EP0088944B1 - Axial flow steam turbine, especially of the double-flow type - Google Patents
Axial flow steam turbine, especially of the double-flow type Download PDFInfo
- Publication number
- EP0088944B1 EP0088944B1 EP83102038A EP83102038A EP0088944B1 EP 0088944 B1 EP0088944 B1 EP 0088944B1 EP 83102038 A EP83102038 A EP 83102038A EP 83102038 A EP83102038 A EP 83102038A EP 0088944 B1 EP0088944 B1 EP 0088944B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- shaft
- steam
- steam turbine
- flow
- nozzles
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 238000006243 chemical reaction Methods 0.000 claims description 5
- 238000001816 cooling Methods 0.000 description 23
- 238000006424 Flood reaction Methods 0.000 description 9
- 230000003068 static effect Effects 0.000 description 3
- 239000000969 carrier Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000008646 thermal stress Effects 0.000 description 2
- 238000009825 accumulation Methods 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 230000035882 stress Effects 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D3/00—Machines or engines with axial-thrust balancing effected by working-fluid
- F01D3/02—Machines or engines with axial-thrust balancing effected by working-fluid characterised by having one fluid flow in one axial direction and another fluid flow in the opposite direction
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D25/00—Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
- F01D25/08—Cooling; Heating; Heat-insulation
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D5/00—Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
- F01D5/02—Blade-carrying members, e.g. rotors
- F01D5/08—Heating, heat-insulating or cooling means
Definitions
- the invention relates to an axially loaded steam turbine according to the preamble of claim 1.
- Such a steam turbine is known from FR-A-851 531.
- a shaft shield is arranged in the region of the steam inflow taking place in the axial center, which shaft shield is attached to the radially inner ends of the guide vanes of the first guide vane rings of both flows.
- the shaft shield enclosing the shaft at a distance is formed on the outer circumference in such a way that the steam flowing in in the radial direction is divided equally between the two floods and deflected in the axial direction. The shaft shielding thus prevents an immediate flow against the shaft surface by the steam flowing in in the radial direction.
- the invention is based on the object, in an axially loaded steam turbine of the type mentioned, to further reduce the thermal stresses of the shaft in the region of the steam inflow, likewise without the use of cooling steam generated externally to the turbine, but in this case the shaft shielding ring itself as a device for pressure and Take advantage of lowering the temperature of the live steam.
- a small partial flow of the total inflowing steam is fed through tangentially arranged nozzles to the shaft area under the shaft shield.
- the speed at which this partial flow enters the annular channel formed between the shaft and the shaft shield corresponds to the gradient processed in the first guide vane ring.
- the nozzles introduced into the shaft shielding are aligned with respect to the direction of rotation of the shaft in such a way that the swirl flow which forms in the ring channel leads the shaft circumferential speed.
- the boundary layer temperature on the shaft corresponds to the static temperature of the steam which is reduced by the increase in the kinetic energy, increased by the proportion of the damming temperature of the comparatively low relative speed between the swirl flow and the shaft circumferential speed. Effective cooling of the shaft in the area of the steam inflow and in the area of the blade attachment of the first blade ring can thus be achieved by the nozzles introduced tangentially into the shaft shield.
- incoming partial flow is then divided equally into two swirl flows, which each flow in the axial direction along the shaft up to the first rotor blade ring.
- a further improvement in the cooling effect can be achieved in that the first stage is designed as a weak reaction stage or, in the case of a double-flow version, that the first stage is designed as a weak reaction stage in both floods. This is intended to process as large a gradient as possible in the first guide vane ring, so that the static temperature of the partial flow introduced into the ring channel is reduced as much as possible by the corresponding increase in the kinetic energy.
- the cross section of the nozzles is dimensioned such that the steam mass flow entering the annular duct is approximately 3% of the total steam mass flow supplied in the region of the steam inflow.
- the nozzles 8 are designed such that, seen in the direction of rotation of the shaft indicated by the arrow 9, they open tangentially into the annular channel 4 formed between the shaft 5 and the shaft shield 6. Since the partial flow diverted from the inflowing steam enters tangentially into the ring channel 4 through the nozzles 8, a swirl flow indicated by the arrow 10 forms there, which leads the wave circumferential speed.
- the swirl flow 10 is then divided into two swirl flows starting from the axial center M, which are indicated in FIG. 1 by the arrows 11 and 11 'and along the shaft 5 as far as the rotor blades 12 and 12' of the respective first rotor blade ring of the two floods.
- the speed at which the partial flow diverted from the incoming steam enters the nozzles 8 thus corresponds to the gradient processed in the first guide vane ring of the two floods, and this speed of entry can be increased by eliminating the respective first stage as a weak reaction stage.
- the shaft shield 6 prevents a direct flow against the surface of the shaft 5 by the hot steam flowing radially in the direction of the arrow 1.
- the boundary layer temperature of the swirl flows 10 or 11 and 11 'in the ring channel 4 corresponds to the static temperature of the steam reduced by the increase in the kinetic energy, increased by the accumulation temperature portion of the relative speed between the swirl flow 10 or 11 and 11' and the shaft circumferential speed.
- the congestion temperature proportion is low, since the relative speed mentioned is also comparatively low due to the selected orientation of the nozzles 8.
- the steam mass flow entering the annular duct 4 through the nozzles 8 is approximately 3% of the total steam mass flow supplied through the inflow duct 2.
- the temperature drop in the area of the shaft 5 below the shaft shield 6 is 20 ° K at the beginning of the swirl field in the axial center M and at 10 to 15 ° K at the respective end of the swirl field compared to the temperature of the incoming steam.
- the increase in consumption required for this cooling of the shaft is approximately 0.06% and thus corresponds to the values which can be achieved with external cooling by cooling steam introduced from the outside.
- the slight reduction in the cooling effect at the respective end of the swirl field can possibly be avoided by an additional row of blades arranged on the shaft 5. This row of moving blades arranged in the axial center M and in the annular channel 4 could expediently be designed as a free jet turbine.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- Turbine Rotor Nozzle Sealing (AREA)
Description
Die Erfindung bezieht sich auf eine axial beaufschlagte Dampfturbine gemäß dem Oberbegriff des Patentanspruchs 1.The invention relates to an axially loaded steam turbine according to the preamble of claim 1.
Eine derartige Dampfturbine ist aus der FR-A-851 531 bekannt. Bei einer dort dargestellten zweiflutigen Dampfturbine ist im Bereich der in der axialen Mitte erfolgenden Dampfeinströmung eine Wellenabschirmung angeordnet, welche an den radial inneren Enden der Leitschaufeln der ersten Leitschaufelkränze beider Fluten befestigt ist. Die die Welle mit Abstand umschließende Wellenabschirmung ist dabei am Außenumfang so ausgebildet, daß der in radialer Richtung einströmende Dampf auf beide Fluten gleichmäßig aufgeteilt und in die axiale Richtung umgelenkt wird. Die Wellenabschirmung verhindert somit ein unmittelbares Anströmen der Wellenoberfläche durch den in radialer Richtung einströmenden Dampf.Such a steam turbine is known from FR-A-851 531. In the case of a double-flow steam turbine shown there, a shaft shield is arranged in the region of the steam inflow taking place in the axial center, which shaft shield is attached to the radially inner ends of the guide vanes of the first guide vane rings of both flows. The shaft shield enclosing the shaft at a distance is formed on the outer circumference in such a way that the steam flowing in in the radial direction is divided equally between the two floods and deflected in the axial direction. The shaft shielding thus prevents an immediate flow against the shaft surface by the steam flowing in in the radial direction.
Aus W. Traupel « Thermische Turbomaschinen •, Band 2, 2. Auflage, Springer-Verlag, Berlin, Heidelberg, New York, 1968, Seite 341, ist es auch bekannt, bei einer axial beaufschlagten einflutigen Dampfturbine im Bereich der Dampfeinströmung ein Abschirmblech anzuordnen und in den zwischen Welle und Abschirmblech gebildeten Ringkanal von außen her Kühldampf einzuführen. Der Kühldampf strömt dann in dem Ringkanal bis vor den ersten Laufschaufelkranz. Auf diese Weise können die zusätzlich zu den hohen Fliehkraftbeanspruchungen der Welle im Bereich der Dampfeinströmung und im Bereich der Laufschaufelbefestigung des ersten Laufschaufelkranzes auftretenden thermischen Beanspruchungen reduziert werden. Hierzu ist jedoch die mit einigem Aufwand verbundene Bereitstellung von Kühldampf erforderlich. Außerdem ist eine derartige von außen her erfolgende Einleitung von Kühldampf in den zwischen Welle-. nabschirmung und Welle gebildeten Ringkanal bei zweiflutigen Dampfturbinen nur möglich, wenn die Leitung für die Zufuhr des Kühldampfes im Bereich der Dampfeinströmung verlegt wird. Eine derartige Ausführung ist aus der Zeitschrift « BBC-Nachrichten », 1980, Heft 10, Seite 378, und durch die DE-A-21 40490 bekannt. Durch die Verlegung der Leitung für die Zufuhr des Kühldampfes in den Bereich der Dampfeinströmung entstehen jedoch zusätzliche Strömungsverluste. Die Kühlung der Welle im Bereich der Dampfeinströmung durch Kühldampf ist auch thermodynamisch ungünstig, weil der kalte Kühldampf die mittlere Arbeitsmitteltemperatur in der Dampfturbine absenkt. Durch die Zufuhr von Kühldampf können aber auch regeltechnische Probleme im Falle einer Lastabschaltung entstehen, da der Kühldampf die Dampfturbine bzw. den Turbosatz auf Überdrehzahl bringen könnte, sofern die Kühldampfzufuhr nicht durch separate Sicherheitsventile abgeschaltet wird.From W. Traupel “Thermal Turbomachinery •, Volume 2, 2nd Edition, Springer-Verlag, Berlin, Heidelberg, New York, 1968, page 341, it is also known to arrange a shielding plate for an axially loaded single-flow steam turbine in the area of the steam inflow and to introduce cooling steam from the outside into the annular channel formed between the shaft and the shielding plate. The cooling steam then flows in the ring channel up to the first rotor blade ring. In this way, the thermal stresses occurring in addition to the high centrifugal force stresses of the shaft in the area of the steam inflow and in the area of the rotor blade attachment of the first rotor blade ring can be reduced. However, this requires the provision of cooling steam, which involves some effort. In addition, such an external introduction of cooling steam is in the between shaft. Shielding and shaft formed ring channel in double-flow steam turbines only possible if the line for the supply of cooling steam is laid in the area of the steam inflow. Such an embodiment is known from the magazine “BBC-Nachrichten”, 1980,
Es ist durch die US-A-3 817 654 bekannt, den Wellenkühldampf durch Teilentspannung des Frischdampfes im Düsenkranz einer ersten Aktions-Schaufelstufe bei einer doppelflutigen Dampfturbine derart zu erzeugen, daß dieser teilentspannte Dampf einen etwas höheren Druck als der im Düsenkranz der anderen ersten Schaufelstufe teilentspannte Dampf aufweist. Als Wellenkühldampf wird dann eine Teildampfmenge abgezweigt, welche aufgrund des Druckgefälles in einer gegenläufigen Schleife unter dem Wellenabschirmring und über die Wellenoberfläche zur gegenüberliegenden ersten Stufe der doppelflutigen Beschaufelung geführt wird. Bei der Erfindung wird zwar gleichfalls turbinenintern erzeugter Wellenkühldampf verwendet, es ist jedoch eine unterschiedliche Auslegung von Beschaufelungsstufen und eine 180°-Umlenkung von Dampfteilströmen nicht erforderlich.It is known from US-A-3 817 654 to generate the wave cooling steam by partially releasing the live steam in the nozzle ring of a first action blade stage in a double-flow steam turbine in such a way that this partially expanded steam has a slightly higher pressure than that in the nozzle ring of the other first blade stage has partially relaxed steam. A partial steam quantity is then branched off as wave cooling steam, which, due to the pressure gradient, is led in a counter-rotating loop under the shaft shielding ring and over the shaft surface to the opposite first stage of the double-flow blading. Although shaft cooling steam generated internally in the turbine is also used in the invention, a different design of blading stages and a 180 ° deflection of partial steam flows is not necessary.
Der Erfindung liegt die Aufgabe zugrunde, bei einer axial beaufschlagten Dampfturbine der eingangs genannten Art die thermischen Beanspruchungen der Welle im Bereich der Dampfeinströmung ebenfalls ohne die Verwendung von turbinen-extern erzeugtem Kühldampf weiter zu reduzieren, dabei jedoch den Wellenabschirmring selbst als Einrichtung zur Druck- und Temperaturabsenkung des Frischdampfes auszunutzen.The invention is based on the object, in an axially loaded steam turbine of the type mentioned, to further reduce the thermal stresses of the shaft in the region of the steam inflow, likewise without the use of cooling steam generated externally to the turbine, but in this case the shaft shielding ring itself as a device for pressure and Take advantage of lowering the temperature of the live steam.
Diese Aufgabe wird erfindungsgemäß durch die im kennzeichnenden Teil des Patentanspruches 1 aufgeführten Merkmale gelöst.This object is achieved by the features listed in the characterizing part of claim 1.
Bei der erfindungsgemäßen Dampfturbine wird also unter Umgehung des ersten Leitschaufelkranzes ein geringer Teilstrom des insgesamt einströmenden Dampfes durch tangential angeordnete Düsen dem unter der Wellenabschirmung liegenden Wellenbereich zugeführt. Die Geschwindigkeit, mit welcher dieser Teilstrom in den zwischen Welle und Wellenabschirmung gebildeten Ringskanal eintritt, entspricht dem im ersten Leitschaufelkranz verarbeiteten Gefälle. Die in die Wellenabschirmung eingebrachten Düsen sind dabei in bezug auf die Drehrichtung der Welle so ausgerichtet, daß die sich im Ringkanal ausbildende Drallströmung der Wellenumfangsgeschwindigkeit vorauseilt. Die Grenzschichttemperatur an der Welle entspricht dann der durch die Erhöhung der kinetischen Energie abgesenkten statischen Temperatur des Dampfes, vermehrt um den Stautemperaturanteil der vergleichsweise geringen Relativgeschwindigkeit zwischen der Drallströmung und der Wellenumfangsgeschwindigkeit. Durch die in die Wellenabschirmung tangential eingebrachten Düsen kann somit eine wirksame Kühlung der Welle im Bereich der Dampfeinströmung und im Bereich der Laufschaufelbefestigung des ersten Laufschaufelkranzes erzielt werden.In the steam turbine according to the invention, bypassing the first guide vane ring, a small partial flow of the total inflowing steam is fed through tangentially arranged nozzles to the shaft area under the shaft shield. The speed at which this partial flow enters the annular channel formed between the shaft and the shaft shield corresponds to the gradient processed in the first guide vane ring. The nozzles introduced into the shaft shielding are aligned with respect to the direction of rotation of the shaft in such a way that the swirl flow which forms in the ring channel leads the shaft circumferential speed. The boundary layer temperature on the shaft then corresponds to the static temperature of the steam which is reduced by the increase in the kinetic energy, increased by the proportion of the damming temperature of the comparatively low relative speed between the swirl flow and the shaft circumferential speed. Effective cooling of the shaft in the area of the steam inflow and in the area of the blade attachment of the first blade ring can thus be achieved by the nozzles introduced tangentially into the shaft shield.
Bei einer axial beaufschlagten Dampfturbine in zweiflutiger Ausführung, bei welcher die Wellenabschirmung an den radial inneren "Enden der Leitschaufeln der ersten Leitschaufelkränze beider Fluten befestigt ist, ist bei einer bevorzugten Ausführungsform vorgesehen, daß die Düsen in der axialen Mitte in den Ringkanal einmünden. Der durch die mittigen Düsen in den RingkanalIn the case of an axially loaded steam turbine in a double-flow design, in which the shaft shield is attached to the radially inner ends of the guide vanes of the first guide vane rings of both floods, in a preferred embodiment it is provided that the nozzles open into the annular channel in the axial center the central nozzles in the ring channel
eintretende Teilstrom wird dann gleichmäßig in zwei Drallströmungen aufgeteilt, welche in axialer Richtung entlang der Welle jeweils bis zum ersten Laufschaufelkranz strömen.incoming partial flow is then divided equally into two swirl flows, which each flow in the axial direction along the shaft up to the first rotor blade ring.
Eine weitere Verbesserung der Kühlwirkung kann dadurch erzielt werden, daß die erste Stufe als Schwachreaktions-Stufe ausgebildet ist bzw. daß bei einer zweiflutigen Ausführung bei beiden Fluten jeweils die erste Stufe als Schwachreaktions-Stufe ausgebildet ist. Hierdurch soll ein möglichst großes Gefälle im ersten Leitschaufelkranz verarbeitet werden, so daß durch die entsprechende Erhöhung der kinetischen Energie die statische Temperatur des in den Ringkanal eingeleiteten Teilstromes möglichst weit abgesenkt wird.A further improvement in the cooling effect can be achieved in that the first stage is designed as a weak reaction stage or, in the case of a double-flow version, that the first stage is designed as a weak reaction stage in both floods. This is intended to process as large a gradient as possible in the first guide vane ring, so that the static temperature of the partial flow introduced into the ring channel is reduced as much as possible by the corresponding increase in the kinetic energy.
Weiterhin hat es sich aus fertigungstechnischen Gründen als zweckmäßig erwiesen, wenn insgesamt vier über den Umfang der Wellenabschirmung gleichmäßig verteilt angeordnete Düsen vorgesehen sind.Furthermore, it has proven to be expedient for manufacturing reasons if a total of four nozzles are provided which are arranged uniformly distributed over the circumference of the shaft shielding.
Bei einer weiteren bevorzugten Ausgestaltung der erfindungsgemäßen Dampfturbine ist der Querschnitt der Düsen derart bemessen, daß der in den Ringkanal gelangende Dampfmassenstrom etwa 3 % des insgesamt im Bereich der Dampfeinströmung zugeführten Dampfmassenstromes beträgt. Hierdurch kann bei einer wirksamen Kühlung der Welle die durch die teilweise Umgehung des ersten Leitschaufelkranzes bedingte Verbrauchserhöhung auf äußerst niedrige Werte begrenzt werden.In a further preferred embodiment of the steam turbine according to the invention, the cross section of the nozzles is dimensioned such that the steam mass flow entering the annular duct is approximately 3% of the total steam mass flow supplied in the region of the steam inflow. In this way, with effective cooling of the shaft, the increase in consumption due to the partial bypassing of the first guide vane ring can be limited to extremely low values.
Im folgenden wird ein Ausführungsbeispiel der Erfindung anhand der Zeichnung näher erläutert. Dabei zeigt in stark vereinfachter schematischer Darstellung
- Figur 1 den Einströmbereich einer zweiflutigen Dampfturbine im Längsschnitt und
- Figur 2 einen Querschnitt gemäß der Linie 11-11 der Fig. 1.
- Figure 1 shows the inflow area of a double-flow steam turbine in longitudinal section and
- 2 shows a cross section along the line 11-11 of FIG. 1st
In die Wellenabschirmung 6 sind nun insgesamt vier über den Umfang gleichmäßig verteilt angeordnete Düsen 8 als Bohrungen eingebracht. Wie es insbesondere aus dem Querschnitt der Fig. 2 ersichtlich ist, sind die Düsen 8 so ausgebildet, daß sie in der durch den Pfeil 9 angedeuteten Drehrichtung der Welle gesehen tangential in den zwischen Welle 5 und Wellenabschirmung 6 gebildeten Ringkanal 4 einmünden. Da der von dem einströmenden Dampf abgezweigte Teilstrom durch die Düsen 8 tangential in den Ringkanal 4 eintritt, bildet sich dort eine durch den Pfeil 10 angedeutete Drallströmung aus, welche der Wellenumfangsgeschwindigkeit vorauseilt.A total of four nozzles 8, which are uniformly distributed over the circumference, are now introduced into the
Die Drallströmung 10 teilt sich dann in zwei von der axialen Mitte M ausgehende Drallströmungen auf, welche in der Fig. 1 durch die Pfeile 11 und 11' angedeutet sind und die Welle 5 entlang bis zu den Laufschaufeln 12 bzw. 12' des jeweils ersten Laufschaufelkranzes der beiden Fluten strömen. Dabei umgehen die beiden Drallströmungen 11 und 11' die Leitschaufeln 7 bzw. 7' des jeweils ersten Leitschaufelkranzes beider Fluten. Die Geschwindigkeit mit welcher der von dem einströmenden Dampf abgezweigte Teilstrom in die Düsen 8 eintritt entspricht damit dem jeweils im ersten Leitschaufelkranz der beiden Fluten verarbeiteten Gefälle, wobei diese Eintrittsgeschwindigkeit durch eine Ausbindung der jeweils ersten Stufe als Schwachreaktions-Stufe gesteigert werden kann.The
Die Wellenabschirmung 6 verhindert einerseits ein unmittelbares Anströmen der Oberfläche der Welle 5 durch den in Richtung des Pfeiles 1 radial einströmenden heißen Dampf. Andererseits entspricht die Grenzschichttemperatur der Drallströmungen 10 bzw. 11 und 11' in dem Ringkanal 4 der durch die Erhöhung der kinetischen Energie abgesenkten statischen Temperatur des Dampfes, vermehrt um den Stautemperaturanteil der Relativgeschwindigkeit zwischen Drallströmung 10 bzw. 11 und 11' und Wellenumfangsgeschwindigkeit. Der Stautemperaturanteil ist dabei gering, da die genannte Relativgeschwindigkeit durch die gewählte Ausrichtung der Düsen 8 ebenfalls vergleichsweise gering ist.On the one hand, the
Der in den Ringkanal 4 durch die Düsen 8 eintretende Dampfmassenstrom beträgt etwa 3 % des insgesamt durch den Einströmkanal 2 zugeführten Dampfmassenstromes. Die Temperaturabsenkung in dem unterhalb der Wellenabschirmung 6 liegenden Bereich der Welle 5 liegt gegenüber der Temperatur des einströmenden Dampfes bei 20 °K am Anfang des Drallfeldes in der axialen Mitte M und bei 10 bis 15 °K am jeweiligen Ende des Drallfeldes. Die für diese Kühlung der Welle erforderliche Verbrauchserhöhung liegt bei ungefähr 0,06 % und entspricht damit den bei Fremdkühlung durch von außen her eingeleiteten Kühldampf erreichbaren Werten. Die geringfügige Verringerung der Kühlwirkung am jeweiligen Ende des Drallfeldes kann ggf. durch eine auf der Welle 5 zusätzlich angeordnete Laufschaufelreihe vermieden werden. Diese in der axialen Mitte M und im Ringkanal 4 angeordnete Laufschaufelreihe könnte zweckmäßigerweise als Freistrahlturbine ausgebildet werden.The steam mass flow entering the annular duct 4 through the nozzles 8 is approximately 3% of the total steam mass flow supplied through the inflow duct 2. The temperature drop in the area of the
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AT83102038T ATE16303T1 (en) | 1982-03-16 | 1983-03-02 | AXIALLY ACTUATED STEAM TURBINE, PARTICULARLY IN A TWO-SCREW VERSION. |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19823209506 DE3209506A1 (en) | 1982-03-16 | 1982-03-16 | AXIAL STEAM TURBINE IN PARTICULAR, IN PARTICULAR VERSION |
DE3209506 | 1982-03-16 |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0088944A1 EP0088944A1 (en) | 1983-09-21 |
EP0088944B1 true EP0088944B1 (en) | 1985-10-30 |
Family
ID=6158377
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP83102038A Expired EP0088944B1 (en) | 1982-03-16 | 1983-03-02 | Axial flow steam turbine, especially of the double-flow type |
Country Status (9)
Country | Link |
---|---|
US (1) | US4571153A (en) |
EP (1) | EP0088944B1 (en) |
JP (1) | JPS58167802A (en) |
AR (1) | AR229899A1 (en) |
AT (1) | ATE16303T1 (en) |
BR (1) | BR8301277A (en) |
DE (2) | DE3209506A1 (en) |
ES (1) | ES8401567A1 (en) |
IN (1) | IN158028B (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6048169A (en) * | 1996-06-21 | 2000-04-11 | Siemens Aktiengesellschaft | Turbine shaft and method for cooling a turbine shaft |
CN107002494A (en) * | 2014-10-15 | 2017-08-01 | 西门子公司 | The controllable cooling of turbine wheel shaft |
Families Citing this family (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59153901A (en) * | 1983-02-21 | 1984-09-01 | Fuji Electric Co Ltd | Cooling device for rotor in steam turbine |
DE3424139C2 (en) * | 1984-06-30 | 1996-02-22 | Bbc Brown Boveri & Cie | Gas turbine rotor |
US4764084A (en) * | 1987-11-23 | 1988-08-16 | Westinghouse Electric Corp. | Inlet flow guide for a low pressure turbine |
DE19620828C1 (en) * | 1996-05-23 | 1997-09-04 | Siemens Ag | Steam turbine shaft incorporating cooling circuit |
AU768316B2 (en) * | 1999-08-04 | 2003-12-11 | Frymaster Corporation, The | High speed variable size toaster |
US6854954B2 (en) * | 2003-03-03 | 2005-02-15 | General Electric Company | Methods and apparatus for assembling turbine engines |
US20070065273A1 (en) * | 2005-09-22 | 2007-03-22 | General Electric Company | Methods and apparatus for double flow turbine first stage cooling |
US7322789B2 (en) * | 2005-11-07 | 2008-01-29 | General Electric Company | Methods and apparatus for channeling steam flow to turbines |
DE502006007968D1 (en) * | 2006-08-25 | 2010-11-11 | Siemens Ag | Swirl-cooled rotor weld seam |
US7874795B2 (en) * | 2006-09-11 | 2011-01-25 | General Electric Company | Turbine nozzle assemblies |
US8317458B2 (en) * | 2008-02-28 | 2012-11-27 | General Electric Company | Apparatus and method for double flow turbine tub region cooling |
US8096748B2 (en) * | 2008-05-15 | 2012-01-17 | General Electric Company | Apparatus and method for double flow turbine first stage cooling |
US8167535B2 (en) * | 2008-07-24 | 2012-05-01 | General Electric Company | System and method for providing supercritical cooling steam into a wheelspace of a turbine |
US8414252B2 (en) * | 2010-01-04 | 2013-04-09 | General Electric Company | Method and apparatus for double flow turbine first stage cooling |
US8657562B2 (en) * | 2010-11-19 | 2014-02-25 | General Electric Company | Self-aligning flow splitter for steam turbine |
EP3056663A1 (en) * | 2015-02-10 | 2016-08-17 | Siemens Aktiengesellschaft | Axial flow steam turbine, especially of the double-flow type |
DE102015215144B4 (en) * | 2015-08-07 | 2017-11-09 | MTU Aero Engines AG | Device and method for influencing the temperatures in inner ring segments of a gas turbine |
JP6204966B2 (en) * | 2015-12-24 | 2017-09-27 | 三菱日立パワーシステムズ株式会社 | Steam turbine |
JP6204967B2 (en) * | 2015-12-24 | 2017-09-27 | 三菱日立パワーシステムズ株式会社 | Steam turbine |
DE112016006048T5 (en) * | 2015-12-24 | 2018-09-20 | Mitsubishi Hitachi Power Systems, Ltd. | STEAM TURBINE |
US20180080324A1 (en) * | 2016-09-20 | 2018-03-22 | General Electric Company | Fluidically controlled steam turbine inlet scroll |
Family Cites Families (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA536533A (en) * | 1957-01-29 | E. P. Johnson William | Gas turbines | |
CH159225A (en) * | 1930-11-04 | 1932-12-31 | Escher Wyss Maschf Ag | Centrifugal pump. |
FR851531A (en) * | 1938-03-15 | 1940-01-10 | Dual circulation turbine with internal admission | |
US3147951A (en) * | 1961-05-29 | 1964-09-08 | Garrett Corp | Fluid pressure operated turbine |
CH430757A (en) * | 1963-01-18 | 1967-02-28 | Siemens Ag | Steam turbine |
DE1962031U (en) * | 1963-01-18 | 1967-06-15 | Siemens Ag | STEAM TURBINE. |
US3232580A (en) * | 1963-07-18 | 1966-02-01 | Birmann Rudolph | Centripetal turbine |
US3291447A (en) * | 1965-02-15 | 1966-12-13 | Gen Electric | Steam turbine rotor cooling |
US3429557A (en) * | 1966-06-30 | 1969-02-25 | Gen Electric | Steam turbine rotor cooling arrangement |
NL139802B (en) * | 1968-05-31 | 1973-09-17 | Stork Koninklijke Maschf | TURBINE FOR A COMPRESSIBLE MEDIUM. |
DE2140490A1 (en) * | 1971-07-26 | 1973-02-01 | Bbc Brown Boveri & Cie | DEVICE FOR COOLING THE ROTOR OF A STEAM TURBINE |
DE2213071B2 (en) * | 1972-03-17 | 1975-05-28 | Kraftwerk Union Ag, 4330 Muelheim | Guide channel without guide vanes for generating swirl in front of the first rotor blade ring of turbines |
JPS5650084B2 (en) * | 1972-04-26 | 1981-11-26 | ||
US3994630A (en) * | 1974-08-21 | 1976-11-30 | International Harvester Company | Monorotor turbine and method of cooling |
JPS5215907A (en) * | 1975-07-29 | 1977-02-05 | Toshiba Corp | Reheat steam turbine rotor cooling system |
JPS5374608A (en) * | 1976-12-15 | 1978-07-03 | Hitachi Ltd | Cooling device for steam turbine |
JPS5423805A (en) * | 1977-07-26 | 1979-02-22 | Toshiba Corp | Reheating-turbine rotor overheat preventive device |
DE2928487A1 (en) * | 1979-07-14 | 1981-02-05 | Philips Patentverwaltung | METHOD FOR MEASURING THE RELATIVE HUMIDITY OF A MEASUREMENT WITH THE AID OF MICROWAVES IN THE GHZ RANGE |
-
1982
- 1982-03-16 DE DE19823209506 patent/DE3209506A1/en not_active Withdrawn
-
1983
- 1983-02-03 IN IN128/CAL/83A patent/IN158028B/en unknown
- 1983-02-04 AR AR292051A patent/AR229899A1/en active
- 1983-03-02 DE DE8383102038T patent/DE3361096D1/en not_active Expired
- 1983-03-02 EP EP83102038A patent/EP0088944B1/en not_active Expired
- 1983-03-02 AT AT83102038T patent/ATE16303T1/en not_active IP Right Cessation
- 1983-03-14 JP JP58042082A patent/JPS58167802A/en active Granted
- 1983-03-15 BR BR8301277A patent/BR8301277A/en unknown
- 1983-03-15 US US06/475,458 patent/US4571153A/en not_active Expired - Lifetime
- 1983-03-15 ES ES520606A patent/ES8401567A1/en not_active Expired
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6048169A (en) * | 1996-06-21 | 2000-04-11 | Siemens Aktiengesellschaft | Turbine shaft and method for cooling a turbine shaft |
US6102654A (en) * | 1996-06-21 | 2000-08-15 | Siemens Aktiengesellschaft | Turbomachine and method for cooling a turbomachine |
CN107002494A (en) * | 2014-10-15 | 2017-08-01 | 西门子公司 | The controllable cooling of turbine wheel shaft |
Also Published As
Publication number | Publication date |
---|---|
BR8301277A (en) | 1983-11-22 |
EP0088944A1 (en) | 1983-09-21 |
DE3361096D1 (en) | 1985-12-05 |
AR229899A1 (en) | 1983-12-30 |
IN158028B (en) | 1986-08-16 |
ATE16303T1 (en) | 1985-11-15 |
JPH0440522B2 (en) | 1992-07-03 |
JPS58167802A (en) | 1983-10-04 |
ES520606A0 (en) | 1983-12-16 |
US4571153A (en) | 1986-02-18 |
ES8401567A1 (en) | 1983-12-16 |
DE3209506A1 (en) | 1983-09-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0088944B1 (en) | Axial flow steam turbine, especially of the double-flow type | |
EP0170938B1 (en) | Blade and seal clearance optimization device for compressors of gas turbine power plants, particularly of gas turbine jet engines | |
DE60318792T2 (en) | Bleed air housing for a compressor | |
DE112011104298B4 (en) | Gas turbine engine with secondary air circuit | |
DE60133629T2 (en) | METHOD FOR OPERATING A GAS TURBINE WITH ADJUSTABLE RODS | |
DE60031744T2 (en) | Turbine combustor assembly | |
DE3713923C2 (en) | Cooling air transmission device | |
DE2943464A1 (en) | GASKET DEVICE FOR A GAS TURBINE ENGINE | |
DE1626130A1 (en) | Gas turbine engine plant | |
CH702000A2 (en) | Swirl chambers to the gap flow control. | |
EP0397768B1 (en) | Turbine for an exhaust gas turbocharger | |
DE3116923C2 (en) | ||
DE2654525C1 (en) | Flow machine with a control device for keeping the radial clearance constant between the rotor blade tips and the stator construction | |
EP2407652A1 (en) | Gas turbine with a secondary air system and method for operating such a gas turbine | |
EP3064706A1 (en) | Guide blade assembly for a flow engine with axial flow | |
CH709266B1 (en) | Turbine blade and method for balancing a tip shroud of a turbine blade and gas turbine. | |
EP3287611B1 (en) | Gas turbine | |
DE3428206C2 (en) | Stator arrangement in a gas turbine | |
CH663251A5 (en) | DEVICE FOR COOLING THE ROTORS OF STEAM TURBINES. | |
EP3561228A1 (en) | Turbomachine and blade, blade segment and assembly for a turbomachine | |
DE10392802B4 (en) | steam turbine | |
WO2010063575A1 (en) | Axial compressor for a gas turbine having passive radial gap control | |
EP1001138B1 (en) | Turbine blade tip sealing | |
DE102016222097A1 (en) | Fuel nozzle of a gas turbine with swirl generator | |
DE3830784A1 (en) | GAS TURBINE ENGINE |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Designated state(s): AT CH DE FR IT LI NL |
|
17P | Request for examination filed |
Effective date: 19831007 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
ITF | It: translation for a ep patent filed | ||
AK | Designated contracting states |
Designated state(s): AT CH DE FR IT LI NL |
|
REF | Corresponds to: |
Ref document number: 16303 Country of ref document: AT Date of ref document: 19851115 Kind code of ref document: T |
|
REF | Corresponds to: |
Ref document number: 3361096 Country of ref document: DE Date of ref document: 19851205 |
|
ET | Fr: translation filed | ||
PLBI | Opposition filed |
Free format text: ORIGINAL CODE: 0009260 |
|
PLAB | Opposition data, opponent's data or that of the opponent's representative modified |
Free format text: ORIGINAL CODE: 0009299OPPO |
|
26 | Opposition filed |
Opponent name: BBC AKTIENGESELLSCHAFT BROWN,BOVERI & CIE. Effective date: 19860729 |
|
R26 | Opposition filed (corrected) |
Opponent name: BBC AKTIENGESELLSCHAFT BROWN,BOVERI & CIE. Effective date: 19860729 |
|
NLR1 | Nl: opposition has been filed with the epo |
Opponent name: BBC AKTIENGESELLSCHAFT BROWN,BOVERI & CIE. |
|
RAP2 | Party data changed (patent owner data changed or rights of a patent transferred) |
Owner name: SIEMENS AKTIENGESELLSCHAFT BERLIN UND MUENCHEN |
|
NLT2 | Nl: modifications (of names), taken from the european patent patent bulletin |
Owner name: SIEMENS AKTIENGESELLSCHAFT TE BERLIJN EN MUENCHEN, |
|
PLBN | Opposition rejected |
Free format text: ORIGINAL CODE: 0009273 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: OPPOSITION REJECTED |
|
27O | Opposition rejected |
Effective date: 19880304 |
|
NLR2 | Nl: decision of opposition | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 19890224 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 19890331 Year of fee payment: 7 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Effective date: 19900302 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Effective date: 19901001 |
|
NLV4 | Nl: lapsed or anulled due to non-payment of the annual fee | ||
ITTA | It: last paid annual fee | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20020326 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20020521 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20020610 Year of fee payment: 20 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20030301 Ref country code: CH Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20030301 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PLAB | Opposition data, opponent's data or that of the opponent's representative modified |
Free format text: ORIGINAL CODE: 0009299OPPO |