EP0088746B1 - Method of heat treating rails - Google Patents

Method of heat treating rails Download PDF

Info

Publication number
EP0088746B1
EP0088746B1 EP19830890026 EP83890026A EP0088746B1 EP 0088746 B1 EP0088746 B1 EP 0088746B1 EP 19830890026 EP19830890026 EP 19830890026 EP 83890026 A EP83890026 A EP 83890026A EP 0088746 B1 EP0088746 B1 EP 0088746B1
Authority
EP
European Patent Office
Prior art keywords
coolant
rail
temperature
cooling
additive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP19830890026
Other languages
German (de)
French (fr)
Other versions
EP0088746A1 (en
Inventor
Alfred Dr. Dipl.-Ing. Moser
Peter Dipl.-Ing. Pointner
Georg Dipl.-Ing. Prskawetz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Voestalpine Stahl Donawitz GmbH
Original Assignee
Voestalpine AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=3503141&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0088746(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Voestalpine AG filed Critical Voestalpine AG
Publication of EP0088746A1 publication Critical patent/EP0088746A1/en
Application granted granted Critical
Publication of EP0088746B1 publication Critical patent/EP0088746B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/04Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for rails
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/56General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering characterised by the quenching agents
    • C21D1/60Aqueous agents
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/62Quenching devices
    • C21D1/63Quenching devices for bath quenching

Definitions

  • the invention relates to a method for the heat treatment of rails by quenching the rail or at least the rail head by means of a cooling medium from a temperature in the austenite region to a temperature at which pearlite transformation is complete, in order to achieve a fine pearlitic structure.
  • the formation of the structure largely depends on the cooling conditions.
  • the formation of martensite must be prevented in any case, since this causes the rail to become brittle. It has been found that optimal wear properties can be achieved with such rails if the cooling is carried out in such a way that a fine pearlitic structure is produced.
  • a quenching medium for quenching heat-treated material which is a solution of 45 to 99.9% water with a liquid high molecular weight polyalkylene glycol with a decreasing solubility in water with increasing temperatures, whereby primarily a relatively short quenching time is possible because the addition of polyalkylene glycol improves heat dissipation during the quenching process.
  • DE-OS 2630176 relates to a method for quenching heat-treated metals, an aqueous solution of a water-soluble salt of polyacrylic acid being used as the quenching medium, the cooling rate being variable depending on the concentration of the polyacrylate salt, its molecular weight and the temperature of the bath. Rapid cooling, however, can lead to irregularities in the microstructure formation, since slight differences in the action of the quenching medium can have a lasting effect.
  • the object of the invention is now to even out the fine pearlitic microstructure and thus to improve the wear properties of the rail or the rail head.
  • the invention essentially consists in a process for the heat treatment of rails by quenching the rail or at least the rail head by means of a cooling medium from a temperature in the austenite region to a temperature at which the pearlite transformation is complete, in order to achieve a fine pearlitic structure, the rails, made of steel, with 0.7 to 0.75% C, max. 0.80% Si and 1.2 to 1.3% Mn, the rest iron and unavoidable impurities, are treated in a cooling medium, the.
  • Water with synthetic coolant additive in an amount of 20 to 50 vol.%, Based on contains the entire cooling medium, the coolant additive increasing with increasing manganese content and constant carbon content and being reduced with increasing carbon content and constant manganese content and the cooling bath temperature being kept at 40 to 60 ° C, so that constant wear properties and within the specified content ranges of C and Mn set a Vickers hardness HV 30 of 340-380.
  • This synthetic coolant additive forms a layer on the rail or the rail head, which reduces the cooling rate. Such a layer is uniform and is not adversely affected by scaling jumping off, so that uniform cooling conditions can be achieved in this way over the entire surface and over the entire length of the rail or the rail head.
  • synthetic coolant is added Polyglycol used.
  • Polyglykof has proven itself particularly well in this regard.
  • the cooling medium can also be sprayed onto the rail or the rail head.
  • the rail or at least the rail head is expediently immersed in the cooling medium, since in this way the film of the synthetic coolant additive can be formed better and more uniformly.
  • the heat treatment can be carried out from the rolling heat, so that the rolling heat is used and a subsequent costly heating is saved.
  • the cooling medium is preferably composed such that there is a cooling rate of 0.2 to 6 ° C / sec in the temperature range between 800 and 500 ° C. sets.
  • the cooling rates which are required to achieve a fine pearlitic structure are known for the various compositions of the rail and are in the range from 0.2 to 6 ° C./sec.
  • a thicker film of the coolant additive forms on the rail or the rail head and the cooling rate becomes lower than with a lower synthetic coolant additive.
  • the cooling rate can be varied by choosing the amount of the coolant additive taking into account the composition of the rail steel within the limits specified above.
  • Fig. 1 shows a diagram and Fig. 2 shows a cross section through a rail head
  • Fig. 3 shows a diagram of wear resistance as a function of Vickers hardness
  • Fig. 4 shows the dependence of the improvement in wear resistance on manganese and carbon content for a given Proportion of coolant additive.
  • samples are determined at different distances from the surface b of the rail head along the so-called hardness trace indicated by the arrow a on the cut surface.
  • Fig. 1 the Vickers hardness HV 30 is plotted on the ordinate.
  • the distances of the measurements from the surface or the running surface b of a rail head are plotted on the abscissa.
  • Curve c shows a measurement in rails treated by the method according to the invention which have a fine pearlitic structure.
  • Curve d shows the hardness curve along the hardness track a with a rail of similar composition, the head of which was quenched in hot water.
  • FIG. 3 shows a diagram in which the wear resistance ⁇ , expressed in N / cm 2 , is plotted on the ordinate.
  • the Vickers hardness HV 30 ' measured in the edge of the rail head is shown on the abscissa.
  • Curve e shows the course of wear resistance in comparison to Vickers hardness.
  • the area e 1 is the area in which the wear resistance and the Vickers hardness are in rails heat-treated by the method according to the invention.
  • the known values which can be achieved by known methods are considerably below the range e l .
  • resistance values, e3 and e4 for various standard rail steel grades and e2 are for single Cr-Mn steel rail.
  • the manganese content in% by weight is plotted on the ordinate, starting at 1.1% by weight.
  • the carbon content in% by weight is plotted on the abscissa, starting with 0.65% by weight.
  • the rectangle f entered in this diagram limits the range of steels with a carbon content of 0.7-0.75% by weight and a manganese content of 1.2-1.3% by weight.
  • a proportion of 30% by volume of a polyglycol as coolant additive gives the best results.
  • Just g corresponds to 30% by volume of a polyglykois in the coolant.
  • the proportion of the coolant additive With increasing carbon content, the proportion of the coolant additive must be reduced to achieve the same results if the manganese content remains the same. Conversely, with the carbon content remaining constant and the manganese content increasing, the proportion of the coolant additive must be increased in order to again achieve the same results, the straight lines h and i representing the lower and the upper limit for the proportion of the coolant additive, namely 20% by volume and 50% by volume .%, reproduces. If the coolant additive in the steels mentioned falls below the lower limit of 20% by volume, the cooling rate would be too high, causing the tendency to warp in the rail head to increase to a great extent. Conversely, exceeding the upper limit of 50 vol.% Coolant additive for the steels in the specified range as a result of a stronger deposit formation.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Articles (AREA)

Description

Die Erfindung betrifft ein Verfahren zum Wärmebehandeln von Schienen durch Abschrecken der Schiene oder zumindest des Schienenkopfes mittels eines Kühlmediums aus einer im Austenitgebiet liegenden Temperatur auf eine Temperatur, bei welcher die Perlitumwandlung abgeschlossen ist, zur Erzielung eines feinperlitischen Gefüges. Die Ausbildung des Gefüges hängt weitgehend von den Abkühlungsbedingungen ab. Eine Martensitbildung muß auf jeden Fall verhindert werden, da dadurch eine Versprödung der Schiene entsteht. Es hat sich erwiesen, daß optimale Verschleißeigenschaften bei solchen Schienen erreicht werden können, wenn die Abkühlung so geführt wird, daß ein feinperlitisches Gefüge entsteht.The invention relates to a method for the heat treatment of rails by quenching the rail or at least the rail head by means of a cooling medium from a temperature in the austenite region to a temperature at which pearlite transformation is complete, in order to achieve a fine pearlitic structure. The formation of the structure largely depends on the cooling conditions. The formation of martensite must be prevented in any case, since this causes the rail to become brittle. It has been found that optimal wear properties can be achieved with such rails if the cooling is carried out in such a way that a fine pearlitic structure is produced.

Aus der DE-AS 24 39 338 ist es bekannt geworden, solche Schienen in heißem Wasser abzuschrecken. Beim Abschrecken in heißem Wasser ergibt sich an der Schiene eine Dampfhautbildung, wobei die Abkühlungsgeschwindigkeit an den Stellen, an welchen sich die Dampfhaut bildet, verringert wird, während an denjenigen Stellen, an welchen das Heißwasser unmittelbar mit der Schiene in Berührung gelangt, die Abkühlung schneller erfolgt. Infolge der Zunderbildung tritt eine ungleichmäßige Dampfhautbildung auf, da der Zunder im Zuge des Abkühlverfahrens stellenweise abspringt. Es gelangen somit Teile der Schiene bzw. des Schienenkopfes mit der gebildeten Dampfhaut in Berührung, während auf andere Teile wieder das Heißwasser unmittelbar einwirkt. Dadurch entstehen Ungleichförmigkeiten in der Abkühlungsgeschwindigkeit über die Länge der Schiene bzw. in den verschiedenen Teilen der Oberfläche der Schiene oder des Schienenkopfes. Damit wird die Bildung der feinen Perlitstruktur beeinträchtigt und die Verschleißeigenschaften der Schiene werden an den verschiedenen Stellen ungleichmäßig. Da aber die Stellen der Schiene, welche eine schlechtere Gefügeausbildung aufweisen, für die Verschleißeigenschaften der gesamten Schiene maßgebend sind, werden bei einem solchen Verfahren keine optimalen Verschleißeigenschaften erzielt.From DE-AS 24 39 338 it has become known to quench such rails in hot water. When quenching in hot water, vapor formation occurs on the rail, the rate of cooling being reduced at the locations where the vapor skin forms, while cooling occurs more quickly at those locations where the hot water comes into direct contact with the rail he follows. As a result of the scale formation, there is an uneven formation of vaporous skin, since the scale breaks off in places during the cooling process. Parts of the rail or of the rail head thus come into contact with the vapor skin formed, while the hot water acts directly on other parts. This creates non-uniformities in the cooling rate over the length of the rail or in the different parts of the surface of the rail or the rail head. This affects the formation of the fine pearlite structure and the wear properties of the rail become uneven at the various points. However, since the points of the rail which have a poorer microstructure are decisive for the wear properties of the entire rail, optimal wear properties are not achieved with such a method.

Aus der DE-AS 12 42 660 ist ein Abschreckmedium zum Abschrecken von wärmebehandeltem Material bekanntgeworden, welches eine Lösung von 45 bis 99,9% Wasser mit einem flüssigen hochmolekularen Polyalkylenglykol mit einer bei ansteigenden Temperaturen abnehmenden Löslichkeit in Wasser ist, wodurch in erster Linie eine verhältnismäßig kurze Abschreckzeit möglich wird, da durch die Zugabe von Polyalkylenglykol eine verbesserte Wärmeableitung beim Abschreckprozeß erzielt wird. Die DE-OS 2630176 betrifft ein Verfahren zum Abschrecken wärmebehandelter Metalle, wobei als Abschreckmedium eine wässrige Lösung eines wasserlöslichen Salzes von Polyacrylsäure verwendet wird, wobei die Abkühlungsgeschwindigkeit in Abhängigkeit von der Konzentration des Polyacrylatsalzes, seines Molekulargewichtes und der Temperatur des Bades variiert werden kann. Eine rasche Abkühlung kann jedoch zu Ungleichmäßigkeiten der Gefügeausbildung führen, da sich geringfügige Unterschiede des Einwirkens des Abschreckmediums nachhaltig auswirken können.From DE-AS 12 42 660 a quenching medium for quenching heat-treated material has become known, which is a solution of 45 to 99.9% water with a liquid high molecular weight polyalkylene glycol with a decreasing solubility in water with increasing temperatures, whereby primarily a relatively short quenching time is possible because the addition of polyalkylene glycol improves heat dissipation during the quenching process. DE-OS 2630176 relates to a method for quenching heat-treated metals, an aqueous solution of a water-soluble salt of polyacrylic acid being used as the quenching medium, the cooling rate being variable depending on the concentration of the polyacrylate salt, its molecular weight and the temperature of the bath. Rapid cooling, however, can lead to irregularities in the microstructure formation, since slight differences in the action of the quenching medium can have a lasting effect.

Die Erfindung setzt sich nun zur Aufgabe, die feinperlitische Gefügeausbildung zu vergleichmäßigen und damit die Verschleißeigenschaften der Schiene oder des Schienenkopfes zu verbessern.The object of the invention is now to even out the fine pearlitic microstructure and thus to improve the wear properties of the rail or the rail head.

Die Erfindung besteht im wesentlichen in einem Verfahren zum Wärmebehandeln von Schienen durch Abschrecken der Schiene oder zumindest des Schienenkopfes mittels eines Kühlmediums aus einer im Austenitgebiet liegenden Temperatur auf eine Temperatur, bei welcher die Perlitumwandlung abgeschlossen ist, zur Erzielung eines feinperlitischen Gefüges, wobei die Schienen, die aus einem Stahl, mit 0,7 bis 0,75 % C, max. 0,80 % Si und 1,2 bis 1,3 % Mn, Rest Eisen und unvermeidbare Verunreinigungen, bestehen, in einem Kühlmedium behandelt werden, das. Wasser mit synthetischem Kühlmittelzusatz, in einer Menge von 20 bis 50 Vol.%, bezogen auf das gesamte Kühlmedium, enthält, wobei der Kühlmittelzusatz mit steigendem Mangangehalt und gleichbleibendem Kohlenstoffgehalt erhöht und mit steigendem Kohlenstoffgehalt und gleichbleibendem Mangangehalt verringert wird und die Kühlbadtemperatur auf 40 bis 60 °C gehalten wird, sodaß sich innerhalb der angegebenen Gehaltsbereiche von C und Mn gleichbleibende Verschleißeigenschaften und eine Vickershärte HV30 von 340-380 einstellen. Durch diesen synthetischen Kühlmittelzusatz wird eine Schicht auf der Schiene bzw. dem Schienenkopf gebildet, welche die Abkühlungsgeschwindigkeit verringert. Eine solche Schicht ist gleichmäßig und wird nicht durch Abspringen von Zunder beeinträchtigt, so daß auf diese Art gleichmäßige Abkühlungsbedingungen über die gesamte Oberfläche und über die gesamte Länge der Schiene bzw. des Schienenkopfes erreicht werden.The invention essentially consists in a process for the heat treatment of rails by quenching the rail or at least the rail head by means of a cooling medium from a temperature in the austenite region to a temperature at which the pearlite transformation is complete, in order to achieve a fine pearlitic structure, the rails, made of steel, with 0.7 to 0.75% C, max. 0.80% Si and 1.2 to 1.3% Mn, the rest iron and unavoidable impurities, are treated in a cooling medium, the. Water with synthetic coolant additive, in an amount of 20 to 50 vol.%, Based on contains the entire cooling medium, the coolant additive increasing with increasing manganese content and constant carbon content and being reduced with increasing carbon content and constant manganese content and the cooling bath temperature being kept at 40 to 60 ° C, so that constant wear properties and within the specified content ranges of C and Mn set a Vickers hardness HV 30 of 340-380. This synthetic coolant additive forms a layer on the rail or the rail head, which reduces the cooling rate. Such a layer is uniform and is not adversely affected by scaling jumping off, so that uniform cooling conditions can be achieved in this way over the entire surface and over the entire length of the rail or the rail head.

Innerhalb der vorgegebenen Grenzen an Kühlmittelzusatz und innerhalb der angegebenen Bereiche für den Mangan- und den Kohlenstoffgehalt haben sich auf diese Weise gleichbleibende Werte für die Verschleißfestigkeit erzielen lassen, wobei eine Vickers-Härte HV30 im Schienenkopf zwischen 340 und 380 erzielt wurde, wobei gleichzeitig die Kühlbadtemperatur auf 40 bis 60 °C, insbesondere 50 °C, gehalten wird und in vorteilhafter Weise das Bad umgewälzt bzw. bewegt wird. Diese Maßnahmen erlauben eine gleichmäßige Temperaturbehandlung und damit über den gesamten Schienenkopfquerschnitt und die gesamte Oberfläche des Schienenkopfes gleichbleibende Ergebnisse.Within the specified limits for the coolant additive and within the specified ranges for the manganese and carbon content, constant values for wear resistance were achieved in this way, whereby a Vickers hardness HV 30 in the rail head between 340 and 380 was achieved, at the same time the Cooling bath temperature is kept at 40 to 60 ° C, in particular 50 ° C, and the bath is advantageously circulated or moved. These measures allow a uniform temperature treatment and thus constant results over the entire rail head cross-section and the entire surface of the rail head.

Gemäß einer bevorzugten Ausführungsform der Erfindung wird als synthetischer Kühlmittelzusatz Polyglykol verwendet. Polyglykof hat sich in dieser Beziehung in besonderem Maße bewährt. Das Kühlmedium kann auf die Schiene bzw. den Schienenkopf auch aufgesprüht werden. Zweckmäßig wird aber die Schiene oder zumindest der Schienenkopf in das Kühlmedium getaucht, da auf diese Weise der Film des synthetischen Kühlmittelzusatzes besser und gleichmäßiger gebildet werden kann.According to a preferred embodiment of the invention, synthetic coolant is added Polyglycol used. Polyglykof has proven itself particularly well in this regard. The cooling medium can also be sprayed onto the rail or the rail head. However, the rail or at least the rail head is expediently immersed in the cooling medium, since in this way the film of the synthetic coolant additive can be formed better and more uniformly.

Gemäß der Erfindung kann die Wärmebehandlung aus der Walzhitze erfolgen, so daß die Walzhitze ausgenützt wird und eine nachfolgende kostenaufwendige Erwärmung erspart wird.According to the invention, the heat treatment can be carried out from the rolling heat, so that the rolling heat is used and a subsequent costly heating is saved.

Gemäß der Erfindung ist vorzugsweise das Kühlmedium so zusammengesetzt, daß sich im Temperaturbereich zwischen 800 und 500 °C eine Abkühlgeschwindigkeit von 0,2 bis 6 °C/sec. einstellt. Die Abkühlungsgeschwindigkeiten, welche zur Erzielung eines feinperlitischen Gefüges erforderlich sind, sind für die verschiedenen Zusammensetzungen der Schiene bekannt und liegen in dem angegebenen Bereich 0,2 bis 6 °C/sec. Bei einer größeren Menge des synthetischen Kühlmittelzusatzes, bezogen auf das gesamte Kühlmedium, bildet sich ein stärkerer Film des Kühlmittelzusatzes an der Schiene bzw. dem Schienenkopf aus und die Abkühlungsgeschwindigkeit wird geringer als bei einem geringeren synthetischen Kühlmittelzusatz. lm Rahmen der oben angegebenen Werte von 0,2 bis 6 °C/sec. kann durch Wahl der Menge des Kühlmittelzusatzes unter Berücksichtigung der Zusammensetzung des Schienenstahles in den oben angegebenen Grenzen die Abkühlungsgeschwindigkeit variiert werden.According to the invention, the cooling medium is preferably composed such that there is a cooling rate of 0.2 to 6 ° C / sec in the temperature range between 800 and 500 ° C. sets. The cooling rates which are required to achieve a fine pearlitic structure are known for the various compositions of the rail and are in the range from 0.2 to 6 ° C./sec. With a larger amount of the synthetic coolant additive, based on the total cooling medium, a thicker film of the coolant additive forms on the rail or the rail head and the cooling rate becomes lower than with a lower synthetic coolant additive. Within the range of the above values from 0.2 to 6 ° C / sec. the cooling rate can be varied by choosing the amount of the coolant additive taking into account the composition of the rail steel within the limits specified above.

Es ist auch möglich, die VerschleiBeigenschaften der Schiene durch entsprechende Legierungen des Schienenstahles, wie beispielsweise durch Verwendung einer Cr-Mn-Legierung, zu verbessern. Dies bringt aber, abgesehen von den höheren Kosten eines solchen Stahles, Nachteile in bezug auf die Schweißbarkeit der Schiene mit sich, da bei solchen Legierungen auch nach einem Schweißvorgang eine langsame Abkühlung eingehalten werden muß, um eine Martensitbildung zu verhindern.It is also possible to improve the wear properties of the rail by appropriate alloys of the rail steel, such as by using a Cr-Mn alloy. However, apart from the higher costs of such a steel, this entails disadvantages with regard to the weldability of the rail, since with such alloys slow cooling must be maintained even after a welding process in order to prevent martensite formation.

Fig. 1 zeigt ein Diagramm und Fig. 2 zeigt einen Querschnitt durch einen Schienenkopf, Fig. 3 zeigt ein Diagramm der Verschleißfestigkeit in Abhängigkeit von der Vickers-Härte, und Fig. 4 die Abhängigkeit der Verbesserung der Verschieißfestigkeit von Mangan- und Kohlenstoffgehalt bei vorgegebenem Anteil des Kühlmittelzusatzes.Fig. 1 shows a diagram and Fig. 2 shows a cross section through a rail head, Fig. 3 shows a diagram of wear resistance as a function of Vickers hardness, and Fig. 4 shows the dependence of the improvement in wear resistance on manganese and carbon content for a given Proportion of coolant additive.

Bei der Darstellung nach Fig. 2, welche einen Schnitt durch einen Schienenkopf zeigt, werden entlang der durch den Pfeil a angedeuteten sogenannten Härtespur auf der Schnittfläche Proben in verschiedenen Abständen von der Oberfläche b des Schienenkopfes bestimmt.In the representation according to FIG. 2, which shows a section through a rail head, samples are determined at different distances from the surface b of the rail head along the so-called hardness trace indicated by the arrow a on the cut surface.

In Fig. 1 ist die Vickers-Härte HV30 auf der Ordinate aufgetragen. Auf der Abszisse sind die Abstände der Messungen von der Oberfläche bzw. der Lauffläche b eines Schienenkopfes aufgetragen. Die Kurve c zeigt eine Messung bei nach dem erfindungsgemäßen Verfahren behandelten Schienen, welche eine feinperlitische Struktur aufweisen. Es wurde eine Schiene aus einem Schienenstahl mit einer Zusammensetzung von 0,72 % C, 0,30 % Si und 1,27 % Mn, Rest Eisen und unvermeidbare Verunreinigungen, gewählt. Die Kurve d zeigt den Härteverlauf entlang der Härtespur a bei einer Schiene ähnlicher Zusammensetzung, deren Kopf in heißem Wasser abgeschreckt wurde. Der Vergleich der Kurven c und d zeigt, daß bei der erfindungsgemäßen Wärmebehandlung die Werte der Vickers-Härte höher liegen als bei der Kurve d, wobei vor allem auch die Härteabnahme in Abstand von der Oberfläche b des Schienenkopfes geringer ist. Dies wird darauf zurückgeführt, daß die feinperlitische. Gefügeausbildung gleichmäßiger erfolgt.In Fig. 1 the Vickers hardness HV 30 is plotted on the ordinate. The distances of the measurements from the surface or the running surface b of a rail head are plotted on the abscissa. Curve c shows a measurement in rails treated by the method according to the invention which have a fine pearlitic structure. A rail made of rail steel with a composition of 0.72% C, 0.30% Si and 1.27% Mn, the rest iron and unavoidable impurities, was chosen. Curve d shows the hardness curve along the hardness track a with a rail of similar composition, the head of which was quenched in hot water. The comparison of curves c and d shows that the Vickers hardness values are higher in the heat treatment according to the invention than in curve d, and above all the decrease in hardness at a distance from the surface b of the rail head is less. This is attributed to the fact that the fine pearlitic. Microstructure formation is more uniform.

Fig. 3 zeigt ein Diagramm, in welchem auf der Ordinate die Verschleißfestigkeit β, ausgedrückt in N/cm2, aufgetragen ist. Auf der Abszisse ist die Vickers-Härte HV30' gemessen im SchienenkopfRandbereich, dargestellt. Die Kurve e zeigt den Verlauf der Verschleißfestigkeit im Vergleich zur Vickers-Härte. Der Bereich e1 ist der Bereich, in welchem die Verschleißfestigkeit und die Vickers- Härte bei nach dem erfindungsgemäßen Verfahren wärmebehandelten Schienen liegt. Die bekannten Werte, welche durch bekannte Verfahren erzielt werden können, liegen beträchtlich unter dem Bereich el. So zeigen die Bereiche e2, e3 und e4 für verschiedene Schienenstahlqualitäten bisher erzielte Festigkeitswerte, wobei e3 und e4 für verschiedene Regelschienenstahlgüten und e2 für einen Cr-Mn Schienenstahl gelten.FIG. 3 shows a diagram in which the wear resistance β, expressed in N / cm 2 , is plotted on the ordinate. The Vickers hardness HV 30 ' measured in the edge of the rail head is shown on the abscissa. Curve e shows the course of wear resistance in comparison to Vickers hardness. The area e 1 is the area in which the wear resistance and the Vickers hardness are in rails heat-treated by the method according to the invention. The known values which can be achieved by known methods are considerably below the range e l . To view the areas e2, e3 and e4 been achieved for different rail steel qualities resistance values, e3 and e4 for various standard rail steel grades and e2 are for single Cr-Mn steel rail.

Bei der Darstellung in Fig. 4 ist auf der Ordinate der Mangangehalt in Gew.% beginnend bei 1,1 Gew.% aufgetragen. Auf der Abszisse ist der Kohlenstoffgehalt in Gew.% beginnend mit 0,65 Gew.% aufgetragen. Das in diesem Diagramm eingetragene Rechteck f begrenzt den Bereich der Stähle mit einem Kohlenstoffgehalt von 0,7-0,75 Gew.% und einem Mangangehalt von 1,2-1,3 Gew.%. Bei Stählen mit einem mittleren Kohlenstoffgehalt und einem mittleren Mangangehalt innerhalb dieses Bereiches hat es sich gezeigt, daß ein Anteil von 30 Vol.% eines Polyglykols als Kühlmittelzusatz die besten Ergebnisse ergibt. Gerade g entspricht hiebei einem Anteil von 30 Vol.% eines Polyglykois im Kühlmittel. Mit zunehmenden Kohlenstoffgehalt muß der Anteil des Kühlmittelzusatzes zur Erzielung gleicher Ergebnisse herabgesetzt werden, wenn der Mangangehalt gleich bleibt. Umgekehrt muß bei gleichbleibendem Kohlenstoffgehalt und zunehmendem Mangangehalt der Anteil des Kühlmittelzusatzes erhöht werden, um wiederum zu gleichen Ergebnissen zu gelangen, wobei die Geraden h und i die untere bzw. die obere Grenze für den Anteil des Kühlmittelzusatzes, nämlich 20 Vol.% und 50 Vol.%, wiedergibt. Bei Unterschreiten der Untergrenze von 20 Vol.% Kühlmittelzusatz bei den genannten Stählen würde sich eine zu hohe Abkühlgeschwindigkeit ergeben, wodurch die Verzugsneigung im Schienenkopf in zu großem Maße zunimmt. Umgekehrt hätte eine Überschreitung der Obergrenze von 50 Vol.% Kühlmittelzusatz für die Stähle im angegebenen Bereich die Folge einer stärkeren Belagbildung. Diese Belagbildung führt zu unregelmäßiger Konzentrationsverteilung des Kühlmittelzusatzes im Kühlmittel und ein unkontrolliertes Absinken des Anteiles des Kühlmittelzusatzes hätte Unregelmäßigkeiten im örtlichen Verlauf der Abkühlungsgeschwindigkeit zur Folge. Darüber hinaus würde bei einer Verarmung des Kühlmittels an Kühlmittelzusatz der Bereich, bei welchem sich die besten Werte für die Erhöhung der Verschleißfestigkeit ergeben, verlassen werden. Aus diesem Diagramm ergibt sich für jeden einzelnen, der dem Rechteck f entsprechenden Stähle jeweils ein Optimum für den Anteil des Kühlmittelzusatzes im Kühlmittel, mit welchem besonders gute und gleichmäßige Ergebnisse im Bezug auf die Verschleißfestigkeit der Schienenstähle erzielt werden. Bei diesen Versuchen wurde die Kühlmitteltemperatur bei 50 °C konstant gehalten und das Bad in Bewegung gehalten. Die Tauchtiefe des Schienenkopfes betrug jeweils 40 mm. Bei der jeweils optimalen Zusammensetzung des Kühlmittels wurde ein feinperlitisches Gefüge im Schienenkopfrandbereich erzielt.4, the manganese content in% by weight is plotted on the ordinate, starting at 1.1% by weight. The carbon content in% by weight is plotted on the abscissa, starting with 0.65% by weight. The rectangle f entered in this diagram limits the range of steels with a carbon content of 0.7-0.75% by weight and a manganese content of 1.2-1.3% by weight. In the case of steels with an average carbon content and an average manganese content within this range, it has been shown that a proportion of 30% by volume of a polyglycol as coolant additive gives the best results. Just g corresponds to 30% by volume of a polyglykois in the coolant. With increasing carbon content, the proportion of the coolant additive must be reduced to achieve the same results if the manganese content remains the same. Conversely, with the carbon content remaining constant and the manganese content increasing, the proportion of the coolant additive must be increased in order to again achieve the same results, the straight lines h and i representing the lower and the upper limit for the proportion of the coolant additive, namely 20% by volume and 50% by volume .%, reproduces. If the coolant additive in the steels mentioned falls below the lower limit of 20% by volume, the cooling rate would be too high, causing the tendency to warp in the rail head to increase to a great extent. Conversely, exceeding the upper limit of 50 vol.% Coolant additive for the steels in the specified range as a result of a stronger deposit formation. This deposit formation leads to an irregular concentration distribution of the coolant additive in the coolant and an uncontrolled decrease in the proportion of the coolant additive would result in irregularities in the local course of the cooling rate. In addition, if the coolant were depleted of coolant additive, the area in which the best values for increasing the wear resistance would result would be left. This diagram shows for each of the steels corresponding to the rectangle f an optimum for the proportion of coolant additive in the coolant, with which particularly good and uniform results are achieved in relation to the wear resistance of the rail steels. In these experiments, the coolant temperature was kept constant at 50 ° C and the bath was kept moving. The depth of the rail head was 40 mm. With the optimal composition of the coolant, a fine pearlitic structure was achieved in the edge of the rail head.

Claims (5)

1. Method of heat treating rails by quenching the rail or at least the rail head by means of a coolant, from a temperature in the austenitic range to a temperature at which the conversion of perlite is terminated, for obtaining a fine perlitic structure, comprising treating the rails made of steel consisting of 0,7 to 0,75 % C, at maximum 0,8 % Si and 1,2 to 1,3 % Mn, remainder iron and inavoidable impurities, in a coolant containing water and a synthetic coolant additive in an amount of from 20 to 50 % by volume related to the total coolant volume, the amount of coolant additive being increased on rising manganese content and constant carbon content and being decreased on rising carbon content and constant manganese content and the temperature of the cooling bath being held at 40 to 60 °C so that within said ranges of C and Mn contents constant wear-resistance properties and a Vickers hardness HV30 of from 340 to 380 are achieved.
2. Method as claimed in claim 1, characterised in that polyglycol is used as synthetic coolant additive.
3. Method as claimed in claim 1 or 2, characterised in that the thermal treatment is carried out from rolling temperature.
4. Method as claimed in claim 1, 2 or 3, characterised in that the coolant is composed such that in the temperature range between 800 and 500 °C a cooling rate of from 0,2 to 6 °C/s is achieved.
5. Method as claimed in any one of claims 1 to 4, characterised in that the temperature of the cooling bath is held at 50 °C and that the bath is circulated or agitated, resp.
EP19830890026 1982-03-09 1983-02-22 Method of heat treating rails Expired EP0088746B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
AT0093182A AT375402B (en) 1982-03-09 1982-03-09 METHOD FOR HEAT-TREATING RAILS
AT931/82 1982-03-09

Publications (2)

Publication Number Publication Date
EP0088746A1 EP0088746A1 (en) 1983-09-14
EP0088746B1 true EP0088746B1 (en) 1987-04-15

Family

ID=3503141

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19830890026 Expired EP0088746B1 (en) 1982-03-09 1983-02-22 Method of heat treating rails

Country Status (5)

Country Link
EP (1) EP0088746B1 (en)
JP (1) JPS58221229A (en)
AT (1) AT375402B (en)
CA (1) CA1205729A (en)
DE (1) DE3370972D1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
LT3008B (en) 1992-07-15 1994-08-25 Voest Alpine Schienen Gmbh Method for heat treatment of rails

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62161917A (en) * 1986-01-09 1987-07-17 Nippon Steel Corp Manufacture of head end-heattreated rail excellent in resistance to damage and wear
JPS63203724A (en) * 1987-02-19 1988-08-23 Nkk Corp Method for hardening rail
DE4003363C1 (en) * 1990-02-05 1991-03-28 Voest-Alpine Industrieanlagenbau Ges.M.B.H., Linz, At Hardening rails from rolling temp. - using appts. with manipulator engaging rail from exit roller table with support arms positioned pivotably on each side
AT401359B (en) * 1991-04-05 1996-08-26 Vae Ag METHOD FOR PRODUCING A HEART PIECE
EP0685566B2 (en) * 1993-12-20 2013-06-05 Nippon Steel & Sumitomo Metal Corporation Rail of high abrasion resistance and high tenacity having pearlite metallographic structure and method of manufacturing the same
DE19621017C1 (en) * 1996-05-24 1998-01-08 Butzbacher Weichenbau Gmbh Process for the production of a track superstructure and track superstructure
AT409268B (en) * 2000-05-29 2002-07-25 Voest Alpine Schienen Gmbh & C METHOD AND DEVICE FOR HARDENING RAILS

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1242660B (en) * 1963-06-29 1967-06-22 Union Carbide Corp Quenching medium for quenching heat-treated metal
DE1802273A1 (en) * 1968-01-18 1969-08-07 Zentralinstitut Fuer Fertigung Quenching means for austenitic steels
DE2439338C2 (en) * 1974-08-16 1980-08-28 Fried. Krupp, Huettenwerke Ag, 4630 Bochum Process for the heat treatment of rails from the rolling heat
US4087290A (en) * 1975-07-03 1978-05-02 E. F. Houghton & Co. Process for the controlled cooling of ferrous metal
BE854834A (en) * 1977-05-18 1977-09-16 Centre Rech Metallurgique PROCESS FOR MANUFACTURING RAILS WITH IMPROVED CHARACTERISTICS

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
LT3008B (en) 1992-07-15 1994-08-25 Voest Alpine Schienen Gmbh Method for heat treatment of rails

Also Published As

Publication number Publication date
JPS58221229A (en) 1983-12-22
CA1205729A (en) 1986-06-10
DE3370972D1 (en) 1987-05-21
EP0088746A1 (en) 1983-09-14
AT375402B (en) 1984-08-10
ATA93182A (en) 1983-12-15

Similar Documents

Publication Publication Date Title
DE69433512T2 (en) High-strength bainitic steel rails with improved resistance to fatigue damage due to rolling contact
DE3433698A1 (en) METHOD FOR TREATING A WORKPIECE
DE2417179A1 (en) PROCESS FOR CARBONIZING HIGH-ALLOY STEELS
DE69629161T2 (en) METHOD FOR PRODUCING RAILS WITH HIGH WEAR RESISTANCE AND HIGH RESISTANCE TO INNER DEFECTS
DE2830850C3 (en) Use of a case-hardening steel
DE2439338B1 (en) Process for the heat treatment of rails
EP0088746B1 (en) Method of heat treating rails
EP0610460B1 (en) Rail thermal treatment process
DE2545104B2 (en) AUTOMATIC STEEL AND METHOD FOR PRODUCING IT
DE1533381B1 (en) Use of a steel for the manufacture of razor blades
EP0029539A1 (en) Process for manufacturing chromium-containing cast iron and cast articles made therefrom
DE1483247C3 (en) Process for the continuous production of a high tensile strength tinplate
DE1553806B1 (en) USE OF A STEEL FOR RAZOR BLADES AND THEIR PRODUCTION
DE1496708A1 (en) Process for the surface treatment of bright annealed stainless steels
DE69813975T2 (en) Method for producing a mechanical workpiece with at least one part that has been surface-hardened by induction, and thus produced workpiece
DE3044339A1 (en) METHOD FOR PRODUCING COLD SHEET WITH A TWO-PHASE STRUCTURE
EP0166239B1 (en) Process for producing concrete-reinforcing steel bars or rods emerging from the rolling mill
DE2160805A1 (en) Process for the heat treatment of a surface layer of metal strips
DE2727744C2 (en)
DE2324750A1 (en) MANUFACTURE OF HARDENED STEEL
DE3044338A1 (en) METHOD FOR PRODUCING COLD SHEET
DE2425187A1 (en) BREAK TOUGH FULL WHEELS OR WHEEL TIRES
AT401359B (en) METHOD FOR PRODUCING A HEART PIECE
DE1433793A1 (en) Process for the heat treatment of low-alloy steel with Nb / Ta and / or V and construction element produced from a steel treated in this way
DE3811270C2 (en) Process for the continuous treatment of cold-rolled manganese carbon steel

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): DE FR GB IT LU SE

17P Request for examination filed

Effective date: 19840120

ITF It: translation for a ep patent filed

Owner name: BARZANO' E ZANARDO MILANO S.P.A.

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT LU SE

REF Corresponds to:

Ref document number: 3370972

Country of ref document: DE

Date of ref document: 19870521

ET Fr: translation filed
PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

26 Opposition filed

Opponent name: SSAB SVENSKT STAL AB

Effective date: 19880114

ITPR It: changes in ownership of a european patent

Owner name: CESSIONE;VOEST- ALPINE STAHL DONAWITZ GMBH

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

PLBG Opposition deemed not to have been filed

Free format text: ORIGINAL CODE: 0009274

26D Opposition deemed not to have been filed

Opponent name: SSAB SVENSKT STAL AB

Effective date: 19880918

ITTA It: last paid annual fee
EPTA Lu: last paid annual fee
EAL Se: european patent in force in sweden

Ref document number: 83890026.4

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20020124

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20020201

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20020204

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20020207

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 20020213

Year of fee payment: 20

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20030221

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20030222

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Effective date: 20030221

EUG Se: european patent has lapsed
RIN2 Information on inventor provided after grant (corrected)

Inventor name: PRSKAWETZ, GEORG, DIPL.-ING.

Inventor name: POINTNER, PETER, DIPL.-ING.

Inventor name: MOSER, ALFRED, DR., DIPL.-ING.