JPS59153901A - Cooling device for rotor in steam turbine - Google Patents

Cooling device for rotor in steam turbine

Info

Publication number
JPS59153901A
JPS59153901A JP2738683A JP2738683A JPS59153901A JP S59153901 A JPS59153901 A JP S59153901A JP 2738683 A JP2738683 A JP 2738683A JP 2738683 A JP2738683 A JP 2738683A JP S59153901 A JPS59153901 A JP S59153901A
Authority
JP
Japan
Prior art keywords
steam
inflow chamber
rotor
auxiliary
turbine rotor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2738683A
Other languages
Japanese (ja)
Other versions
JPS644042B2 (en
Inventor
Yasunari Yoshie
吉江 耕也
Takao Yamamoto
隆夫 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Fuji Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd, Fuji Electric Manufacturing Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2738683A priority Critical patent/JPS59153901A/en
Priority to DE19843406071 priority patent/DE3406071A1/en
Priority to CH79384A priority patent/CH663251A5/en
Publication of JPS59153901A publication Critical patent/JPS59153901A/en
Publication of JPS644042B2 publication Critical patent/JPS644042B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/02Blade-carrying members, e.g. rotors
    • F01D5/08Heating, heat-insulating or cooling means
    • F01D5/081Cooling fluid being directed on the side of the rotor disc or at the roots of the blades
    • F01D5/084Cooling fluid being directed on the side of the rotor disc or at the roots of the blades the fluid circulating at the periphery of a multistage rotor, e.g. of drum type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D3/00Machines or engines with axial-thrust balancing effected by working-fluid
    • F01D3/02Machines or engines with axial-thrust balancing effected by working-fluid characterised by having one fluid flow in one axial direction and another fluid flow in the opposite direction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/02Blade-carrying members, e.g. rotors
    • F01D5/08Heating, heat-insulating or cooling means

Abstract

PURPOSE:To aim at enhancing the effect of cooling, by arranging auxiliary movable blades along the outer periphery of a rotor in opposite to auxiliary stationary blades laid on a partition member defining a counter inflow chamber so that the outer periphery of the rotor is cooled down by the steam which has passed through the auxiliary movable blades. CONSTITUTION:Auxiliary movable blades 46 are arranged along the outer periphery of a rotor 40 in opposite to auxiliary stationary blades 44 arranged on the intermediate section of a partition member 43 which divides a steam inflow chamber into a main steam inflow chamber 14a and a counter steam inflow chamber 14b. The steam which is introduced in the counter inflow chamber 14b works through the auxiliary movable blades 46, and thereafter, flows along the counter inflow chamber 14b around the outer periphery of the rotor 40. With this arrangement, the outer surface of the rotor 40 may be maintained at a low temperature.

Description

【発明の詳細な説明】 部分の蒸気タービンロータの冷却装置に関する。[Detailed description of the invention] The present invention relates to a cooling device for a partial steam turbine rotor.

一般に蒸気タービンの作動流体−は熱サイクルの効率向
上を目的として流入部ではできる,,#り高温にするこ
とが要請され、タービンロータ材の高温強度の許容範囲
内でより高温の作動流体を流入するだめに該高温の作動
流体が流入する部分のタービンロータ表面をより低温の
作動流体で冷却する方法がとられ、より簡単でかつ作動
流体の熱サイクルに影響されない冷却装置が要望される
In general, the working fluid of a steam turbine is required to be heated to a higher temperature at the inlet in order to improve the efficiency of the thermal cycle, and the higher temperature working fluid is injected within the allowable range of the high temperature strength of the turbine rotor material. In order to avoid this problem, a method is used to cool the surface of the turbine rotor at a portion where the high temperature working fluid flows in with a lower temperature working fluid, and there is a need for a simpler cooling device that is not affected by the thermal cycle of the working fluid.

第1図は従来の実施例を示し、ダブルフローの蒸気ター
ビンの高湿蒸気流入室要部の縦断面図である。豊におい
て、11′は第1段の静翼、12は@2段の静翼を示し
、11は第1段の動翼、12は第2段の動翼を示す。各
段には静翼11’、12′および11; 12がそれぞ
れタービンロータ10の回転方向に棲数個配列されてお
り、静翼11”、12′は静翼ホルダlOに、また動j
lll、12はタービンロータ1oに取り付けられ、翼
の先端部分には図示しないがともにシュラウドが設けら
れている。
FIG. 1 shows a conventional embodiment, and is a vertical cross-sectional view of a main part of a high-humidity steam inlet chamber of a double-flow steam turbine. In the figure, 11' indicates a first-stage stator blade, 12 indicates a second-stage stator blade, 11 indicates a first-stage moving blade, and 12 indicates a second-stage moving blade. In each stage, a number of stator blades 11', 12' and 11;
Ill and 12 are attached to the turbine rotor 1o, and a shroud (not shown) is provided at the tip of the blade.

13は環状の隔壁部材で、高温蒸気の流入室14を挾ん
で第14の静翼11’間に設けられ、高温蒸気が流入す
る部分のタービンロータ10の外周を蓋っている。高温
蒸気は流入口15から流入室14に入り、16矢視方向
に分流し、静翼11゛および動翼11を順次通り抜けな
がらタービンロータ1゜を回転させるトルクを発生させ
る。17は冷却流体を流す管で、高温蒸気の流入口15
から隔壁部材13に挿入され、隔壁部材13とタービン
ロータ10との間の隙間を18矢視方向に冷却流体が流
れるようにしである。従って、高温蒸気が流入する部“
分のタービンロータ10の表面が冷却され、タービンロ
ータ利の高温強度の許容範囲内でより高温の蒸気を流入
することが可能となる。しかしながら、この方法におい
ては冷却用流体のための配管系統が必要、で構造が複雑
になることと、熱サイクルの変化や高温と低温の流体の
混合によってエネルギ損失を生ずるという欠点があった
Reference numeral 13 denotes an annular partition member, which is provided between the fourteenth stationary blades 11', sandwiching the high-temperature steam inflow chamber 14, and covers the outer periphery of the turbine rotor 10 at the portion into which the high-temperature steam flows. The high-temperature steam enters the inlet chamber 14 from the inlet 15, is divided in the direction of arrow 16, and passes through the stationary blades 11' and the rotor blades 11 in sequence, generating torque that rotates the turbine rotor 1°. 17 is a pipe through which cooling fluid flows, and an inlet 15 for high temperature steam.
The cooling fluid is inserted into the partition wall member 13 from above, so that cooling fluid flows through the gap between the partition wall member 13 and the turbine rotor 10 in the direction of arrow 18. Therefore, the area where high-temperature steam flows is
The surface of the turbine rotor 10 is cooled, allowing the inflow of higher temperature steam within the allowable range of the high temperature strength of the turbine rotor. However, this method requires a piping system for the cooling fluid, which complicates the structure, and has the disadvantage of causing energy loss due to changes in the thermal cycle and mixing of high and low temperature fluids.

第2図は従来の他の実1a例を示し、シングルフローの
蒸気タービンの高温蒸気流入室要部の縦断面図である。
FIG. 2 shows another conventional example 1a, which is a longitudinal cross-sectional view of a main part of a high-temperature steam inlet chamber of a single-flow steam turbine.

図において、20′は静翼ホルダ、20バタービンロー
タで、静翼ホルダ20′には高温蒸気流入口25を挾ん
で一方に第1段の静翼21′と第1段の動翼21が配列
され、他方に第2段の静R22“および第2段の動翼2
2以降が配列されている。高温蒸気は流入口25から2
6矢視方向諒流れ、遮へい用カバー23を介して第1段
の静翼21′から第1段の動翼21を通り、タービンロ
ータ20と静翼ホルダ20’の間に設けられた軸封装置
24により27矢視方向に反転し、温度の低下した蒸気
が第2段以降の翼列に導かれる。これにより、高温蒸気
が直接−タービンロータ20の表面に触れることが避け
られる。しかしながら、この方法は流路が複雑になるこ
とによって流体の圧力損失を生ずるという欠点があった
In the figure, 20' is a stator blade holder, and 20 is a butter turbine rotor, and the stator blade holder 20' has a first stage stator blade 21' and a first stage moving blade 21 on one side with a high temperature steam inlet 25 in between. the second stage static R22'' and the second stage rotor blade 2 on the other hand.
2 and later are arranged. High temperature steam flows from inlet 25 to 2
6, the flow passes from the first stage stator blade 21' to the first stage rotor blade 21 via the shielding cover 23, and the shaft seal provided between the turbine rotor 20 and the stator vane holder 20'. The steam is reversed in the direction of arrow 27 by the device 24, and the steam whose temperature has been lowered is guided to the second and subsequent stages of blades. This avoids direct contact of hot steam with the surface of the turbine rotor 20. However, this method has the disadvantage that fluid pressure loss occurs due to the complexity of the flow path.

第3図は従来の他の実施例を示し、図において(a、)
はダブルフローの蒸気タービンの高温蒸気流入室要部の
縦断面、(b)は(α)のA−A断面を示すものである
。図において、第1図に示すものと同じ構成要素のもの
には同じ符号を付してその説明を省略する。高温蒸気は
流入口15から流入室14に入り、その一部が隔壁部材
33に傾斜して設けられた噴出口34に導かれ、噴出口
34から蒸気はタービンロータ10の35矢視回転方向
にタービンロータ外周面に沿って流出されるようにしで
ある。さらに蒸気にはタービンロータ外周の周速度と同
一ないしそれより早い旋回速度を与え、絞り効果とこの
速度エネルギに相当する温度だけ隔壁部材33とタービ
ンロータ10との間の流体温度を低下さ、せることによ
ってタービンロータ・10の表面を冷却する方法が知ら
れている。
FIG. 3 shows another conventional embodiment, in which (a,)
2 shows a vertical cross section of the main part of the high temperature steam inlet chamber of a double flow steam turbine, and FIG. In the figure, the same components as those shown in FIG. 1 are given the same reference numerals and their explanations will be omitted. The high-temperature steam enters the inlet chamber 14 from the inlet 15, and a part of it is guided to the jet nozzle 34 provided at an angle on the partition wall member 33. From the jet nozzle 34, the steam flows in the direction of rotation of the turbine rotor 10 in the direction of arrow 35. It is arranged so that it flows out along the outer peripheral surface of the turbine rotor. Further, the steam is given a swirling speed that is the same as or faster than the circumferential speed of the turbine rotor, and the temperature of the fluid between the partition wall member 33 and the turbine rotor 10 is lowered by a throttling effect and a temperature corresponding to this speed energy. A method is known for cooling the surface of the turbine rotor 10 by cooling the surface of the turbine rotor 10.

しかしながら、この方法では温度低下σ)効果がタービ
ンロータ外周の周速度によって制限され、あまり大きな
効果が得られないと同時に、摩擦損失などに1って流体
の旋回速度が低下すると速度エネルギが再び熱エネルギ
に戻って流体の温度が上昇し冷却効果が減少するという
欠点があった。
However, with this method, the temperature reduction effect is limited by the circumferential speed of the turbine rotor, and at the same time, when the swirling speed of the fluid decreases due to friction loss, the velocity energy is regenerated into heat. The disadvantage is that the energy returned increases the temperature of the fluid and reduces the cooling effect.

本発明は上記のような欠点を除去し、よりffji単で
かつ作動流体の熱サイクルに影響されない冷却効果の大
きな蒸気タービンロータの冷却装置を提供することを目
的とする。
SUMMARY OF THE INVENTION An object of the present invention is to eliminate the above-mentioned drawbacks and provide a steam turbine rotor cooling device that is simpler in terms of ffji and has a large cooling effect that is not affected by the thermal cycle of the working fluid.

本発明によれば上記の″目的は、環状の蒸気流入室を該
流入室の固定部側に支承された環状の隔壁部材により外
径側の主蒸気流入室と内径側の副族気流入室とに分割し
、前記隔壁部材内に輻流形の補助静翼を配して該補助静
翼相互間に通じて前記主蒸気流入室から耐蒸気流入室に
タービンロータの冷却用蒸気を輻流方向から導入し、タ
ービンロータの前記補助静翼に対向する外周部に耐蒸気
流入室に流入する前記冷却用蒸気を受けて動力を発生す
るとともに該蒸気の流路を輻流方向から軸流方向に変え
る補助動翼を配し、該補助動翼を通過した仕事ずみ蒸気
によりタービンロータの蒸気流入室部分の外周を冷却す
るようにしたことにより達せられる。
According to the present invention, the above object is achieved by forming an annular steam inflow chamber into a main steam inflow chamber on the outer diameter side and a subgroup air inflow chamber on the inner diameter side by an annular partition member supported on the fixed part side of the inflow chamber. radial-type auxiliary stator vanes are disposed within the partition wall member to communicate between the auxiliary stator vanes to direct cooling steam for the turbine rotor from the main steam inflow chamber to the steam inflow resistant chamber in the radial direction. Introduced from the turbine rotor, the cooling steam flowing into the steam inflow resistant chamber is received at the outer circumferential portion of the turbine rotor facing the auxiliary stationary vanes, and power is generated, and the flow path of the steam is changed from the radial flow direction to the axial flow direction. This is achieved by arranging auxiliary rotor blades that change the temperature and cooling the outer periphery of the steam inlet chamber portion of the turbine rotor by the worked steam that has passed through the auxiliary rotor blades.

以下本発明の実施例を図面にもとづいて説明する。第4
図は本発明の実施例を示し、ダブルフローの蒸気タービ
ンの高温蒸気流入室要部の縦断面図、第5図は第4図に
示すP部の詳細図、第6図はさらに第4図の要部を示し
図において(α)は第4図のB −E断面、(6)は(
α)に示す9部の詳細を示すものである。図において第
1図に示すものと同じ構成要素のものには同じ符号を付
してその説明を省略する。43は環状の隔壁部材で、高
温蒸気のM(、入室14を挾んで第1段の静翼11′間
にタービンロータ40の外周を蓋って設けられ、第6図
におけ1ル(α)、G9示すように2分割されていると
ともに、軸方向の両端部に第5図に示すような突出部4
3a、を備えて第1段の静R11のシュラウド19によ
り支持されている。蒸気流入室14はこの隔壁部材43
により外径側の主蒸気流入室14αと内径側の耐蒸気流
入室14/lとに分割される。また、主蒸気流入室14
a、と耐蒸気流入室14Aとを仕切りる隔壁部材43の
中間部分には第6図に示すように複数個の補助節R44
が設けられ、補助静翼44の相互間に前記2つの主蒸気
流入室14αと耐蒸気流入室14bとが互いに連通ずる
開口部45が設けられている。この開口部45と対向す
るタービンロータ40の外周には第6図における(b)
に示すように複数個の補助動R46が配列されている。
Embodiments of the present invention will be described below based on the drawings. Fourth
The figures show an embodiment of the present invention; FIG. 5 is a longitudinal cross-sectional view of the main part of the high-temperature steam inlet chamber of a double-flow steam turbine; FIG. 5 is a detailed view of section P shown in FIG. 4; and FIG. In the figure, (α) is the B-E cross section in Figure 4, and (6) is (
This figure shows the details of part 9 shown in α). In the figure, the same components as those shown in FIG. 1 are given the same reference numerals and their explanations will be omitted. Reference numeral 43 denotes an annular partition wall member, which is provided to cover the outer periphery of the turbine rotor 40 between the stator blades 11' of the first stage, sandwiching the inlet chamber 14, and 43 is an annular partition member. ), is divided into two parts as shown in G9, and has protrusions 4 as shown in FIG.
3a, and is supported by the shroud 19 of the first stage static R11. The steam inflow chamber 14 is formed by this partition wall member 43.
It is divided into a main steam inflow chamber 14α on the outer diameter side and a steam-resistant inflow chamber 14/l on the inner diameter side. In addition, the main steam inflow chamber 14
As shown in FIG.
An opening 45 is provided between the auxiliary stationary vanes 44, through which the two main steam inflow chambers 14α and the steam-resistant inflow chamber 14b communicate with each other. The outer periphery of the turbine rotor 40 facing this opening 45 is shown in FIG.
As shown in the figure, a plurality of auxiliary movement R46 are arranged.

4Qαは補助動翼46の補強リブである。高温蒸気は第
4図に示すように流入口15から47矢視方向に流入し
て主蒸気流入室14αに導かれる。主蒸気流入室14α
に導かれた蒸気は大部分が16矢視方向に流れ、第1段
の静翼11゛および第1段の動翼11を順次通りvjけ
t「がらタービンロータ40を回転させるトルクを発生
させる。また、蒸気の一部は隔壁部材43の中間部分に
設けらオ]た補助静翼44間の相互間0部45を第6図
における(A)に示すように48輻流方向に通って補助
動翼46に噴射し、タービンロータ40を回転させるト
ルクを発生させる。補助動翼46で仕事を終った蒸気は
耐蒸気流入室14bの左右に18矢視軸流方向に流れて
第1段の静翼11″の出口側で主蒸気流入室14αから
の蒸気と合流する。このように補助静翼44を介して蒸
気タービンの入口の高温蒸気の一部を耐蒸気流入室14
/Iに導入し、補助動翼46で仕事をさせることによっ
て導入蒸気の温度を降下させ、この導入蒸気によってタ
ービンロータ40の表面温度をタービン入口の高温に比
べて低い温度に保つことができる。
4Qα is a reinforcing rib of the auxiliary rotor blade 46. As shown in FIG. 4, the high temperature steam flows from the inlet 15 in the direction of arrow 47 and is guided to the main steam inflow chamber 14α. Main steam inflow chamber 14α
Most of the steam guided by the steam flows in the direction of arrow 16, passing through the first stage stationary blades 11 and the first stage rotor blades 11 in order to generate torque that rotates the turbine rotor 40. In addition, a part of the steam passes through the space 45 between the auxiliary stationary vanes 44 provided in the middle part of the partition wall member 43 in the radial direction 48 as shown in (A) in FIG. The steam is injected to the auxiliary rotor blades 46 to generate torque that rotates the turbine rotor 40.The steam that has completed its work in the auxiliary rotor blades 46 flows to the left and right of the steam-resistant inlet chamber 14b in the axial direction as seen by arrow 18, and is transferred to the first stage. The steam from the main steam inflow chamber 14α joins with the steam from the main steam inlet chamber 14α on the exit side of the stator vane 11″. In this way, a part of the high temperature steam at the inlet of the steam turbine is transferred to the steam inflow chamber 14 through the auxiliary stationary vanes 44.
/I, and the temperature of the introduced steam is lowered by performing work on the auxiliary rotor blades 46, and this introduced steam can maintain the surface temperature of the turbine rotor 40 at a lower temperature than the high temperature at the turbine inlet.

第7図は本発明の他の実施例を示し、図において(α)
はグプル70−の蒸気タービンの高温蒸気流入室要部の
縦断面、(b)は(cL)のa−O断面を示すものであ
る。、、図において第4図に示すものと同じ構成要素の
ものには同じ符号を何してその説明を省略する。第1段
の静翼11とタービンロータ40と−の間にラビリンス
パツキン71が設けられ、補助動翼45で仕事を終った
蒸気は耐蒸気流入室14’ Aを軸流方向に流れ、第1
段の静翼11に設けられた径方向孔72および静翼ホル
ダ10′に設けられた連通孔73を通って第2段の静翼
12′側に流出されるようにしだものである。
FIG. 7 shows another embodiment of the present invention, in which (α)
(b) shows a longitudinal cross section of the main part of the high temperature steam inlet chamber of the steam turbine of Gupuru 70-, and (b) shows the a-O cross section of (cL). In the figures, the same components as those shown in FIG. 4 are designated by the same reference numerals, and their explanations will be omitted. A labyrinth packing 71 is provided between the first-stage stationary blade 11 and the turbine rotor 40, and the steam that has finished its work at the auxiliary rotor blade 45 flows through the steam-resistant inflow chamber 14'A in the axial flow direction,
The liquid flows out to the second stage stator vane 12' side through a radial hole 72 provided in the stator vane 11 of the stage and a communication hole 73 provided in the stator vane holder 10'.

このように第1段動翼11以降のより低圧側に流出させ
ることにより耐蒸気流入室14bを流れる蒸気の圧力が
低下して温度が下がる。従って、側蓋気流入室146部
分のタービンロータ40の表面温度をより低い温度に保
つことができる。
By causing the steam to flow out to the lower pressure side after the first stage rotor blade 11 in this manner, the pressure of the steam flowing through the steam-resistant inflow chamber 14b is lowered, and the temperature is lowered. Therefore, the surface temperature of the turbine rotor 40 in the side cover air inflow chamber 146 portion can be maintained at a lower temperature.

第8図は本発明の更に他の実施例を示し、シングルフロ
ーの蒸気タービンの高温蒸気流入室要部の縦断面図であ
る。図において、87は静翼ホルダ、 80がタービン
ロータで、高温蒸気流入室85を挾んで静翼ホルダ87
と第1段静翼列81との間に環状の隔壁部材83が設け
られ、蒸気流入室85は主蒸気流入室85αと副蒸気流
入室85bとに分割される。隔壁部材83には第6図に
示したと同様な補助静翼84が設けられ、補助静翼84
と対向するタービンロータ80には補助動翼86が設け
られている。主蒸気は88α矢視方向に流れ第1段の静
翼列81以降の翼列に導かれる。補助静翼84を介して
副族気流入室85bに流入した蒸気は補助動R86で仕
事をし、一方の出口端がラビリンスパツキン89により
閉ざされていることにより、蒸気は88b矢視方向に流
れて第1段静翼81の出口側で主蒸気と合流し、蒸気流
入室85部分のタービンロータ8oの外周を冷却する。
FIG. 8 shows still another embodiment of the present invention, and is a longitudinal cross-sectional view of a main part of a high-temperature steam inlet chamber of a single-flow steam turbine. In the figure, 87 is a stator blade holder, 80 is a turbine rotor, and the stator blade holder 87 is sandwiched between the high temperature steam inflow chamber 85.
An annular partition member 83 is provided between the first stator vane row 81 and the steam inflow chamber 85, and the steam inflow chamber 85 is divided into a main steam inflow chamber 85α and a sub-steam inflow chamber 85b. The partition wall member 83 is provided with auxiliary stator vanes 84 similar to those shown in FIG.
Auxiliary rotor blades 86 are provided on the turbine rotor 80 facing the turbine rotor 80 . The main steam flows in the direction of arrow 88α and is guided to the first stage stator blade row 81 and subsequent blade rows. The steam that has flowed into the subgroup air inflow chamber 85b via the auxiliary stationary vane 84 does work in the auxiliary station R86, and because one outlet end is closed by the labyrinth packing 89, the steam flows in the direction of the arrow 88b. It merges with the main steam at the outlet side of the first stage stationary blade 81, and cools the outer periphery of the turbine rotor 8o in the steam inlet chamber 85 portion.

本発明は上記のように作動流体の一部を補助静翼を介し
てタービンロータの補助動翼に導き、該補助動翼を通過
した仕事ずみの低湿の作動流体“を副族気流入室に流通
したことにより、簡単な構造でかつ作動流体の熱サイク
ルに影響さねない冷却効果の大きな蒸気タービンロータ
の冷却装置を提供することができる。
As described above, the present invention guides a part of the working fluid to the auxiliary rotor blades of the turbine rotor via the auxiliary stator vanes, and distributes the worked, low-humidity working fluid that has passed through the auxiliary rotor blades to the subgroup air inflow chamber. As a result, it is possible to provide a steam turbine rotor cooling device that has a simple structure and has a large cooling effect that does not affect the thermal cycle of the working fluid.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の実施例を示し、ダブルフローの蒸気ター
ビンの高温蒸気流入室要部の縦断面図、第2図は従来の
他の実施例を示し、シングルフローの蒸気タービンの高
温蒸気流入室要部の縦断面図、第3図は従来の更に他の
実施例を示し、図において(α)はダブルフローの蒸気
タービンの高温蒸気流入室要部の縦断面、(h)は(α
)のA−A断面を示すもの、第4図は本発明の実施例を
示し、ダブルフローの蒸気タービンの高温蒸気流入室要
部の縦断面図、第5図は第4図に示すP部の詳細図、第
6図はさらに第4図の要部を示し面において(α)は第
4図のB−B断面、(b)は(α)に示すQ部の詳細を
示すもの、第7図は本発明の他の実施例を示し、図にお
いて(α)はダブルフローの蒸気タービンの高温蒸気流
入室要部の縦断面、(b)は(α)のa−C断面を示す
もの、第8図は本発明の更に他の実施例を示し、シング
ルフローの蒸気タービンの高温蒸気流入室要部の縦断面
図である。 1己81:静翼、14.85 :蒸気流入室、14α。 85σ :主蒸気流入室、14b、 85b  :副族
気流入室、40.80 :タービンロータ、43.83
 :隔壁部組、44.84 :補助静翼、46.86 
:補助動莢、71.89 :ラビリンスパッキン、72
:孔、73:連通孔。 j す 1 日 72 圀 (bン 74 図 11’ γ ム 口 (す 7′7  図 78 硼
Fig. 1 shows a conventional embodiment, which is a vertical sectional view of the main part of the high-temperature steam inlet chamber of a double-flow steam turbine, and Fig. 2 shows another conventional embodiment, which shows the high-temperature steam inflow of a single-flow steam turbine. A vertical cross-sectional view of the main part of the chamber, FIG. 3 shows still another conventional embodiment, in which (α) is a vertical cross-section of the main part of the high-temperature steam inlet chamber of a double-flow steam turbine, and (h) is
), FIG. 4 shows an embodiment of the present invention, and FIG. 5 is a longitudinal sectional view of the main part of the high temperature steam inlet chamber of a double flow steam turbine, and FIG. 5 shows the P section shown in FIG. 4. FIG. 6 further shows the main part of FIG. 4, and (α) shows the BB cross section of FIG. Figure 7 shows another embodiment of the present invention, in which (α) shows a longitudinal section of the main part of the high-temperature steam inlet chamber of a double-flow steam turbine, and (b) shows the a-C cross section of (α). FIG. 8 shows still another embodiment of the present invention, and is a longitudinal cross-sectional view of a main part of a high-temperature steam inlet chamber of a single-flow steam turbine. 1self 81: Stationary blade, 14.85: Steam inflow chamber, 14α. 85σ: Main steam inflow chamber, 14b, 85b: Subgroup air inflow chamber, 40.80: Turbine rotor, 43.83
: Bulkhead assembly, 44.84 : Auxiliary stator vane, 46.86
: Auxiliary casing, 71.89 : Labyrinth packing, 72
: hole, 73: communicating hole. j Su 1 day 72 圀(b74 Figure 11' γ mu 口(Su7'7 Figure 78 硼

Claims (1)

【特許請求の範囲】 1)環状の蒸気流入室を該流入室の固定部側に支承され
た環状の隔壁部材により外径側の主蒸気流入室と内径側
の側蓋気流入室とに分割し、前記隔壁部材内に輻流形の
補助静翼を配して該補助静翼相互間を通じて前記主蒸気
流入室から側蓋気流入室にタービンロータ冷却蒸気を輻
流方向から導入し、タービンロータの前記補助静翼に対
向する外周部に側蓋気流入室に流入する前記冷却用蒸気
を受けて動力を発生するとともに該蒸気の流路を軸流方
向から軸流方向に変える補助動翼を配し、該補助動翼を
通過した仕事ずみ蒸気によりタービンロータの蒸気流入
室部分の外周を冷却するようにしたことを特徴とする蒸
気タービンロータの冷却装置。 2、特許請求の範囲第1項記載の冷却装置において、蒸
気タービンが軸流復動形タービンであり、隔壁部材が両
端部において静翼により支持され、補助静翼が該隔壁部
材の軸方向中央部に配され、補助動翼が側蓋気流入室に
流入する冷却蒸気の流路を輻流方向から左右の軸流方向
に振り分けて変換するようにしたことを特徴とする蒸気
タービンロータの冷却装置。 3)、;l’l+よ。□い、よ18.。□工。5お  
:いて、隔壁部材の端部が静翼により支持され、該隔壁
部材端とタービンロータの外周との間にラビリンスパツ
キンが設け“られ、補助動翼からの冷却用蒸気が前記静
翼内に穿設された径方向孔および該静翼を支持する静翼
ホルダ内に穿設された連通孔を通じてタービンの低圧部
に導かれていることを特徴とする蒸気タービンロータの
冷却装置。
[Claims] 1) An annular steam inflow chamber is divided into a main steam inflow chamber on the outer diameter side and a side cover air inflow chamber on the inner diameter side by an annular partition member supported on the fixed part side of the inflow chamber. , radial-type auxiliary stator vanes are disposed within the partition wall member, and turbine rotor cooling steam is introduced from the main steam inflow chamber to the side cover air inflow chamber from the radial direction through the auxiliary stator vanes, and the turbine rotor is cooled. An auxiliary rotor blade is disposed on an outer peripheral portion facing the auxiliary stator vane, which generates power by receiving the cooling steam flowing into the side cover air inflow chamber and changes the flow path of the steam from an axial flow direction to an axial flow direction. A cooling device for a steam turbine rotor, characterized in that the outer periphery of a steam inflow chamber portion of the turbine rotor is cooled by the worked steam that has passed through the auxiliary rotor blades. 2. In the cooling device according to claim 1, the steam turbine is an axial flow double-acting turbine, the partition member is supported by stator vanes at both ends, and the auxiliary stator vane is located at the axial center of the partition member. A cooling device for a steam turbine rotor, characterized in that the auxiliary rotor blades are arranged in the side cover air inflow chamber and divide and convert the flow path of cooling steam flowing into the side cover air inflow chamber from the radial flow direction to the left and right axial flow directions. . 3), ;l'l+yo. □Yes, 18. . □Eng. 5
: The end of the partition wall member is supported by the stator blade, and a labyrinth packing is provided between the end of the partition wall member and the outer periphery of the turbine rotor, and cooling steam from the auxiliary rotor blade is perforated into the stator blade. A cooling device for a steam turbine rotor, characterized in that the cooling device is led to a low pressure part of a turbine through a radial hole provided and a communication hole drilled in a stator vane holder that supports the stator blade.
JP2738683A 1983-02-21 1983-02-21 Cooling device for rotor in steam turbine Granted JPS59153901A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2738683A JPS59153901A (en) 1983-02-21 1983-02-21 Cooling device for rotor in steam turbine
DE19843406071 DE3406071A1 (en) 1983-02-21 1984-02-20 Device for cooling the rotors of steam turbines
CH79384A CH663251A5 (en) 1983-02-21 1984-02-20 DEVICE FOR COOLING THE ROTORS OF STEAM TURBINES.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2738683A JPS59153901A (en) 1983-02-21 1983-02-21 Cooling device for rotor in steam turbine

Publications (2)

Publication Number Publication Date
JPS59153901A true JPS59153901A (en) 1984-09-01
JPS644042B2 JPS644042B2 (en) 1989-01-24

Family

ID=12219610

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2738683A Granted JPS59153901A (en) 1983-02-21 1983-02-21 Cooling device for rotor in steam turbine

Country Status (3)

Country Link
JP (1) JPS59153901A (en)
CH (1) CH663251A5 (en)
DE (1) DE3406071A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007085348A (en) * 2005-09-22 2007-04-05 General Electric Co <Ge> Method and device for double flow turbine first stage cooling
JP2011137459A (en) * 2010-01-04 2011-07-14 General Electric Co <Ge> Method and apparatus for cooling double flow turbine first stage
JP2015052311A (en) * 2013-09-09 2015-03-19 三菱重工業株式会社 Rotary machine
JP2015522130A (en) * 2012-07-12 2015-08-03 シーメンス アクティエンゲゼルシャフト Inflow segment for turbomachinery
KR20170067886A (en) * 2014-10-15 2017-06-16 지멘스 악티엔게젤샤프트 Controlled cooling of turbine shafts

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4129518A1 (en) * 1991-09-06 1993-03-11 Siemens Ag COOLING A LOW-BRIDGE STEAM TURBINE IN VENTILATION OPERATION
DE19620828C1 (en) * 1996-05-23 1997-09-04 Siemens Ag Steam turbine shaft incorporating cooling circuit
RU2182976C2 (en) * 1996-06-21 2002-05-27 Сименс Акциенгезелльшафт Turbine shaft and method of its cooling
EP1445427A1 (en) * 2003-02-05 2004-08-11 Siemens Aktiengesellschaft Steam turbine and method of operating a steam turbine
EP1785586B1 (en) * 2005-10-20 2014-05-07 Siemens Aktiengesellschaft Rotor of a turbomachine
CH699978A1 (en) * 2008-11-26 2010-05-31 Alstom Technology Ltd Steam turbine.
CN104314627B (en) 2009-02-25 2017-05-17 三菱日立电力系统株式会社 Method and device for cooling steam turbine generating equipment
LU91970B1 (en) * 2012-04-03 2013-10-04 Equitherm S A R L Turbine
EP3130748A1 (en) * 2015-08-14 2017-02-15 Siemens Aktiengesellschaft Rotor cooling for a steam turbine
TWI706139B (en) * 2019-10-25 2020-10-01 巨擘科技股份有限公司 Metal probe structure and method for fabricating the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3209506A1 (en) * 1982-03-16 1983-09-22 Kraftwerk Union AG, 4330 Mülheim AXIAL STEAM TURBINE IN PARTICULAR, IN PARTICULAR VERSION

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007085348A (en) * 2005-09-22 2007-04-05 General Electric Co <Ge> Method and device for double flow turbine first stage cooling
JP2011137459A (en) * 2010-01-04 2011-07-14 General Electric Co <Ge> Method and apparatus for cooling double flow turbine first stage
JP2015522130A (en) * 2012-07-12 2015-08-03 シーメンス アクティエンゲゼルシャフト Inflow segment for turbomachinery
JP2015052311A (en) * 2013-09-09 2015-03-19 三菱重工業株式会社 Rotary machine
KR20170067886A (en) * 2014-10-15 2017-06-16 지멘스 악티엔게젤샤프트 Controlled cooling of turbine shafts
JP2017535709A (en) * 2014-10-15 2017-11-30 シーメンス アクティエンゲゼルシャフト Controlled cooling of turbine shaft

Also Published As

Publication number Publication date
CH663251A5 (en) 1987-11-30
DE3406071A1 (en) 1984-08-23
JPS644042B2 (en) 1989-01-24

Similar Documents

Publication Publication Date Title
JPS59153901A (en) Cooling device for rotor in steam turbine
US3275294A (en) Elastic fluid apparatus
JP4662562B2 (en) Steam turbine and operation method thereof
US3291447A (en) Steam turbine rotor cooling
KR100389990B1 (en) Gas turbine
US2487514A (en) Turbine rotor cooling
US3427000A (en) Axial flow turbine structure
JPH02233802A (en) Cooling type turbine blade
JPH05340271A (en) Gas turbine engine case thermal control arrangement
JPH0689653B2 (en) Vane and packing clearance optimizer for gas turbine engine compressors
GB1225445A (en)
GB712051A (en) Improvements in or relating to axial-flow fluid machines
JP4990365B2 (en) Rotor for fluid machinery
CN103459778A (en) Gas turbine comprising a heat shield and method of operation
EP2028345A2 (en) Steam turbine
US3443790A (en) Steam cooled gas turbine
CA1245164A (en) Steam turbine high pressure vent and seal system
JP4525976B2 (en) Steam turbine
US2888240A (en) Fluid cooled barrel cylinder for turbines
US3063673A (en) Centripetal turbine
US3206166A (en) Elastic fluid apparatus
US2565594A (en) Turbine and the like
JP4867203B2 (en) gas turbine
US4441855A (en) Compressors
US3932064A (en) Rotary bladed fluid flow machine