0090187A3 (en) 1986-01-29

Family

ID=6159208

Family Applications (1)

Application Number Title Priority Date Filing Date
EP83101975A Withdrawn EP0090187A3 (en) 1982-03-25 1983-03-01 Screwing device

Country Status (4)

Country Link
US (1) US4502549A (en)
EP (1) EP0090187A3 (en)
JP (1) JPS58171270A (en)
DE (1) DE3210889A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0724934A1 (en) * 1995-01-31 1996-08-07 Hitachi Koki Co., Ltd. Power screwdriver and clutch mechanism used therein

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3742952A1 (en) * 1987-12-18 1989-07-06 Fein C & E MACHINE WITH VARIABLE TORQUE ADJUSTMENT
JPH0295579A (en) * 1988-09-28 1990-04-06 Maruma Jusharyo Kk High torque hydraulic shoe bolt wrench
JPH0798311B2 (en) * 1988-10-12 1995-10-25 富士写真フイルム株式会社 Screw tightening device
DE10303235B4 (en) * 2002-01-29 2011-03-31 Makita Corp., Anjo Torque-transmitting mechanisms and power tools with such torque-transmitting mechanisms
US7090030B2 (en) * 2002-09-03 2006-08-15 Microtorq L.L.C. Tranducerized torque wrench
US7210541B2 (en) * 2002-09-03 2007-05-01 Microtorq Llc Transducerized rotary tool
US7395871B2 (en) * 2003-04-24 2008-07-08 Black & Decker Inc. Method for detecting a bit jam condition using a freely rotatable inertial mass
DE602004018264D1 (en) * 2004-03-22 2009-01-22 Cooper Power Tools Gmbh & Co Intelligent spindle for tightening with integrated transducer, servo amplifier and data processing system
DE602004007235T2 (en) * 2004-03-22 2007-10-11 Cooper Power Tools Gmbh & Co. Transmission of power and data from one power source to multiple electrically driven tools in a multi-tool station
US20070144753A1 (en) * 2005-12-22 2007-06-28 Microtorq, L.L.C. Transducerized rotary tool
US7362066B2 (en) * 2006-05-19 2008-04-22 Jervis B. Webb Company Overload protection system
US7828077B1 (en) * 2008-05-27 2010-11-09 Jergens, Inc. Rotary angle tool
WO2010017371A1 (en) * 2008-08-06 2010-02-11 Milwaukee Electric Tool Corporation Precision torque tool
US9289886B2 (en) 2010-11-04 2016-03-22 Milwaukee Electric Tool Corporation Impact tool with adjustable clutch

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2228032A (en) * 1937-05-10 1941-01-07 Standard Oil Co Interval ratio indicator
US2260036A (en) * 1940-08-24 1941-10-21 Gen Electric Transmission dynamometer
DE2123364A1 (en) * 1970-05-13 1971-11-25 The Stanley Works, New Britain, Conn. (V.StA.) Power tool for tightening fasteners
FR2121285A5 (en) * 1971-01-06 1972-08-18 Rockwell Mfg Co
US3839662A (en) * 1973-05-08 1974-10-01 Telemecanique Electrique Motorized valve control
US3982419A (en) * 1972-05-09 1976-09-28 Standard Pressed Steel Co. Apparatus for and method of determining rotational and linear stiffness
DE2637954A1 (en) * 1976-08-24 1978-03-02 Robel Georg Gmbh & Co SCREWDRIVER WITH TORQUE MEASURING DEVICE
JPS5544136A (en) * 1978-09-20 1980-03-28 Yutani Tekko Kk Torsion bar

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1111848A (en) * 1914-09-29 Frank W Smith Means for electrically determining transmitted power.
US1946100A (en) * 1929-03-05 1934-02-06 Bendix Cowdrey Brake Tester In Electrical dynamometer
US3970151A (en) * 1975-07-03 1976-07-20 Gardner-Denver Company Torque responsive motor shutoff for power tool
DE2731090C2 (en) * 1977-07-09 1983-09-15 Nagel, Peter, 7442 Neuffen Torque screwdriver
SU694778A1 (en) * 1978-05-26 1979-10-30 Предприятие П/Я М-5671 Torque measuring device
US4328871A (en) * 1980-01-28 1982-05-11 Sps Technologies, Inc. Power tool speed and torque control mechanism
JPS57121477A (en) * 1981-01-16 1982-07-28 Matsushita Electric Ind Co Ltd Fixed torque screw clamping device

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2228032A (en) * 1937-05-10 1941-01-07 Standard Oil Co Interval ratio indicator
US2260036A (en) * 1940-08-24 1941-10-21 Gen Electric Transmission dynamometer
DE2123364A1 (en) * 1970-05-13 1971-11-25 The Stanley Works, New Britain, Conn. (V.StA.) Power tool for tightening fasteners
FR2121285A5 (en) * 1971-01-06 1972-08-18 Rockwell Mfg Co
US3982419A (en) * 1972-05-09 1976-09-28 Standard Pressed Steel Co. Apparatus for and method of determining rotational and linear stiffness
US3982419B1 (en) * 1972-05-09 1983-12-06
US3839662A (en) * 1973-05-08 1974-10-01 Telemecanique Electrique Motorized valve control
DE2637954A1 (en) * 1976-08-24 1978-03-02 Robel Georg Gmbh & Co SCREWDRIVER WITH TORQUE MEASURING DEVICE
JPS5544136A (en) * 1978-09-20 1980-03-28 Yutani Tekko Kk Torsion bar

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENTS ABSTRACTS OF JAPAN, Band 4, Nr. 84 (M-16)[566], 17. Juni 1980, Seite 157 M 16; & JP - A - 55 44 136 (YUTANI TETSUKOU K.K.) 28.03.1980 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0724934A1 (en) * 1995-01-31 1996-08-07 Hitachi Koki Co., Ltd. Power screwdriver and clutch mechanism used therein

Also Published As

Publication number Publication date
EP0090187A3 (en) 1986-01-29
JPS58171270A (en) 1983-10-07
US4502549A (en) 1985-03-05
DE3210889A1 (en) 1983-09-29

Similar Documents

Publication Publication Date Title
EP0090187A2 (en) Screwing device
DE4307131C2 (en) Power wrench with electronic torque limitation
EP0249659A2 (en) Screw spindle, screw device and process for their use
DE3146494A1 (en) ELECTRIC TOOL, ESPECIALLY HAND TOOL, WITH TORQUE MONITORING
EP0092736A1 (en) Transmitter for torque and/or angle measurement, particularly on power driven screwing tools
EP0164574A2 (en) Screw driving device
DE4025430A1 (en) Torque controlled screwing head - has electroacoustic sensor to measure distortion of bolt under torque
DE4229569C1 (en) Machine tool with telemetry monitoring system for tool shaft - uses sensor element attached to shaft and coupled to amplifier on outside of housing half shell enclosing shaft
DE2645902C3 (en) Device for friction and wear testing of material samples
DE19819300A1 (en) Method and device for producing and testing screw connections
DE10251387B4 (en) Electric pressing device
DE3519352A1 (en) SCREW DEVICE WITH MOTOR DRIVEN SCREWDRIVER
DE3019751A1 (en) Cutting force measuring device for multiple tool carrier - uses equally spaced force sensors for coupling tool carrier to feed device
EP0229250B1 (en) Screw drive apparatus with measuring equipment for determination of translatoric movement
DE2731090A1 (en) Torque measurement unit in motor driven screwdriver - contains gear with conversion ratio and intermediate shaft acting on pressure meter
EP0344761A2 (en) Hydraulic clamping tool
DE10111979A1 (en) Screwdriver with automatic screw supply for use in a production environment has a magnetic arrangement for measuring torque, rotation angle, etc. so that additional measurement apparatus is not required
DE2448239B2 (en) Adjustment device for an absolute angle encoder
EP0619472B1 (en) Angular displacement measuring device
EP3236566B1 (en) Hysteresis coupling or brake and torque adjustment method
DE69101767T2 (en) Torque evaluation device working with magnetic loss flux.
DE2522829C3 (en) Ignition distributor with fine adjustment of the ignition point for internal combustion engines
DE9312303U1 (en) Device for tightening screw connections
DE2612207C2 (en) Power tool with torque-dependent speed control
DE1002966C2 (en) Multi-axis dynamometer

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19830301

AK Designated contracting states

Designated state(s): DE GB IT SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Designated state(s): DE GB IT SE

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 19860730

RIN1 Information on inventor provided before grant (corrected)

Inventor name: VOGT, HANS-JOACHIM

Inventor name: JUNDT, WOLFGANG, ING. GRAD.

Inventor name: HORNUNG, FRIEDRICH, DIPL.-ING.

Inventor name: SCHAEDLICH, FRITZ, DIPL.-ING.

Inventor name: WUENSCH, STEFFEN, ING. GRAD.