EP0088944A1 - Axial flow steam turbine, especially of the double-flow type - Google Patents

Axial flow steam turbine, especially of the double-flow type Download PDF

Info

Publication number
EP0088944A1
EP0088944A1 EP83102038A EP83102038A EP0088944A1 EP 0088944 A1 EP0088944 A1 EP 0088944A1 EP 83102038 A EP83102038 A EP 83102038A EP 83102038 A EP83102038 A EP 83102038A EP 0088944 A1 EP0088944 A1 EP 0088944A1
Authority
EP
European Patent Office
Prior art keywords
shaft
steam
steam turbine
nozzles
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP83102038A
Other languages
German (de)
French (fr)
Other versions
EP0088944B1 (en
Inventor
Herbert Keller
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Kraftwerk Union AG
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=6158377&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0088944(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Kraftwerk Union AG, Siemens AG filed Critical Kraftwerk Union AG
Priority to AT83102038T priority Critical patent/ATE16303T1/en
Publication of EP0088944A1 publication Critical patent/EP0088944A1/en
Application granted granted Critical
Publication of EP0088944B1 publication Critical patent/EP0088944B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D3/00Machines or engines with axial-thrust balancing effected by working-fluid
    • F01D3/02Machines or engines with axial-thrust balancing effected by working-fluid characterised by having one fluid flow in one axial direction and another fluid flow in the opposite direction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/08Cooling; Heating; Heat-insulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/02Blade-carrying members, e.g. rotors
    • F01D5/08Heating, heat-insulating or cooling means

Definitions

  • the invention relates to an axially loaded steam turbine according to the preamble of claim 1.
  • Such a steam turbine is known from FR-PS 851 531.
  • a shaft shield is arranged in the region of the steam inflow taking place in the axial center, which shaft shield is attached to the radially inner ends of the guide vanes of the first guide vane rings of both flows.
  • the shaft shield enclosing the shaft at a distance is formed on the outer circumference in such a way that the steam flowing in in the radial direction is divided equally between the two floods and deflected in the axial direction. The shaft shielding thus prevents an immediate flow against the shaft surface by the steam flowing in in the radial direction.
  • the invention is therefore based on the object of further reducing the thermal stresses of the shaft in the region of the steam inflow in the case of an axially loaded steam turbine of the type mentioned without the use of cooling steam.
  • a small partial flow of the total inflowing steam is fed through tangentially arranged nozzles to the shaft area under the shaft shield.
  • the speed at which this partial flow enters the ring channel formed between the shaft and the shaft shielding corresponds the slope processed in the first vane ring.
  • the nozzles introduced into the shaft shielding are aligned with respect to the direction of rotation of the shaft in such a way that the swirl flow which forms in the ring channel leads the shaft circumferential speed.
  • the boundary layer temperature at the shaft corresponds to the static temperature of the steam which is reduced by the increase in the kinetic energy, increased by the proportion of the damming temperature of the comparatively low relative speed between the swirl flow and the shaft circumferential speed. Effective cooling of the shaft in the area of the steam inflow and in the area of the blade attachment of the first blade ring can thus be achieved by the nozzles introduced tangentially into the shaft shield.
  • a further improvement in the cooling effect can be achieved in that the first stage is designed as a weak reaction stage or, in the case of a double-flow version, that the first stage is designed as a weak reaction stage in both floods. This is intended to process as large a gradient as possible in the first guide vane ring, so that the static temperature of the partial flow introduced into the ring channel is reduced as much as possible by the corresponding increase in the kinetic energy.
  • the cross section of the nozzles is dimensioned such that the steam mass flow entering the annular duct is approximately 3% of the total steam mass flow supplied in the region of the steam inflow.
  • the steam flows in the direction of arrow 1 radially inward through an annular inflow channel 2, which is formed by the guide vane carriers 3 and 3 'of the two floods arranged in mirror image to the axial center M.
  • the steam flowing in in the radial direction is then divided equally between the two floods by deflection in the axial direction, but a small partial flow is introduced into an annular channel 4 which is formed between the shaft 5 and a shaft shield 6 concentric therewith and by a corresponding shaping from shaft 5 and shaft shield 6 slightly rising from the axial center M towards both sides.
  • the shaft shield 6 is on the radial inner ends of the guide vanes 7 and 7 'of the first guide vane ring attached to both floods.
  • the guide vanes 7 and 7 ' are in turn inserted into the guide vane carriers 3 and 3'.
  • the nozzles 8 are designed such that, seen in the direction of rotation of the shaft indicated by the arrow 9, they open tangentially into the annular channel 4 formed between the shaft 5 and the shaft shield 6. Since the partial flow diverted from the inflowing steam enters tangentially into the ring channel 4 through the nozzles 8, a swirl flow indicated by the arrow 10 forms there, which leads the wave circumferential speed.
  • the swirl flow 10 is then divided into two swirl flows starting from the axial center M, which are indicated in FIG. 1 by the arrows 11 and 11 'and along the shaft 5 as far as the rotor blades 12 and 12' of the respective first rotor blade ring of the two floods.
  • the speed at which the partial flow diverted from the incoming steam enters the nozzles 8 thus corresponds to the gradient processed in the first guide vane ring of the two floods, and this speed of entry can be increased by designing the respective first stage as a weak reaction stage.
  • the shaft shield 6 prevents on the one hand an immediate; flowable flow onto the surface of the shaft 5 by the hot steam flowing radially in the direction of arrow 1.
  • the boundary layer temperature corresponds of the swirl flows 10 or 11 and 11 'in the ring channel 4 of the static temperature of the steam which is reduced by the increase in the kinetic energy, increased by the accumulation temperature portion of the relative speed between the swirl flow 10 or 11 and 11' and the shaft circumferential speed.
  • the congestion temperature proportion is low, since the relative speed mentioned is also comparatively low due to the selected orientation of the nozzles 8.
  • the steam mass flow entering the annular duct 4 through the nozzles 8 is approximately 3% of the total steam mass flow supplied through the inflow duct 2.
  • the temperature drop in the area of the shaft 5 below the shaft shield 6 lies at 20 ° K at the beginning of the swirl field in the axial center M and at 10 to 15 ° K at the respective end of the swirl field compared to the temperature of the incoming steam.
  • the increase in consumption required for this cooling of the shaft is approximately 0.06% and thus corresponds to the values which can be achieved with external cooling by cooling steam introduced from the outside.
  • the slight reduction in the cooling effect at the respective end of the swirl field can possibly be avoided by an additional row of blades arranged on the shaft 5. This row of moving blades arranged in the axial center M and in the annular channel 4 could expediently be designed as a free jet turbine.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

Im Bereich der Dampfeinströmung ist zwischen der Welle (5) und einer ringförmigen Wellenabschirmung (6) ein Ringkanal (4) gebildet. Um die thermischen Beanspruchungen der Welle (5) im Bereich der Dampfeinströmung zu reduzieren, sind in die Wellenabschirmung (6) Düsen (8) eingebracht, welche in den Ringkanal (4) tangential einmünden. Dadurch wird unter Umgehung des ersten Leitschaufelkranzes ein geringer Teilstrom des einströmenden Dampfes in den Ringkanal (4) als eine der Wellenumfangsgeschwindigkeit vorauseilende Drallströmung (11, 11') eingeleitet. Die Grenzschichttemperatur an der Welle (5) ist dabei gleich der durch die Erhöhung der kinetischen Energie abgesenkten statischen Temperatur, vermehrt um den Stautemperaturanteil der vergleichsweise geringen Relativgeschwindigkeit zwischen Drallströmung (11, 11') und Wellenumfangsgeschwindigkeit, Somit kann durch die in den Ringkanal (4) eingeleitete Drallströmung (11, 11') eine wirksame Kühlung der Welle (5) im Bereich der Dampfeinströmung erzielt werden.In the area of the steam inflow, an annular channel (4) is formed between the shaft (5) and an annular shaft shield (6). In order to reduce the thermal stresses on the shaft (5) in the area of the steam inflow, nozzles (8) are introduced into the shaft shield (6) which open tangentially into the ring channel (4). As a result, bypassing the first guide vane ring, a small partial flow of the inflowing steam is introduced into the ring channel (4) as a swirl flow (11, 11 ') leading the shaft circumferential speed. The boundary layer temperature on the shaft (5) is equal to the static temperature reduced by the increase in the kinetic energy, increased by the proportion of the damming temperature of the comparatively low relative speed between the swirl flow (11, 11 ') and the shaft circumferential speed ) initiated swirl flow (11, 11 ') an effective cooling of the shaft (5) can be achieved in the area of the steam inflow.

Description

Die Erfindung bezieht sich auf eine axial beaufschlagte Dampfturbine gemäß dem Oberbegriff des Patentanspruchs 1.The invention relates to an axially loaded steam turbine according to the preamble of claim 1.

Eine derartige Dampfturbine ist aus der FR-PS 851 531 bekannt. Bei einer dort dargestellten zweiflutigen Dampfturbine ist im Bereich der in der axialen Mitte erfolgenden Dampfeinströmung eine Wellenabschirmung angeordnet, welche an den radial inneren Enden der Leitschaufeln der ersten Leitschaufelkränze beider Fluten befestigt ist. Die die Welle mit Abstand umschließende Wellenabschirmung ist dabei am Außenumfang so ausgebildet, daß der in radialer Richtung einströmende Dampf auf beide Fluten gleichmäßig aufgeteilt und in die axiale Richtung umgelenkt wird. Die Wellenabschirmung verhindert somit ein unmittelbares Anströmen der Wellenoberfläche durch den in radialer Richtung einströmenden Dampf.Such a steam turbine is known from FR-PS 851 531. In the case of a double-flow steam turbine shown there, a shaft shield is arranged in the region of the steam inflow taking place in the axial center, which shaft shield is attached to the radially inner ends of the guide vanes of the first guide vane rings of both flows. The shaft shield enclosing the shaft at a distance is formed on the outer circumference in such a way that the steam flowing in in the radial direction is divided equally between the two floods and deflected in the axial direction. The shaft shielding thus prevents an immediate flow against the shaft surface by the steam flowing in in the radial direction.

Aus W. Traupel "Thermische Turbomaschinen", Band 2, 2. Auflage, Springer-Verlag, Berlin, Heidelberg, New York, 1968, Seite 341, ist es auch bekannt, bei einer axial beaufschlagten einflutigen Dampfturbine im Bereich der Dampf einströmung ein Abschirmblech anzuordnen und in den zwischen Welle und Abschirmblech gebildeten Ringkanal von außen her Kühldampf einzuführen. Der Kühldampf strömt dann in dem Ringkanal bis vor den ersten Laufschaufelkranz. Auf diese Weise können die zusätzlich zu den hohen Fliehkraftbeanspruchungen der Welle im Bereich der Dampfeinströmung und im Bereich der Laufschaufelbefestigung des ersten Laufschaufelkranzes auftretenden thermischen Beanspruchungen reduziert werden. Hierzu ist jedoch die mit einigem Aufwand verbundene Bereitstellung von Kühldampf erforderlich. Außerdem ist eine derartige von außen her erfolgende Einleitung von Kühldampf in den zwischen Wellenabschirmung und Welle gebildeten Ringkanal bei zweiflutigen Dampfturbinen nur möglich, wenn die Leitung für die Zufuhr des Kühldampfes im Bereich der Dampfeinströmung verlegt wird. Eine derartige Ausführung ist aus der Zeitschrift "BBC-Nachrichten", 1980, Heft 10, Seite 378, bekannt. Durch die Verlegung der Leitung für die Zufuhr des Kühldampfes in den Bereich der Dampfeinströmung entstehen jedoch zusätzliche Strömungsverluste. Die Kühlung der Welle im Bereich der Dampfeinströmung durch Kühldampf ist auch thermodynamisch ungünstig, weil der kalte Kühldampf die mittlere Arbeitsmitteltemperatur in der Dampfturbine absenkt. Durch die Zufuhr von Kühldampf können aber auch regeltechnische Probleme im Falle einer Lastabschaltung entstehen, da der Kühldampf die Dampfturbine bzw. den Turbosatz auf Überdrehzahl bringen könnte, sofern die Kühldampfzufuhr nicht durch separate Sicherheitsventile abgeschaltet wird.From W. Traupel "Thermische Turbomaschinen", Volume 2, 2nd edition, Springer-Verlag, Berlin, Heidelberg, New York, 1968, page 341, it is also known to use a shielding plate for an axially loaded single-flow steam turbine in the area of the steam inflow to be arranged and to introduce cooling steam from the outside into the annular channel formed between the shaft and the shielding plate. The cooling steam then flows in the ring channel up to the first rotor blade ring. In this way, the thermal stresses occurring in addition to the high centrifugal force stresses of the shaft in the area of the steam inflow and in the area of the rotor blade attachment of the first rotor blade ring can be reduced. To this end, however, is the provision of cooling steam, which involves some effort required. In addition, such an external introduction of cooling steam into the annular channel formed between the shaft shield and the shaft is only possible in double-flow steam turbines if the line for supplying the cooling steam is laid in the area of the steam inflow. Such an embodiment is known from the magazine "BBC-Nachrichten", 1980, Issue 10, page 378. However, laying the line for supplying the cooling steam in the area of the steam inflow creates additional flow losses. The cooling of the shaft in the area of the steam inflow by cooling steam is also thermodynamically unfavorable because the cold cooling steam lowers the average working fluid temperature in the steam turbine. The supply of cooling steam can also cause control problems in the event of a load shutdown, since the cooling steam could bring the steam turbine or the turbo set to overspeed if the cooling steam supply is not switched off by separate safety valves.

Der Erfindung liegt daher die Aufgabe zugrunde, bei einer axial beaufschlagten Dampfturbine der eingangs genannten Art die thermischen Beanspruchungen der Welle im Bereich der Dampfeinströmung ohne die Verwendung von Kühldampf weiter zu reduzieren.The invention is therefore based on the object of further reducing the thermal stresses of the shaft in the region of the steam inflow in the case of an axially loaded steam turbine of the type mentioned without the use of cooling steam.

Diese Aufgabe wird erfindungsgemäß durch die im kennzeichnenden Teil des Patentanspruchs 1 aufgeführten Merkmale gelöst.This object is achieved by the features listed in the characterizing part of claim 1.

Bei der erfindungsgemäßen Dampfturbine wird also unter Umgehung des ersten Leitschaufelkranzes ein geringer Teilstrom des insgesamt einströmenden Dampfes durch tangential angeordnete Düsen dem unter der Wellenabschirmung liegenden Wellenbereich zugeführt. Die Geschwindigkeit mit welcher dieser Teilstrom in den zwischen Welle und Wellenabschirmung gebildeten Ringkanal eintritt, entspricht dem im ersten Leitschaufelkranz verarbeiteten Gefälle. Die in die Wellenabschirmung eingebrachten Düsen sind dabei in bezug auf die Drehrichtung der Welle so ausgerichtet, daß die sich im Ringkanal ausbildende Drallströmung der Wellenumfangsgeschwindigkeit vorauseilt. Die Grenzschichttemperatur an der Welle entspricht dann der durch die Erhöhung der kinetischen Energie abgesenkten statischen Temperatur des Dampfes, vermehrt um den Stautemperaturanteil der vergleichsweise geringen Relativgeschwindigkeit zwischen der Drallströmung und der Wellenumfangsgeschwindigkeit. Durch die in die Wellenabschirmung tangential eingebrachten Düsen kann somit eine wirksame Kühlung der Welle im Bereich der Dampfeinströmung und im Bereich der Laufschaufelbefestigung des ersten Laufschaufelkranzes erzielt werden.In the steam turbine according to the invention, bypassing the first guide vane ring, a small partial flow of the total inflowing steam is fed through tangentially arranged nozzles to the shaft area under the shaft shield. The speed at which this partial flow enters the ring channel formed between the shaft and the shaft shielding corresponds the slope processed in the first vane ring. The nozzles introduced into the shaft shielding are aligned with respect to the direction of rotation of the shaft in such a way that the swirl flow which forms in the ring channel leads the shaft circumferential speed. The boundary layer temperature at the shaft then corresponds to the static temperature of the steam which is reduced by the increase in the kinetic energy, increased by the proportion of the damming temperature of the comparatively low relative speed between the swirl flow and the shaft circumferential speed. Effective cooling of the shaft in the area of the steam inflow and in the area of the blade attachment of the first blade ring can thus be achieved by the nozzles introduced tangentially into the shaft shield.

Bei einer axial beaufschlagten Dampfturbine in zweiflutiger Ausführung, bei welcher die Wellenabschirmung an den radial inneren Enden der Leitschaufeln der ersten Leitschaufelkränze beider Fluten befestigt ist, ist bei einer bevorzugten Ausführungsform vorgesehen, daß die Düsen in der axialen Mitte in den Ringkanal einmünden. Der durch die mittigen Düsen in den Ringkanal eintretende Teilstrom wird dann gleichmäßig in zwei Drallströmungen aufgeteilt, welche in axialer Richtung entlang der Welle jeweils bis zum ersten Laufschaufelkranz strömen.In an axially loaded steam turbine in a double-flow design, in which the shaft shield is attached to the radially inner ends of the guide vanes of the first guide vane rings of both floods, it is provided in a preferred embodiment that the nozzles open into the annular channel in the axial center. The partial flow entering the annular channel through the central nozzles is then divided evenly into two swirl flows, which each flow in the axial direction along the shaft up to the first rotor blade ring.

Eine weitere Verbesserung der Kühlwirkung kann dadurch erzielt werden, daß die erste Stufe als Schwachreaktions-Stufe ausgebildet ist bzw. daß bei einer zweiflutigen Ausführung bei beiden Fluten jeweils die erste Stufe als Schwachreaktions-Stufe ausgebildet ist. Hierdurch soll ein möglichst großes Gefälle im ersten Leitschaufelkranz verarbeitet werden, so daß durch die entsprechende Erhöhung der kinetischen Energie die statische Temperatur des in den Ringkanal eingeleiteten Teilstromes möglichst weit abgesenkt wird.A further improvement in the cooling effect can be achieved in that the first stage is designed as a weak reaction stage or, in the case of a double-flow version, that the first stage is designed as a weak reaction stage in both floods. This is intended to process as large a gradient as possible in the first guide vane ring, so that the static temperature of the partial flow introduced into the ring channel is reduced as much as possible by the corresponding increase in the kinetic energy.

Weiterhin hat es sich aus fertigungstechnischen Gründen als zweckmäßig erwiesen, wenn insgesamt vier über den Umfang der Wellenabschirmung gleichmäßig verteilt angeordnete Düsen vorgesehen sind.Furthermore, it has proven to be expedient for manufacturing reasons if a total of four nozzles are provided which are arranged uniformly distributed over the circumference of the shaft shielding.

Bei einer weiteren bevorzugten Ausgestaltung der erfindungsgemäßen Dampfturbine ist der Querschnitt der Düsen derart bemessen, daß der in den Ringkanal gelangende Dampfmassenstrom etwa 3 % des insgesamt im Bereich der Dampfeinströmung zugeführten Dampfmassenstromes beträgt. Hierdurch kann bei einer wirksamen Kühlung der Welle die durch die teilweise Umgehung des ersten Leitschaufelkranzes bedingte Verbrauchserhöhung auf äußerst niedrige Werte begrenzt werden.In a further preferred embodiment of the steam turbine according to the invention, the cross section of the nozzles is dimensioned such that the steam mass flow entering the annular duct is approximately 3% of the total steam mass flow supplied in the region of the steam inflow. In this way, with effective cooling of the shaft, the increase in consumption due to the partial bypassing of the first guide vane ring can be limited to extremely low values.

Im folgenden wird ein Ausführungsbeispiel der Erfindung anhand der Zeichnung näher erläutert. Dabei zeigt in stark vereinfachter schematischer Darstellung

  • Fig. 1 den Einströmbereich einer zweiflutigen Dampfturbine im Längsschnitt und
  • Fig. 2 einen Querschnitt gemäß der Linie II-II der Fig. 1.
An exemplary embodiment of the invention is explained in more detail below with reference to the drawing. It shows in a highly simplified schematic representation
  • Fig. 1 shows the inflow area of a double-flow steam turbine in longitudinal section and
  • 2 shows a cross section along the line II-II of FIG. 1st

Gemäß Fig. 1 strömt der Dampf in Richtung des Pfeiles 1 radial nach innen durch einen ringförmigen Einströmkanal 2, welcher durch die Leitschaufelträger 3 bzw. 3' der beiden spiegelbildlich zur axialen Mitte M angeordneten Fluten gebildet ist. Der in radialer Richtung einströmende Dampf wird dann unter Umlenkung in die axiale Richtung auf beide Fluten gleichmäßig aufgeteilt, wobei jedoch ein geringer Teilstrom in einen Ringkanal 4 eingeleitet wird, welcher zwischen der Welle 5 und einer dazu konzentrischen Wellenabschirmung 6 gebildet ist und durch eine entsprechende Formgebung von Welle 5 und Wellenabschirmung 6 von der axialen Mitte M ausgehend nach beiden Seiten hin etwas ansteigt. Die Wellenabschirmung 6 ist an den radial inneren Enden der Leitschaufeln 7 bzw. 7' des jeweils ersten Leitschaufelkranzes beider Fluten befestigt. Die Leitschaufeln 7 und 7' sind ihrerseits in die Leitschaufelträger 3 bzw. 3' eingesetzt.1, the steam flows in the direction of arrow 1 radially inward through an annular inflow channel 2, which is formed by the guide vane carriers 3 and 3 'of the two floods arranged in mirror image to the axial center M. The steam flowing in in the radial direction is then divided equally between the two floods by deflection in the axial direction, but a small partial flow is introduced into an annular channel 4 which is formed between the shaft 5 and a shaft shield 6 concentric therewith and by a corresponding shaping from shaft 5 and shaft shield 6 slightly rising from the axial center M towards both sides. The shaft shield 6 is on the radial inner ends of the guide vanes 7 and 7 'of the first guide vane ring attached to both floods. The guide vanes 7 and 7 'are in turn inserted into the guide vane carriers 3 and 3'.

In die Wellenabschirmung 6 sind nun insgesamt vier über den Umfang gleichmäßig verteilt angeordnete Düsen 8 als Bohrungen eingebracht. Wie es insbesondere aus dem Querschnitt der Fig. 2 ersichtlich ist, sind die Düsen 8 so ausgebildet, daß sie in der durch den Pfeil 9 angedeuteten Drehrichtung der Welle gesehen tangential in den zwischen Welle 5 und Wellenabschirmung 6 gebildeten Ringkanal 4 einmünden. Da der von dem einströmenden Dampf abgezweigte Teilstrom durch die Düsen 8 tangential in den Ringkanal 4 eintritt, bildet sich dort eine durch den Pfeil 10 angedeutete Drallströmung aus, welche der Wellenumfangsgeschwindigkeit vorauseilt.A total of four nozzles 8, which are uniformly distributed over the circumference, are now introduced into the shaft shield 6 as bores. As can be seen in particular from the cross section of FIG. 2, the nozzles 8 are designed such that, seen in the direction of rotation of the shaft indicated by the arrow 9, they open tangentially into the annular channel 4 formed between the shaft 5 and the shaft shield 6. Since the partial flow diverted from the inflowing steam enters tangentially into the ring channel 4 through the nozzles 8, a swirl flow indicated by the arrow 10 forms there, which leads the wave circumferential speed.

Die Drallströmung 10 teilt sich dann in zwei von der axialen Mitte M ausgehende Drallströmungen auf, welche in der Fig. 1 durch die Pfeile 11 und 11' angedeutet sind und die Welle 5 entlang bis zu den Laufschaufeln 12 bzw. 12' des jeweils ersten Laufschaufelkranzes der beiden Fluten strömen. Dabei umgehen die beiden Drallströmungen 11 und 11' die Leitschaufeln 7 bzw. 7' des jeweils ersten Leitschaufelkranzes beider Fluten. Die Geschwindigkeit mit welcher der von dem einströmenden Dampf abgezweigte Teilstrom in die Düsen 8 eintritt entspricht damit dem jeweils im ersten Leitschaufelkranz der beiden Fluten verarbeiteten Gefälle, wobei diese Eintrittsgeschwindigkeit durch eine Ausbildung der jeweils ersten Stufe als Schwachreaktions-Stufe gesteigert werden kann.The swirl flow 10 is then divided into two swirl flows starting from the axial center M, which are indicated in FIG. 1 by the arrows 11 and 11 'and along the shaft 5 as far as the rotor blades 12 and 12' of the respective first rotor blade ring of the two floods. The two swirl flows 11 and 11 'bypass the guide vanes 7 and 7' of the first guide vane ring of both floods. The speed at which the partial flow diverted from the incoming steam enters the nozzles 8 thus corresponds to the gradient processed in the first guide vane ring of the two floods, and this speed of entry can be increased by designing the respective first stage as a weak reaction stage.

Die Wellenabschirmung 6 verhindert einerseits ein unmit- ; telbares Anströmen der Oberfläche der Welle 5 durch den in Richtung des Pfeiles 1 radial einströmenden heißen Dampf. Andererseits entspricht die Grenzschichttemperatur der Drallströmungen 10 bzw. 11 und 11' in dem Ringkanal 4 der durch die Erhöhung der kinetischen Energie abgesenkten statischen Temperatur des Dampfes, vermehrt um den Stautemperaturanteil der Relativgeschwindigkeit zwischen Drallströmung 10 bzw. 11 und 11' und Wellenumfangsgeschwindigkeit. Der Stautemperaturanteil ist dabei gering, da die genannte Relativgeschwindigkeit durch die gewählte Ausrichtung der Düsen 8 ebenfalls vergleichsweise gering ist.The shaft shield 6 prevents on the one hand an immediate; flowable flow onto the surface of the shaft 5 by the hot steam flowing radially in the direction of arrow 1. On the other hand, the boundary layer temperature corresponds of the swirl flows 10 or 11 and 11 'in the ring channel 4 of the static temperature of the steam which is reduced by the increase in the kinetic energy, increased by the accumulation temperature portion of the relative speed between the swirl flow 10 or 11 and 11' and the shaft circumferential speed. The congestion temperature proportion is low, since the relative speed mentioned is also comparatively low due to the selected orientation of the nozzles 8.

Der in den Ringkanal 4 durch die Düsen 8 eintretende Dampfmassenstrom beträgt etwa 3 % des insgesamt durch den Einströmkanal 2 zugeführten Dampfmassenstromes. Die Temperaturabsenkung in dem unterhalb der Wellenabschirmung 6 liegenden Bereich der Welle 5 liegt gegenüber der Temperatur des einströmenden Dampfes bei 20° K am Anfang des Drallfeldes in der axialen Mitte M und bei 10 bis 15° K am jeweiligen Ende des Drallfeldes. Die für diese Kühlung der Welle erforderliche Verbrauchserhöhung liegt bei ungefähr 0,06 %und entspricht damit den bei Fremdkühlung durch von außen her eingeleiteten Kühldampf erreichbaren Werten. Die geringfügige Verringerung der Kühlwirkung am jeweiligen Ende des Drallfeldes kann ggf. durch eine auf der Welle 5 zusätzlich angeordnete Laufschaufelreihe vermieden werden. Diese in der axialen Mitte M und im Ringkanal 4 angeordnete Laufschaufelreihe könnte zweckmäßigerweise als Freistrahlturbine ausgebildet werden.The steam mass flow entering the annular duct 4 through the nozzles 8 is approximately 3% of the total steam mass flow supplied through the inflow duct 2. The temperature drop in the area of the shaft 5 below the shaft shield 6 lies at 20 ° K at the beginning of the swirl field in the axial center M and at 10 to 15 ° K at the respective end of the swirl field compared to the temperature of the incoming steam. The increase in consumption required for this cooling of the shaft is approximately 0.06% and thus corresponds to the values which can be achieved with external cooling by cooling steam introduced from the outside. The slight reduction in the cooling effect at the respective end of the swirl field can possibly be avoided by an additional row of blades arranged on the shaft 5. This row of moving blades arranged in the axial center M and in the annular channel 4 could expediently be designed as a free jet turbine.

Claims (6)

1. Axial beaufschlagte Dampfturbine, insbesondere in zweiflutiger Ausführung, mit einer im Bereich der Dampfeinströmung angeordneten ringförmigen Welienabschirmung, welche die Welle mit Abstand umschließt und mit den radial inneren Enden der Leitschaufeln des ersten Leitschaufelkranzes verbunden ist, dadurch ge- kennzeichnet, daß in die Wellenabschirmung (6) Düsen (8) eingebracht sind, welche in Drehrichtung (9) der Welle (5) gesehen tangential in den zwischen Welle (5) und Wellenabschirmung (6) gebildeten Ringkanal (4) einmünden.1. Axially loaded steam turbine, in particular in a double-flow version, with an annular shaft shield arranged in the region of the steam inflow, which surrounds the shaft at a distance and is connected to the radially inner ends of the guide blades of the first guide blade ring, characterized in that the shaft shield (6) nozzles (8) are introduced which, seen in the direction of rotation (9) of the shaft (5), open tangentially into the annular channel (4) formed between the shaft (5) and the shaft shield (6). 2. Axial beaufschlagte Dampfturbine in zweiflutiger Ausführung nach Anspruch 1, bei welcher die Wellenabschirmung an den radial inneren Enden der Leitschaufeln der ersten Leitschaufelgrenze beider Fluten befestigt ist, da- durch gekennzeichnet, daß die Düsen (8) in der axialen Mitte (M) in den Ringkanal (4) einmünden.2. Axially loaded steam turbine in a double flow design according to claim 1, in which the shaft shield is attached to the radially inner ends of the guide vanes of the first guide vane boundary of both floods, characterized in that the nozzles (8) in the axial center (M) in open the ring channel (4). 3. Axial beaufschlagte Dampfturbine nach Anspruch 1, dadurch gekennzeichnet , daß die erste Stufe als Schwachreaktions-Stufe ausgebildet ist.3. Axially loaded steam turbine according to claim 1, characterized in that the first stage is designed as a weak reaction stage. 4. Axial beaufschlagte Dampfturbine in zweiflutiger Ausführung nach Anspruch 2, dadurch gekenn- zeichnet, daß bei beiden Fluten jeweils die erste Stufe als Schwachreaktions-Stufe ausgebildet ist.4. Axially loaded steam turbine in a double flow design according to claim 2, characterized in that the first stage is designed as a weak reaction stage in each case with both floods. 5. Axial beaufschlagte Dampfturbine nach einem der vorhergehenden Ansprüche, dadurch gekenn- zeichnet, daß insgesamt vier über den Umfang der Wellenabschirmung (6) gleichmäßig verteilt angeordnete Düsen (8) vorgesehen sind.5. Axially loaded steam turbine according to one of the preceding claims, characterized in that a total of four nozzles (8) are provided which are uniformly distributed over the circumference of the shaft shield (6). 6. Axial beaufschlagte Dampfturbine nach einem der vorhergehenden Ansprüche, dadurch gekenn- zeichnet, daß der Querschnitt der Düsen (8) derart bemessen ist, daß der in den Ringkanal (4) gelangende Dampfmassenstrom etwa 3 % des insgesamt im Bereich der Dampfeinströmung zugeführten Dampfmassenstromes beträgt.6. Axially loaded steam turbine according to one of the preceding claims, characterized in that the cross section of the nozzles (8) is dimensioned such that the steam mass flow entering the annular channel (4) is approximately 3% of the total steam mass flow supplied in the region of the steam inflow .
EP83102038A 1982-03-16 1983-03-02 Axial flow steam turbine, especially of the double-flow type Expired EP0088944B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT83102038T ATE16303T1 (en) 1982-03-16 1983-03-02 AXIALLY ACTUATED STEAM TURBINE, PARTICULARLY IN A TWO-SCREW VERSION.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3209506 1982-03-16
DE19823209506 DE3209506A1 (en) 1982-03-16 1982-03-16 AXIAL STEAM TURBINE IN PARTICULAR, IN PARTICULAR VERSION

Publications (2)

Publication Number Publication Date
EP0088944A1 true EP0088944A1 (en) 1983-09-21
EP0088944B1 EP0088944B1 (en) 1985-10-30

Family

ID=6158377

Family Applications (1)

Application Number Title Priority Date Filing Date
EP83102038A Expired EP0088944B1 (en) 1982-03-16 1983-03-02 Axial flow steam turbine, especially of the double-flow type

Country Status (9)

Country Link
US (1) US4571153A (en)
EP (1) EP0088944B1 (en)
JP (1) JPS58167802A (en)
AR (1) AR229899A1 (en)
AT (1) ATE16303T1 (en)
BR (1) BR8301277A (en)
DE (2) DE3209506A1 (en)
ES (1) ES8401567A1 (en)
IN (1) IN158028B (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1783324A2 (en) * 2005-11-07 2007-05-09 General Electric Company Apparatus for channeling steam flow to turbines
FR2934312A1 (en) * 2008-07-24 2010-01-29 Gen Electric SYSTEM AND METHOD FOR PROVIDING SUPERCRITICAL COOLING STEAM IN THE WHEEL PASSAGE SPACE OF A TURBINE
EP3009597A1 (en) * 2014-10-15 2016-04-20 Siemens Aktiengesellschaft Controlled cooling of turbine shafts
EP3056663A1 (en) * 2015-02-10 2016-08-17 Siemens Aktiengesellschaft Axial flow steam turbine, especially of the double-flow type

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59153901A (en) * 1983-02-21 1984-09-01 Fuji Electric Co Ltd Cooling device for rotor in steam turbine
DE3424139C2 (en) * 1984-06-30 1996-02-22 Bbc Brown Boveri & Cie Gas turbine rotor
US4764084A (en) * 1987-11-23 1988-08-16 Westinghouse Electric Corp. Inlet flow guide for a low pressure turbine
DE19620828C1 (en) * 1996-05-23 1997-09-04 Siemens Ag Steam turbine shaft incorporating cooling circuit
JP3943136B2 (en) * 1996-06-21 2007-07-11 シーメンス アクチエンゲゼルシヤフト Turbine shaft for twin-flow turbine and cooling method for turbine shaft for twin-flow turbine
CN1149951C (en) * 1999-08-04 2004-05-19 夫莱马斯特公司 High speed variable size toaster
US6854954B2 (en) * 2003-03-03 2005-02-15 General Electric Company Methods and apparatus for assembling turbine engines
US20070065273A1 (en) * 2005-09-22 2007-03-22 General Electric Company Methods and apparatus for double flow turbine first stage cooling
DE502006007968D1 (en) * 2006-08-25 2010-11-11 Siemens Ag Swirl-cooled rotor weld seam
US7874795B2 (en) * 2006-09-11 2011-01-25 General Electric Company Turbine nozzle assemblies
US8317458B2 (en) * 2008-02-28 2012-11-27 General Electric Company Apparatus and method for double flow turbine tub region cooling
US8096748B2 (en) * 2008-05-15 2012-01-17 General Electric Company Apparatus and method for double flow turbine first stage cooling
US8414252B2 (en) * 2010-01-04 2013-04-09 General Electric Company Method and apparatus for double flow turbine first stage cooling
US8657562B2 (en) * 2010-11-19 2014-02-25 General Electric Company Self-aligning flow splitter for steam turbine
DE102015215144B4 (en) * 2015-08-07 2017-11-09 MTU Aero Engines AG Device and method for influencing the temperatures in inner ring segments of a gas turbine
JP6204966B2 (en) * 2015-12-24 2017-09-27 三菱日立パワーシステムズ株式会社 Steam turbine
WO2017110894A1 (en) * 2015-12-24 2017-06-29 三菱日立パワーシステムズ株式会社 Steam turbine
JP6204967B2 (en) * 2015-12-24 2017-09-27 三菱日立パワーシステムズ株式会社 Steam turbine
US20180080324A1 (en) * 2016-09-20 2018-03-22 General Electric Company Fluidically controlled steam turbine inlet scroll

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR851531A (en) * 1938-03-15 1940-01-10 Dual circulation turbine with internal admission
CH430757A (en) * 1963-01-18 1967-02-28 Siemens Ag Steam turbine
CH439334A (en) * 1965-02-15 1967-07-15 Gen Electric Multi-stage axial flow turbine
CH469185A (en) * 1966-06-30 1969-02-28 Gen Electric Cooling device for the rotor of a multi-stage axial steam turbine
DE2140490A1 (en) * 1971-07-26 1973-02-01 Bbc Brown Boveri & Cie DEVICE FOR COOLING THE ROTOR OF A STEAM TURBINE
US3817654A (en) * 1972-04-26 1974-06-18 Hitachi Ltd Turbine rotor cooling mechanism

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA536533A (en) * 1957-01-29 E. P. Johnson William Gas turbines
CH159225A (en) * 1930-11-04 1932-12-31 Escher Wyss Maschf Ag Centrifugal pump.
US3147951A (en) * 1961-05-29 1964-09-08 Garrett Corp Fluid pressure operated turbine
DE1962031U (en) * 1963-01-18 1967-06-15 Siemens Ag STEAM TURBINE.
US3232580A (en) * 1963-07-18 1966-02-01 Birmann Rudolph Centripetal turbine
NL139802B (en) * 1968-05-31 1973-09-17 Stork Koninklijke Maschf TURBINE FOR A COMPRESSIBLE MEDIUM.
DE2213071B2 (en) * 1972-03-17 1975-05-28 Kraftwerk Union Ag, 4330 Muelheim Guide channel without guide vanes for generating swirl in front of the first rotor blade ring of turbines
US3994630A (en) * 1974-08-21 1976-11-30 International Harvester Company Monorotor turbine and method of cooling
JPS5215907A (en) * 1975-07-29 1977-02-05 Toshiba Corp Reheat steam turbine rotor cooling system
JPS5374608A (en) * 1976-12-15 1978-07-03 Hitachi Ltd Cooling device for steam turbine
JPS5423805A (en) * 1977-07-26 1979-02-22 Toshiba Corp Reheating-turbine rotor overheat preventive device
DE2928487A1 (en) * 1979-07-14 1981-02-05 Philips Patentverwaltung METHOD FOR MEASURING THE RELATIVE HUMIDITY OF A MEASUREMENT WITH THE AID OF MICROWAVES IN THE GHZ RANGE

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR851531A (en) * 1938-03-15 1940-01-10 Dual circulation turbine with internal admission
CH430757A (en) * 1963-01-18 1967-02-28 Siemens Ag Steam turbine
CH439334A (en) * 1965-02-15 1967-07-15 Gen Electric Multi-stage axial flow turbine
CH469185A (en) * 1966-06-30 1969-02-28 Gen Electric Cooling device for the rotor of a multi-stage axial steam turbine
DE2140490A1 (en) * 1971-07-26 1973-02-01 Bbc Brown Boveri & Cie DEVICE FOR COOLING THE ROTOR OF A STEAM TURBINE
US3817654A (en) * 1972-04-26 1974-06-18 Hitachi Ltd Turbine rotor cooling mechanism

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
BBC - NACHRICHTEN, Heft 10, 1980, Seiten 372-379 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1783324A2 (en) * 2005-11-07 2007-05-09 General Electric Company Apparatus for channeling steam flow to turbines
EP1783324A3 (en) * 2005-11-07 2014-01-22 General Electric Company Apparatus for channeling steam flow to turbines
FR2934312A1 (en) * 2008-07-24 2010-01-29 Gen Electric SYSTEM AND METHOD FOR PROVIDING SUPERCRITICAL COOLING STEAM IN THE WHEEL PASSAGE SPACE OF A TURBINE
EP3009597A1 (en) * 2014-10-15 2016-04-20 Siemens Aktiengesellschaft Controlled cooling of turbine shafts
WO2016058855A1 (en) * 2014-10-15 2016-04-21 Siemens Aktiengesellschaft Controlled cooling of turbine shafts
US10392941B2 (en) 2014-10-15 2019-08-27 Siemens Aktiengesellschaft Controlled cooling of turbine shafts
EP3056663A1 (en) * 2015-02-10 2016-08-17 Siemens Aktiengesellschaft Axial flow steam turbine, especially of the double-flow type

Also Published As

Publication number Publication date
DE3361096D1 (en) 1985-12-05
AR229899A1 (en) 1983-12-30
ES520606A0 (en) 1983-12-16
ES8401567A1 (en) 1983-12-16
JPS58167802A (en) 1983-10-04
EP0088944B1 (en) 1985-10-30
DE3209506A1 (en) 1983-09-22
JPH0440522B2 (en) 1992-07-03
IN158028B (en) 1986-08-16
ATE16303T1 (en) 1985-11-15
US4571153A (en) 1986-02-18
BR8301277A (en) 1983-11-22

Similar Documents

Publication Publication Date Title
EP0088944B1 (en) Axial flow steam turbine, especially of the double-flow type
EP0170938B1 (en) Blade and seal clearance optimization device for compressors of gas turbine power plants, particularly of gas turbine jet engines
EP0598174B1 (en) Turbo charger for a combustion engine
DE3713923C2 (en) Cooling air transmission device
DE2943464A1 (en) GASKET DEVICE FOR A GAS TURBINE ENGINE
DE3506733A1 (en) TURBINE GUIDE RING
DE2554010A1 (en) DEVICE AND METHOD FOR SUPPLYING COOLING AIR TO TURBINE VANES
DE2654525C1 (en) Flow machine with a control device for keeping the radial clearance constant between the rotor blade tips and the stator construction
CH702000A2 (en) Swirl chambers to the gap flow control.
DE4110616A1 (en) THERMALLY TUNED ROTARY BABYRIN SEAL WITH ACTIVE GASKET CONTROL
DE3116923C2 (en)
EP0122872A1 (en) Medium pressure steam turbine for a high temperature steam plant with intermediate reheating
EP0118769A2 (en) Shrouded multistage turbine
DE3428206C2 (en) Stator arrangement in a gas turbine
CH663251A5 (en) DEVICE FOR COOLING THE ROTORS OF STEAM TURBINES.
EP3321589B1 (en) Fuel nozzle of a gas turbine with swirl creator
EP2358979B1 (en) Axial compressor for a gas turbine having passive radial gap control
DE3830784A1 (en) GAS TURBINE ENGINE
DE2213071B2 (en) Guide channel without guide vanes for generating swirl in front of the first rotor blade ring of turbines
EP3401503A1 (en) Rotor of a turbomachine
DE2435153A1 (en) TURBO MACHINE, IN PARTICULAR STEAM TURBINE WITH HIGH STEAM INLET TEMPERATURE
EP3183426B1 (en) Controlled cooling of turbine shafts
EP3219914A1 (en) Flow channel, corresponding blade row and turbomachine
CH667897A5 (en) Wheel arrangement in a gas turbine.
EP3147458B1 (en) Low pressure system for a steam turbine and steam turbine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT CH DE FR IT LI NL

17P Request for examination filed

Effective date: 19831007

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

ITF It: translation for a ep patent filed

Owner name: STUDIO JAUMANN

AK Designated contracting states

Designated state(s): AT CH DE FR IT LI NL

REF Corresponds to:

Ref document number: 16303

Country of ref document: AT

Date of ref document: 19851115

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3361096

Country of ref document: DE

Date of ref document: 19851205

ET Fr: translation filed
PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

26 Opposition filed

Opponent name: BBC AKTIENGESELLSCHAFT BROWN,BOVERI & CIE.

Effective date: 19860729

R26 Opposition filed (corrected)

Opponent name: BBC AKTIENGESELLSCHAFT BROWN,BOVERI & CIE.

Effective date: 19860729

NLR1 Nl: opposition has been filed with the epo

Opponent name: BBC AKTIENGESELLSCHAFT BROWN,BOVERI & CIE.

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: SIEMENS AKTIENGESELLSCHAFT BERLIN UND MUENCHEN

NLT2 Nl: modifications (of names), taken from the european patent patent bulletin

Owner name: SIEMENS AKTIENGESELLSCHAFT TE BERLIJN EN MUENCHEN,

PLBN Opposition rejected

Free format text: ORIGINAL CODE: 0009273

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: OPPOSITION REJECTED

27O Opposition rejected

Effective date: 19880304

NLR2 Nl: decision of opposition
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19890224

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19890331

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Effective date: 19900302

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19901001

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20020326

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20020521

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20020610

Year of fee payment: 20

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20030301

Ref country code: CH

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20030301

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO