EP0087387B1 - Method and means for controlling a bidirectional step-motor - Google Patents

Method and means for controlling a bidirectional step-motor Download PDF

Info

Publication number
EP0087387B1
EP0087387B1 EP83810044A EP83810044A EP0087387B1 EP 0087387 B1 EP0087387 B1 EP 0087387B1 EP 83810044 A EP83810044 A EP 83810044A EP 83810044 A EP83810044 A EP 83810044A EP 0087387 B1 EP0087387 B1 EP 0087387B1
Authority
EP
European Patent Office
Prior art keywords
pulse
winding
sense
current
pulses
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP83810044A
Other languages
German (de)
French (fr)
Other versions
EP0087387A1 (en
Inventor
Rémy Grandjean
Yves Guerin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ETA SA Manufacture Horlogere Suisse
Original Assignee
Eta SA Fabriques dEbauches
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eta SA Fabriques dEbauches filed Critical Eta SA Fabriques dEbauches
Publication of EP0087387A1 publication Critical patent/EP0087387A1/en
Application granted granted Critical
Publication of EP0087387B1 publication Critical patent/EP0087387B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G04HOROLOGY
    • G04CELECTROMECHANICAL CLOCKS OR WATCHES
    • G04C13/00Driving mechanisms for clocks by master-clocks
    • G04C13/08Slave-clocks actuated intermittently
    • G04C13/10Slave-clocks actuated intermittently by electromechanical step advancing mechanisms
    • G04C13/11Slave-clocks actuated intermittently by electromechanical step advancing mechanisms with rotating armature
    • GPHYSICS
    • G04HOROLOGY
    • G04CELECTROMECHANICAL CLOCKS OR WATCHES
    • G04C3/00Electromechanical clocks or watches independent of other time-pieces and in which the movement is maintained by electric means
    • G04C3/14Electromechanical clocks or watches independent of other time-pieces and in which the movement is maintained by electric means incorporating a stepping motor

Definitions

  • the present invention relates to a method and a device for controlling a bidirectional stepping motor comprising a stator comprising a frame which has a first, a second and a third pole face delimiting between them a substantially cylindrical space and which comprises a first and a second magnetic circuit respectively connecting the first pole face to the second pole face and the first pole face to the third pole face, the stator further comprising a first and a second coil magnetically coupled to the first, respectively to the second circuit magnetic, and the motor further comprising a rotor comprising a permanent magnet rotatably mounted in said space.
  • a motor as defined above is described in German patent application No. DE-A-3 026 004. According to this patent application, it is controlled by current pulses which are sent simultaneously in the two coils each time the rotor must turn one step, i.e. 180 °. The polarity of the current flowing in one of the coils is reversed substantially in the middle of the driving pulse.
  • the motor control circuit comprises eight transistors forming, in a conventional manner, two bridges of four connected transistors, each, to one of the coils. These eight transistors, which must pass a fairly intense current, occupy a large area on the silicon wafer in which are integrated all the elements of the electronic circuit used to develop the driving pulses.
  • Bidirectional stepper motors comprising two coils magnetically coupled to a rotor comprising a permanent magnet, as well as their control methods, are already known.
  • patent application GB-A-1 451 359 describes a motor having a stator which has four pole faces surrounding a rotor.
  • This rotor comprises a magnet having two pairs of poles distributed regularly at its periphery. Two of the four pole faces are magnetically coupled to a first coil, and the other two pole faces are magnetically coupled to a second coil.
  • patent application WO-A-81/02207 describes a motor whose rotor is a disc magnetized axially so as to present on each of its faces a plurality of magnetic poles alternately north and south. Two coils are coupled to this rotor by independent magnetic circuits, each having an air gap through which the periphery of the disc forming the rotor passes.
  • the motor control method consists, for the two directions of rotation of the rotor, of applying pulses alternately to one and the other of the coils, two successive pulses on the same coil having opposite polarities from each other and the rotor rotating one step in response to each pulse.
  • the direction of rotation of the rotor from each of its stop positions depends on the polarity of the pulse applied to the coil which must be excited when the rotor is at this position.
  • the direction of rotation of the rotor depends on the coil to which the pulse is applied.
  • the purpose of the present invention is to provide a method and a device for controlling an engine such as that described in this patent application DE-A-3 026 004 which on the one hand make it possible to reduce the current consumption of the motor and, on the other hand, to use only six power transistors in the control circuit.
  • Figures 1 and 2 show an embodiment of the engine described in German patent application No. DE-OS 3.026.004 cited above.
  • the motor comprises a stator, the armature of which is formed of two pieces of soft magnetic material, one of which, designated by 1, has three branches designated by la, Ib and Ic, respectively, and whose l the other, designated by 2, has substantially the shape of a straight bar having three transverse projections, two of which, designated by 2a and 2b, are located at its ends, and the third of which, designated by 2c, is located in the middle.
  • a circular hole 4 is formed in the part 1, in line with the birth of the branch 1c, median, of the latter, thus providing three thinned parts 1d, 1e and 1f, in the form of isthmus, connecting to each other the three pole faces formed one by the branch 1 c and the other two by the portions of the body of the part 1 even located between the thinning 1 d and 1e, and 1e and 1f respectively.
  • the motor rotor comprises a shaft 5 which pivots for example between two elements 6 and 7 of the frame of the apparatus which is equipped with the present motor.
  • the shaft 5 carries a permanent magnet 8, bipolar, whose poles, diametrically opposite, have been indicated by N and S in FIG. 1.
  • the stator of the motor comprises two coaxial coils 9 and 10 wound on the two straight parts 2d of part 2 of the frame located one between the projection 2a and the projection 2c of part 2 and the other between the projection 2b and the projection 2c thereof.
  • the magnetic field generated by each of these coils in space 4 and in magnet 8 when they are traversed by a current has been schematically represented in FIG. 1 where it is designated by C9, respectively C10.
  • the rotor in the absence of current in the coils 9 and 10, the rotor is subjected to a positioning torque which tends to keep it in one or the other of two rest positions.
  • One of these positions is that shown in FIG. 1, the other is that which the rotor occupies after having turned 180 °.
  • the variation in this positioning torque as a function of the angle of rotation of the rotor is such that the rotor returns to the position it occupied if it is left free after being moved, in one direction or the other, by an angle less than approximately 90 °, and that it rotates to the other rest position if it is left free after being moved by an angle greater than approximately 90 °.
  • the directions of the fields C9 and C10 form angles of approximately 45 ° with the direction of the magnetization axis N - S of the magnet 8. In practice, these angles can be between 30 ° and 60 ° approximately, depending on the shape given to the different parts of the stator.
  • the table in FIG. 3 illustrates the method according to the invention for controlling this motor.
  • the signs + or - in the columns designated by 19 and 110 indicate that a positive, respectively negative current is sent to the coil 9, respectively 10, in the case illustrated by the line where they are located.
  • the arrows in the columns designated by C9 and C10 indicate the direction of the field created by these currents.
  • the arrows in the last three columns designated by Ra, Rb and Rc respectively indicate the starting position of the rotor, the position it would reach under the influence of the field created by the coils 9 or 10 if the current were maintained in these coils , and the position it reaches under the influence of the positioning torque when this current is interrupted.
  • These various positions are indicated by arrows going from the south pole of magnet 8 to its north pole.
  • Line A in the table in Figure 3 illustrates how to control the motor so that the rotor turns one step, i.e. 180 °, in the positive direction from the position it occupies in FIG. 1. This position is recalled in the column Ra of this line A.
  • a positive current pulse is sent to the coil 10.
  • the field which results from this pulse has substantially the direction and the direction of the arrow C10 of the figure 1.
  • No current is sent to the coil 9.
  • the rotor is subjected to a torque such that, if the intensity of the current is sufficient, it turns in the positive direction until it reaches a position where the direction of the magnet 8 field is parallel to the direction of the arrow C10 (column Rb).
  • Line B of the table in FIG. 3 illustrates the way of controlling the motor so that the rotor turns again one step in the positive direction from the position it has reached following this first step.
  • This position is symbolized in the column Ra of this line 8.
  • a current pulse of the same intensity as that of line A of the table is sent to the coil 10, but in the negative direction.
  • the resulting magnetic field therefore has the same direction as that of arrow C10, but the opposite direction.
  • the torque exerted on the rotor therefore has the same direction as in the previous case, and the rotor turns again in the positive direction until the field of the magnet 8 has a direction parallel to that of the field. created by the current flowing in the coil 10 (column Rb). Again, when this current is interrupted, the rotor ends its pitch under the influence of the positioning torque. It is found in the position it occupies in Figure 1, after having made a full turn in the positive direction (column Rc).
  • Line C of this table illustrates how to control the motor so that its rotor turns one step in the negative direction from the position it occupies in Figure 1 (column Ra).
  • a positive current pulse is sent to the coil 9, and no current is sent to the coil 10.
  • the field which results from this pulse has substantially the direction and the direction of the arrow C9.
  • the rotor is subjected to a torque such that it rotates in the negative direction until the direction of the field of the magnet 8 becomes parallel to the direction of the arrow C9 (column Rb).
  • this current is interrupted, the rotor ends its pitch under the influence of the positioning torque (column Rc). He therefore turned half a turn in the negative direction.
  • the rotor then made a full turn in the negative direction. If a positive current is again sent to the coil 9, the rotor repeats a step as in the case of line C.
  • the current must be interrupted at the latest when the rotor reaches the position illustrated by the column Rb of the table in FIG. 3, or even before.
  • the duration of the current pulses sent into the coil 10 or into the coil 9 is chosen as a function of the characteristics of the motor and / or of the load which it drives.
  • first current pulses are applied alternately in one direction and in the other only to one of the coils to cause the rotor to rotate in one direction
  • second current pulses are applied alternately in one direction and in the other only to the other coil to cause the rotor to rotate in the other direction.
  • Figure 4a illustrates the current pulses sent to the coil 10 to rotate the rotor in the positive direction
  • Figure 4b illustrates the pulses sent to the coil 9 to rotate the rotor in the negative direction.
  • the rotor In order for the rotor to turn half a step in response to one of these pulses, it must be in the desired position, that is, it must be in the position it occupies in FIG. 1, at the moment when a positive current pulse is sent to the coil 9 or to the coil 10 and that it must be in its other rest position at the time when a negative current pulse is sent to the either of these coils.
  • this condition is not fulfilled, that is to say that the rotor is in the position of FIG. 1 and that a negative pulse is sent to one of the coils, or that it is in its other rest position and that a positive pulse is sent to this coil, the rotor begins to rotate in the opposite direction to that which corresponds to the coil in which the current is sent. However, it only turns at a small angle, less than the angle corresponding to half a step. The positioning torque to which it is subjected therefore does not change sign and the rotor returns to its starting position at the end of the pulse.
  • the next pulse will therefore have the correct polarity to rotate it one step in the desired direction.
  • the direction of rotation is therefore not inverted when the rotor does not have the position it should have when a pulse is sent to one of the coils.
  • FIG. 5 shows the diagram of an example of a circuit for implementing the method according to the invention
  • FIGS. 6a and 6b illustrate some signals measured at various points of this circuit.
  • the motor is used in an electronic watch to drive the hands for displaying the hour, minute and second, not shown, using of a gear train also not shown. It is obvious that these examples are not limiting and that the invention can be used whatever the device or the apparatus in which the motor is incorporated.
  • the coils 9 and 10 of the motor are connected in a double bridge formed by six MOS transistors designated by T1 to T6.
  • Transistors T1, T3 and T5 are p-type and have their source connected to the positive pole of the power source.
  • the transistors T2, T4 and T6 are of type n and have their source connected to the negative pole of the power source.
  • the drains of the transistors T1 and T2, T3 and T4, T5 and T6 are respectively connected to a first terminal of the coil 10, to the second terminal of the coil 10 and to a first terminal of the coil 9, and to the second terminal coil 9.
  • the gates G1 to G6 of the transistors T1 to T6 are connected to a logic circuit formed by six AND gates 21 to 26, two OR gates 27 and 28, four inverters 29 to 32 and two D-type flip-flops 33 and 34, connected to each other in the manner shown.
  • This logic circuit will not be described in more detail here, since its operation, which is illustrated by the diagrams in FIGS. 6a and 6b, is easy to understand.
  • This logic circuit receives two periodic signals having respective frequencies of 1 Hz and 64 Hz supplied by outputs 35a and 35b of a frequency divider 35.
  • This divider 35 receives from a quartz oscillator 36 a signal having a frequency of , for example, 32768 Hz. It also delivers on outputs designated 35c, 35d and 35e other periodic signals having frequencies of 128, 256 and 2048 Hz respectively which will be used in circuits described below.
  • the logic circuit also receives a signal AR for determining the direction of rotation of the motor, which is supplied, for example, by a time-setting circuit 38 which can be any one and which will not be described here.
  • this signal AR is in the logic state "0" when the rotor must turn in the positive direction, and in the logic state "1" when the rotor must turn in the negative direction.
  • the output Q of the flip-flop 33 delivers control pulses which are in the state "1" for approximately 7.8 milliseconds, with a period of one second. Between these control pulses, the gates of transistors T1, T3 and T5 are in logic state “1" and the gates of transistors T2, T4 and T6 are in logic state "0". As these states “1” and “0” are represented respectively by the voltage of the positive terminal and by the voltage of the negative terminal of the power source, the six transistors T1 to T6 are blocked.
  • the flip-flop 34 changes state. Its output Q therefore remains alternately in state “0" and in state "1" for one second.
  • the AR signal is at "0" (figure 6a).
  • a control pulse delivered by the output Q of the flip-flop 33 passes the gate 21 and reaches the gate G1 of the transistor T1 through the gate 23 and the inverter 30, and the gate G4 of the transistor T4 through gate 28.
  • the gate G4 therefore passes to "1” and the gate G1 passes to "0".
  • the transistors T1 and T4 therefore become conductive, and a current pulse crosses the coil 10 in the direction indicated by the arrow 36a. If the direction of the winding of the wire forming the coil 10 is chosen correctly, this pulse creates a magnetic field in the direction of arrow C10 in FIG. 1. This case therefore corresponds to the case of line A in the table in FIG. 3. If, in addition, the rotor is, before the start of the pulse, in the position shown in FIG. 1, it turns half a turn in the positive direction.
  • the end of the control pulse delivered by the Q output of the flip-flop 33 causes the flip-flop 34 to switch, the Q output of which goes to state "1".
  • the output Q of the flip-flop 33 delivers a new control pulse which also passes through the gate 21 and this time reaches the gate G2 of the transistor T2 through the gate 24, and the gate G3 of the transistor T3 through the door 27 and the inverter 31.
  • These two transistors therefore become conductive, and a current pulse crosses the coil 10 in the opposite direction to that of the arrow 36a.
  • the rotor therefore turns again one step in the positive direction. This case corresponds to that of line B in the table in Figure 3.
  • G pulse delivered one second later by output Q of flip-flop 33, also passes through gate 22.
  • this pulse passes through gate 25 and reaches gate G6 of transistor T6.
  • This pulse also reaches the gate G3 of the transistor T3 through the gate 27 and the inverter 31.
  • These transistors T3 and T6 therefore become conductive and a current pulse crosses the coil 9 in the opposite direction to that of arrow 37. This case corresponds to that of the fourth line of the table in FIG. 3, and the rotor therefore turns again one step in the negative direction.
  • the device applies, in response to a control signal, a first current pulse to a first coil, alternately in one direction and in the other, when the signal for determining the direction of rotation of the rotor is in its first state, and a second current pulse to the second coil, alternately in one direction and in the other, when the signal for determining the direction of rotation of the rotor is in its second state.
  • the control signal consists of the pulses supplied by the output Q of the flip-flop 33.
  • the torque provided by the motor when controlled by the method described above is sufficient in most cases. It is however possible to increase this torque, if necessary, by using a variant of this method.
  • the table in FIG. 7 summarizes this first variant of the method according to the invention.
  • a positive current pulse is first applied to the coil 10, as in the method described above (see line A1 of the table in Figure 7). No current is sent to the coil 9.
  • the field C10 created by this current brings the rotor to the position indicated in column Rb1 of this line A1.
  • a current pulse of positive direction is sent to the coil 9.
  • a current pulse of also positive direction is then sent in the coil 10 and, finally, the positioning torque brings the rotor into its second rest position.
  • the lines C1 and C2 in the table in FIG. 7 indicate these different currents, the resulting fields and the positions reached by the rotor in response to these fields and under the influence of the positioning torque.
  • first current pulses are applied to a first coil alternately in a first direction and in the second direction to cause the rotation of the rotor in a first direction
  • second Current pulses are applied to the second coil alternately in the first and in the second direction to cause the rotor to rotate in the second direction
  • a third pulse is applied to the second coil after each first pulse
  • a fourth pulse is applied to the first coil after each second pulse.
  • the direction of the third or fourth pulse is the same as that of the first or, respectively, of the second immediately preceding pulse.
  • FIG. 8 shows the diagram of an example of a circuit intended to implement this variant of the method according to the invention and FIGS. 9a and 9b are diagrams representing signals measured at a few points of this circuit.
  • the circuit of this figure 8 comprises a type D flip-flop 41, the output Q of which changes to "1" each time that the output 35a of the frequency divider 35, not shown in this figure, changes to the state "1 ".
  • the reset input R of this flip-flop 41 is connected to the output 35c of the frequency divider 35, not shown, which supplies a signal at a frequency of 128 Hz.
  • This output Q of the flip-flop 41 therefore returns to "0" 3.9 milliseconds after going to "1".
  • a third type D flip-flop 44 switches at the end of each pulse supplied by the output Q of the flip-flop 42.
  • the output Q of this flip-flop 44 therefore remains alternately at state “0" and at state "1" for one second.
  • the two consecutive control pulses supplied each second by the outputs Q of the two flip-flops 41 and 42 are transmitted to the gates G1 to G6 of the transistors T1 to T6, identical to those of FIG. 5 and not shown in this FIG. 8, by a logic circuit comprising AND gates 45 to 52, OR gates 53 to 56 and inverters 57 to 60, connected to each other as shown.
  • This logic circuit will not be described in more detail here, since its operation, which is illustrated by the diagrams in FIGS. 9a and 9b, is easy to understand.
  • each first control pulse supplied by the output Q of the flip-flop 41 makes the transistors T1 and T4 conductive.
  • a current pulse therefore passes in the positive direction in the coil 10 (line A1, FIG. 7).
  • each second control pulse supplied by the output Q of the flip-flop 42 makes the transistors T4 and T5 conductive, which causes the passage of a current pulse in the coil 9, also in the positive direction ( line A2, figure 7).
  • each first control pulse supplied by the output Q of the flip-flop 41 returns the transistors T2 and T3 conductors. A current pulse therefore passes through the coil 10 in the negative direction (line B1, FIG. 7).
  • Each second control pulse supplied by the output Q of the flip-flop 42 makes the transistors T3 and T6 conductive. A current pulse therefore passes through the coil 9 also in the negative direction (line B2, FIG. 7).
  • each first control pulse supplied by the output Q of the flip-flop 41 causes the passage of a positive current pulse in the coil 9 (line C1, FIG. 7), and each second control pulse supplied by the output 9 of the flip-flop 42 causes the passage of an equally positive current pulse in coil 10 (line C2, Figure 7).
  • each first control pulse supplied by output Q of flip-flop 41 causes the passage of a negative current pulse in the coil 9 (line D1, figure 7), and each second control pulse supplied by the output 9 of the flip-flop 42 causes the passage of a current pulse, also negative, in coil 10 (line D2, Figure 7).
  • the device of FIG. 8 delivers to the coils of the motor, in response to a control signal, the same first and second pulses as the device of FIG. 5.
  • it applies a third current pulse to the second coil after each first pulse and a fourth current pulse to the first coil after each second pulse.
  • the third and the fourth pulse is t the same direction as the first, respectively the second immediately preceding pulse.
  • control signal consists of the pulses supplied by the outputs Q of the flip-flops 41 and 42.
  • control pulses delivered by the outputs Q of the flip-flops 41 and 42 follow each other without interval and they have durations equal, each one, to half of the duration of the pulses supplied by the output Q of the flip-flop 33 in the case of FIG. 5.
  • This is not however compulsory, and it is possible to choose for these control pulses different durations, to adapt them to the characteristics of the motor and / or of the load. that it entails. It is also possible to leave a small gap between them.
  • the table in FIG. 10 summarizes a second variant of the method according to the invention.
  • the current in the coil 9 is interrupted, and a current pulse of positive direction is applied to the coil 10 (line A2 in the table of FIG. 10). No current is sent to the coil 9.
  • the field C10 resulting from this pulse brings the rotor to the position indicated in column Rb2.
  • the positioning torque brings the rotor to the position indicated in column Rc of line A2.
  • a current pulse of positive direction is applied to the coil 9
  • a current pulse of negative direction is sent to the coil 10.
  • Lines 81 and 82 of the table of FIG. 10 indicate these different currents, the resulting fields and the positions reached by the rotor in response to these fields and under the influence of the positioning torque.
  • first current pulses are applied to a first coil, alternately in a first direction and in the second direction to cause the rotation of the rotor in a first direction
  • second current pulses are applied to the second coil, alternately in the first and in the second direction to cause the rotor to rotate in the second direction
  • a third pulse is applied to the second coil after each first pulse
  • a fourth pulse is applied to the first coil after each second pulse.
  • the coil to which the first pulses are applied is that to which the second pulses are applied in the process and in the first variant, and vice versa.
  • the direction of the current which must be applied to cause the rotation of the rotor in a determined direction from a determined position is each time the inverse of the direction of the current which is applied under the same conditions in the process and in its first variant.
  • the direction of this third and of this fourth pulse is each time the opposite direction of the direction of the first or, respectively, of the second immediately preceding pulse.
  • FIG. 11 illustrates an example of a circuit allowing the implementation of this variant of the method
  • FIGS. 12a and 12b are diagrams representing signals measured at some points of this circuit when the rotor turns respectively in the positive direction and in the negative sense.
  • the flip-flops 41, 42 and 44 and the reverser 43 represented in FIG. 11 are exactly the same and operate in the same way as those in FIG. 8.
  • the two control pulses supplied by the outputs of the flip-flops 41 and 42 are transmitted to the gates G1 to G6 of the transistors T1 to T6, identical to those of FIG. 5 and not shown in this FIG. 11, by a logic circuit comprising the AND gates 71 to 82, OR gates 83 to 88, and inverters 89 to 92, connected to each other as shown.
  • the control of the motor according to a third variant of the method makes it possible to increase the torque supplied by this motor, compared to that which it provides when it is controlled according to the second variant, without increasing its consumption to a great extent.
  • the table in Figure 13 summarizes this third variant.
  • the lines A1, A2, B1, B2, C1, C2, D1 and D2 in this table are identical to the corresponding lines in the table in Figure 10.
  • a positive current pulse is sent to the coil 9
  • a negative direction pulse is sent to the coil 10 (lines B1 and B2 of Figure 13).
  • the first, second, third and fourth current pulses are applied as in the second variant.
  • a fifth current pulse is applied to the first coil after the start of each third pulse and a sixth current pulse is applied to the second coil after the start of each fourth pulse, without this third or fourth pulse being interrupted.
  • the direction of the fifth or sixth current pulse is the opposite direction to the direction of the immediately preceding first or second pulse.
  • FIG. 14 illustrates an example of a circuit allowing the implementation of this third variant of the method
  • FIG. 15 is a diagram representing signals measured at a few points of this circuit.
  • the circuit of FIG. 14 comprises a D-type flip-flop 101 whose clock input Ck receives the signal having a frequency of 1 Hz from the output 35a of the divider 35, not shown in this figure (see fig. 5).
  • the output Q of this flip-flop 101 is connected to its input D, so that its output Q goes to state "1" each time the signal having a frequency of 1 Hz itself goes to state "1".
  • the reset input R of the flip-flop 101 receives from the output 35d of the divider 35 a signal having a frequency of 256 Hz.
  • the output Q of the flip-flop 101 therefore returns to the state "0" approximately 1, 9 milliseconds after entering state "1".
  • the output Q of a flip-flop 102 also of type D, the input Ck of which is connected to the output ⁇ of the flip-flop 101, changes to state "1".
  • the reset input R of this flip-flop 102 receives, through an inverter 103, the signal having a frequency of 256 Hz supplied by the output 35d of the divider 35, the output Q of this flip-flop 102 returns in state "0" about 1.9 milliseconds after going to state "1".
  • the output Q of a flip-flop 104 also of type D, the input Ck of which is connected to the output Q of the flip-flop 102, changes to state "1".
  • the input R of this flip-flop 104 also receiving the signal having a frequency of 256 Hz, its output Q returns to the state "0” also about 1.9 milliseconds after having passed to the state "1".
  • the outputs Q of the flip-flops 101, 102 and 104 therefore deliver each second three successive pulses.
  • the three control pulses supplied respectively by the outputs Q of the flip-flops 101, 102 and 104 are transmitted to the gates G1 to G6 of the transistors T1 to T6, identical to those of FIG. 5 and not represented in this FIG. 14, by a logic circuit comprising AND gates 106 to 117, OR gates 118 to 125 and inverters 126 to 129, connected to each other as shown.
  • the third control pulses supplied by the output Q of the flip-flop 104 maintain the third or the fourth current pulses, and at the same time cause the passage of the fifth current pulses in the coil 9, in the opposite direction of that of the first immediately preceding pulse, or the passage of the sixth current pulses in the coil 10, in the opposite direction to that of the immediately preceding second pulse.
  • a current flows in the two coils of the motor during the fifth or sixth pulses.
  • the power source of the device must therefore supply, during these fifth or sixth pulses, twice as much current as during the other pulses. This can lead to a momentary decrease in the voltage of this source, with all the drawbacks which are linked to such a decrease.
  • the circuit of FIG. 16 which is a complement to the circuit of FIG. 14, makes it possible to carry out this interruption of the current alternately in one and in the other coil during these fifths, respectively sixth pulses.
  • This circuit comprises four AND gates 131 to 134 each having a first input connected, respectively, to the output of one of the gates 120 to 123 of FIG. 14. The outputs of these gates 131 to 134 are connected respectively to the input of the inverter 127, at the gate G2, at the input of the inverter 129, and at the gate G6.
  • An AND gate 135 has its first input connected to the output Q of the flip-flop 104 of FIG. 14, and its second input connected to the output 35e of the divider 35 of FIG. 5, not shown in this FIG. 16. This output delivers a signal having a frequency of, for example, 2048 Hz.
  • the output of gate 135 is connected, through an inverter 136, to the second inputs of gates 131 and 132.
  • Another AND gate 137 has its first input also connected to the output Q of the flip-flop 104 and its second input connected, by the intermediary of an inverter 138, to the output 35e of the divider 35.
  • the output of the door 137 is connected, by means of an inverter 139, at the second inputs of doors 133 and 134. The rest of the circuit of FIG. 14 is not modified.
  • FIG. 16 shows that, in this case, the gate G5 of the transistor T5 is only put in the state "0" when the signal at 2048 Hz is in the state "1". Likewise, the gate G1 of the transistor T1 is only set to the "0" state when this signal at 2048 Hz is in the "0" state. The transistor T1 is therefore blocked when the transistor T5 is conductive, vice versa. The transistor T4, on the other hand, remains permanently conductive. It follows that the two coils are traversed alternately by the current.
  • the transistor T3 on the other hand, remains conductive at all times. As a result, the two coils are also traversed alternately by a current.
  • the durations of the various pulses are predetermined. It is of course possible to adjust the duration of these pulses to the magnitude of the load actually driven by the motor, to reduce as much as possible the electrical energy consumption of the system.
  • the circuits making this adjustment generally measure the value of an electrical quantity dependent on the current flowing in the coil, compare this measured value with a reference value and use the result of this comparison to control the duration of the driving pulses to the load driven by the motor.
  • These circuits generally include a resistor connected in series with the motor coil.
  • the voltage drop across this resistor which is proportional to the current flowing in the coil, is used as the input variable to the servo circuit.
  • the presence of this resistance causes a reduction in the voltage applied to the motor and an increase in the consumption of the system.
  • This feature allows the duration of the first, second, third and fourth pulses of current to be enslaved to the load driven by the motor without having to connect a resistor in series with the coils. It suffices for this, for example, to measure during each current pulse applied to one of the coils the voltage induced in the other coil, which is not traversed by the current. This measurement can be used to adjust the duration of the current pulses.
  • FIG. 17 illustrates an example of a circuit implementing this servo-control method, applied to the case of FIG. 5.
  • the circuit of FIG. 17 includes a measurement circuit 141 which can be of any type and which will not be described in detail here.
  • the circuit of FIG. 17 further comprises six transmission doors 142 to 147 and an OR gate 148.
  • the output of this gate 148 is connected to the reset input R of the flip-flop 33.
  • One of the inputs of the door 148 is connected to the output 35b of the divider 35, not shown, and the other of its inputs is connected to the output of the circuit 141.
  • the first terminals of the transmission doors 142 and 143 are connected, together, to the drain transistors T1 and T2, and therefore at one of the terminals of the coil 10.
  • the first terminals of the transmission gates 144 and 145 are connected, together, to the drain of the transistors T3 and T4, that is to say to the other terminal of the coil 10 and to one of the terminals of the coil 9.
  • the first terminals of the transmission doors 146 and 147 are connected, together, to the drain of the transistors T5 and T6, that is to say to the other terminal of the coil 9.
  • the second terminals of the doors 142, 144 and 146 are connected, together, to one of the inputs of the measurement circuit 141 and the second terminals of the doors 143, 145 and 147 are connected together to the other input of this measurement circuit 141.
  • the control electrodes of the transmission doors 142 to 147 are connected, respectively, to the outputs of doors 26, 25, 27, 28, 23 and 24.
  • the doors of transmission 145 and 146 are conductive, and the measurement circuit 141 is connected to the terminals of the coil 9.
  • the transmission gates 144 and 147 are conductive, and the measurement circuit 141 is also connected to the terminals of the coil 9, but in the opposite direction to the previous direction.
  • the polarity of the signal applied to the inputs of circuit 141 is therefore the same in both cases.
  • the output of circuit 114 delivers a signal "1" when, for example, the voltage applied to its inputs exceeds a determined value. This signal resets the output Q of the flip-flop 33 to "0", which interrupts the current flowing in the coil used.
  • circuits could be provided, in particular a circuit in which the measurement of the voltage induced in the coil not traversed by the current would not be carried out during each pulse, but at longer intervals. This measurement would be used to determine a pulse duration which would then be memorized and which would be used for the following pulses.
  • the circuit 141 could also be produced in the form of a circuit detecting only the rotation or the non-rotation of the rotor.
  • the current pulses would normally all have the same duration.
  • a catch-up pulse of greater duration than the normal duration, would then be sent to the motor by its control circuit.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Control Of Stepping Motors (AREA)

Abstract

The invention concerns a method for controlling a bidirectional stepping motor having two windings and three pole faces. The invention comprises applying current pulses alternately to only one of the motor windings to cause it to rotate in one direction and to only the other of the motor windings to cause it to rotate in the other direction. The invention is used for controlling bidirectional motors which are employed in particular in timepieces.

Description

La présente invention a pour objet un procédé et un dispositif de commande d'un moteur pas-à- pas bidirectionnel comportant un stator comprenant une armature qui présente une première, une deuxième et une troisième face polaire délimitant entre elles un espace sensiblement cylindrique et qui comporte un premier et un deuxième circuit magnétique reliant respectivement la première face polaire à la deuxième face polaire et la première face polaire à la troisième face polaire, le stator comprenant en outre une première et une deuxième bobine couplées magnétiquement au premier, respectivement au deuxième circuit magnétique, et le moteur comportant en outre un rotor comprenant un aimant permanent monté rotativement dans ledit espace.The present invention relates to a method and a device for controlling a bidirectional stepping motor comprising a stator comprising a frame which has a first, a second and a third pole face delimiting between them a substantially cylindrical space and which comprises a first and a second magnetic circuit respectively connecting the first pole face to the second pole face and the first pole face to the third pole face, the stator further comprising a first and a second coil magnetically coupled to the first, respectively to the second circuit magnetic, and the motor further comprising a rotor comprising a permanent magnet rotatably mounted in said space.

Un moteur tel qu'il est défini ci-dessus est décrit dans la demande de brevet allemand no DE-A-3 026 004. Selon cette demande de brevet, il est commandé par des impulsions de courant qui sont envoyées simultanément dans les deux bobines chaque fois que le rotor doit tourner d'un pas, c'est-à-dire de 180°. La polarité du courant circulant dans l'une des bobines est inversée sensiblement au milieu de l'impulsion motrice.A motor as defined above is described in German patent application No. DE-A-3 026 004. According to this patent application, it is controlled by current pulses which are sent simultaneously in the two coils each time the rotor must turn one step, i.e. 180 °. The polarity of the current flowing in one of the coils is reversed substantially in the middle of the driving pulse.

La consommation d'un moteur commandé de cette manière est assez importante, puisqu'un courant circule simultanément dans les deux bobines. En outre, le fait que la polarité du courant dans l'une des bobines change au milieu de l'impulsion motrice implique que le circuit de commande du moteur comporte huit transistors formant, de manière classique, deux ponts de quatre transistors reliés, chacun, à l'une des bobines. Ces huit transistors, qui doivent laisser passer un courant assez intense, occupent une grande surface sur la plaquette de silicium dans laquelle sont intégrés tous les éléments du circuit électronique servant à élaborer les impulsions motrices.The consumption of a motor controlled in this way is quite significant, since a current flows simultaneously in the two coils. In addition, the fact that the polarity of the current in one of the coils changes in the middle of the driving pulse implies that the motor control circuit comprises eight transistors forming, in a conventional manner, two bridges of four connected transistors, each, to one of the coils. These eight transistors, which must pass a fairly intense current, occupy a large area on the silicon wafer in which are integrated all the elements of the electronic circuit used to develop the driving pulses.

Des moteurs pas à pas bidirectionnels comportant deux bobines couplées magnétiquement à un rotor comprenant un aimant permanent, ainsi que leurs procédés de commande, sont déjà connus.Bidirectional stepper motors comprising two coils magnetically coupled to a rotor comprising a permanent magnet, as well as their control methods, are already known.

Ainsi, par exemple, la demande de brevet GB-A-1 451 359 décrit un moteur ayant un stator qui comporte quatre faces polaires entourant un rotor. Ce rotor comprend un aimant ayant deux paires de pôles répartis régulièrement à sa périphérie. Deux des quatre faces polaires sont couplées magnétiquement à une première bobine, et les deux autres faces polaires sont couplées magnétiquement à une deuxième bobine.Thus, for example, patent application GB-A-1 451 359 describes a motor having a stator which has four pole faces surrounding a rotor. This rotor comprises a magnet having two pairs of poles distributed regularly at its periphery. Two of the four pole faces are magnetically coupled to a first coil, and the other two pole faces are magnetically coupled to a second coil.

Toujours par exemple, la demande de brevet WO-A-81/02207 décrit un moteur dont le rotor est un disque aimanté axialement de manière à présenter sur chacune de ses faces une pluralité de pôles magnétiques alternativement nord et sud. Deux bobines sont couplées avec ce rotor par des circuits magnétiques indépendants ayant chacun un entrefer dans lequel passe la périphérie du disque formant le rotor.Still for example, patent application WO-A-81/02207 describes a motor whose rotor is a disc magnetized axially so as to present on each of its faces a plurality of magnetic poles alternately north and south. Two coils are coupled to this rotor by independent magnetic circuits, each having an air gap through which the periphery of the disc forming the rotor passes.

Dans les deux documents ci-dessus, le procédé de commande du moteur consiste, pour les deux sens de rotation du rotor, à appliquer des impulsions alternativement à l'une et à l'autre des bobines, deux impulsions successives sur la même bobine ayant des polarités inverses l'une de l'autre et le rotor tournant d'un pas en réponse à chaque impulsion. Dans la demande de brevet GB-A-1 451 359, le sens de rotation du rotor à partir de chacune de ses positions d'arrêt dépend de la polarité de l'impulsion appliquée à la bobine qui doit être excitée lorsque le rotor est à cette position. Dans la demande WO-A-81/02207, le sens de rotation du rotor dépend de la bobine à laquelle est appliquée l'impulsion.In the two above documents, the motor control method consists, for the two directions of rotation of the rotor, of applying pulses alternately to one and the other of the coils, two successive pulses on the same coil having opposite polarities from each other and the rotor rotating one step in response to each pulse. In patent application GB-A-1 451 359, the direction of rotation of the rotor from each of its stop positions depends on the polarity of the pulse applied to the coil which must be excited when the rotor is at this position. In application WO-A-81/02207, the direction of rotation of the rotor depends on the coil to which the pulse is applied.

Les moteurs décrits dans ces deux documents étant très différents de celui qui est décrit dans la demande de brevet DE-A-3 026 004, leurs procédés de commande ne sont pas applicables à ce dernier.Since the motors described in these two documents are very different from that described in patent application DE-A-3 026 004, their control methods are not applicable to the latter.

Le but de la présente invention est de proposer un procédé et un dispositif de commande d'un moteur tel que celui qui est décrit dans cette demande de brevet DE-A-3 026 004 qui permettent d'une part de diminuer la consommation de courant du moteur et, d'autre part, d'utiliser seulement six transistors de puissance dans le circuit de commande.The purpose of the present invention is to provide a method and a device for controlling an engine such as that described in this patent application DE-A-3 026 004 which on the one hand make it possible to reduce the current consumption of the motor and, on the other hand, to use only six power transistors in the control circuit.

Ce but est atteint par le procédé et par le dispositif revendiqués dans les revendications 1 et 7 qui vont être décrites à l'aide du dessin dans lequel:

  • -les figures 1 et 2 représentent une forme d'exécution du moteur;
  • - la figure 3 est un tableau illustrant le procédé selon l'invention;
  • - les figures 4a et 4b représentent des diagrammes des impulsions de commande du moteur;
  • - la figure 5 est le schéma d'un exemple de circuit pour la mise en oeuvre du procédé;
  • - les figures 6a et 6b sont des diagrammes représentant des signaux mesurés en divers points du schéma de la figure 5 pendant une rotation du moteur en marche avant, respectivement en marche arrière;
  • - la figure 7 est un tableau illustrant une première variante du procédé selon l'invention;
  • - la figure 8 est le schéma d'un exemple de circuit pour la mise en oeuvre de cette première variante du procédé;
  • - les figure 9a et 9b sont des diagrammes représentant des signaux mesurés en divers points du circuit de la figure 8 pendant une rotation du moteur en marche avant, respectivement en marche arrière;
  • - la figure 10 est un tableau illustrant une deuxième variante du procédé selon l'invention;
  • - la figure 11 est le schéma d'un exemple de circuit pour la mise en oeuvre de cette deuxième variante;
  • - les figures 12a et 12b sont des diagrammes représentant des signaux mesurés en divers points du circuit de la figure 11 pendant une rotation du moteur en marche avant, respectivement en marche arrière;
  • - la figure 13 est un tableau illustrant une troisième variante du procédé selon l'invention;
  • - la figure 14 est le schéma d'un exemple de circuit pour la mise en oeuvre de cette troisième variante;
This object is achieved by the method and by the device claimed in claims 1 and 7 which will be described with the aid of the drawing in which:
  • FIGS. 1 and 2 represent an embodiment of the engine;
  • - Figure 3 is a table illustrating the method according to the invention;
  • - Figures 4a and 4b show diagrams of the motor control pulses;
  • - Figure 5 is the diagram of an exemplary circuit for implementing the method;
  • - Figures 6a and 6b are diagrams representing signals measured at various points in the diagram of Figure 5 during a rotation of the engine in forward, respectively in reverse;
  • - Figure 7 is a table illustrating a first variant of the method according to the invention;
  • - Figure 8 is the diagram of an example of a circuit for the implementation of this first variant of the method;
  • - Figures 9a and 9b are diagrams representing signals measured at various points in the circuit of Figure 8 during a rotation of the engine in forward, respectively in reverse;
  • - Figure 10 is a table illustrating a second variant of the method according to the invention;
  • - Figure 11 is the diagram of an example of a circuit for the implementation of this second variant;
  • - Figures 12a and 12b are diagrams representing signals measured in various points of the circuit of FIG. 11 during a rotation of the engine in forward, respectively in reverse;
  • - Figure 13 is a table illustrating a third variant of the method according to the invention;
  • - Figure 14 is the diagram of an example of a circuit for the implementation of this third variant;

les figures 15a et 15b sont des diagrammes représentant des signaux mesurés en divers points du circuit de la figure 14 pendant une rotation du moteur en marche avant, respectivement en marche arrière;

  • - la figure 16 est le schéma d'une variante du circuit de la figure 14; et
  • - la figure 17 est le schéma d'une exemple de circuit permettant d'asservir la durée des impulsions motrices à la charge mécanique entraînée par le moteur.
FIGS. 15a and 15b are diagrams representing signals measured at various points in the circuit of FIG. 14 during a rotation of the motor in forward gear, in reverse respectively;
  • - Figure 16 is the diagram of a variant of the circuit of Figure 14; and
  • - Figure 17 is the diagram of an exemplary circuit for controlling the duration of the driving pulses to the mechanical load driven by the motor.

Les figures 1 et 2 représentent une forme d'exécution du moteur décrit dans la demande de brevet allemand no DE-OS 3.026.004 citée ci-dessus. Dans cette forme d'exécution, le moteur comprend un stator dont l'armature est formée de deux pièces en matériau magnétique doux dont l'une, désignée par 1, comporte trois branches désignées par la, Ib et Ic, respectivement, et dont l'autre, désignée par 2, a sensiblement la forme d'une barre rectiligne présentant trois saillies transversales dont deux, désignées par 2a et 2b, sont situées à ses extrémités, et dont la troisième, désignée par 2c, est située en son milieu. Ces deux pièces 1 et 2 de l'armature du stator sont disposées l'une par rapport à l'autre dans la position représentée au dessin, dans laquelle elles se font face, les branches la, Ib et Ic de la pièce 1 étant appliquées contre les saillies 2a, 2b et 2c, respectivement, de la pièce 2 du stator. L'assemblage est assuré par deux vis 3 dont l'une traverse la branche 1a pour se visser dans la saillie 2a et dont l'autre traverse la branche 1b pour se visser dans la saille 2b.Figures 1 and 2 show an embodiment of the engine described in German patent application No. DE-OS 3.026.004 cited above. In this embodiment, the motor comprises a stator, the armature of which is formed of two pieces of soft magnetic material, one of which, designated by 1, has three branches designated by la, Ib and Ic, respectively, and whose l the other, designated by 2, has substantially the shape of a straight bar having three transverse projections, two of which, designated by 2a and 2b, are located at its ends, and the third of which, designated by 2c, is located in the middle. These two parts 1 and 2 of the stator armature are arranged relative to each other in the position shown in the drawing, in which they face each other, the arms 1a, 1b and 1c of part 1 being applied against the projections 2a, 2b and 2c, respectively, of the part 2 of the stator. The assembly is ensured by two screws 3, one of which crosses the branch 1a to be screwed into the projection 2a and the other of which crosses the branch 1b to be screwed into the projection 2b.

Un trou circulaire 4 est ménagé dans la pièce 1, au droit de la naissance de la branche 1c, médiane, de celle-ci, ménageant ainsi trois parties amincies 1d, 1e et 1f, en forme d'isthmes, reliant les unes aux autres les trois faces polaires constituées l'une par la branche 1 c et les deux autres par les portions du corps même de la pièce 1 situées entre les amincissements 1 d et 1e, et 1e et 1f respectivement.A circular hole 4 is formed in the part 1, in line with the birth of the branch 1c, median, of the latter, thus providing three thinned parts 1d, 1e and 1f, in the form of isthmus, connecting to each other the three pole faces formed one by the branch 1 c and the other two by the portions of the body of the part 1 even located between the thinning 1 d and 1e, and 1e and 1f respectively.

Le rotor du moteur comprend un arbre 5 qui pivote par exemple entre deux éléments 6 et 7 du bâti de l'appareil qui est équipé du présent moteur. L'arbre 5 porte un aimant permanent 8, bipolaire, dont les pôles, diamétralement opposes, ont été indiqués par N et S à la figure 1.The motor rotor comprises a shaft 5 which pivots for example between two elements 6 and 7 of the frame of the apparatus which is equipped with the present motor. The shaft 5 carries a permanent magnet 8, bipolar, whose poles, diametrically opposite, have been indicated by N and S in FIG. 1.

Le stator du moteur comprend deux bobines 9 et 10 coaxiales enroulées sur les deux parties rectilignes 2d de la pièce 2 de l'armature situées l'une entre la saillie 2a et la saillie 2c de la pièce 2 et l'autre entre la saillie 2b et la saillie 2c de celle-ci. Le champ magnétique engendré par chacune de ces bobines dans l'espace 4 et dans t'aimant 8 lorsqu'elles sont parcourues par un courant a été schématiquement représenté à la figure 1 où il est désigné par C9, respectivement C10.The stator of the motor comprises two coaxial coils 9 and 10 wound on the two straight parts 2d of part 2 of the frame located one between the projection 2a and the projection 2c of part 2 and the other between the projection 2b and the projection 2c thereof. The magnetic field generated by each of these coils in space 4 and in magnet 8 when they are traversed by a current has been schematically represented in FIG. 1 where it is designated by C9, respectively C10.

Il faut noter que, en l'absence de courant dans les bobines 9 et 10, le rotor est soumis à un couple de positionnement qui tend à le maintenir dans l'une ou l'autre de deux positions de repos. L'une de ces positions est celle qui est représentée à la figure 1, l'autre est celle qué le rotor occupe après avoir tourné de 180°. La variation de ce couple de positionnement en fonction de l'angle de rotation du rotor est telle que le rotor revient à la position qu'il occupait s'il est laissé libre après avoir été déplacé, dans un sens ou dans l'autre, d'un angle inférieur à 90° environ, et qu'il tourne jusqu'à l'autre position de repos s'il est laissé libre après avoir été déplacé d'un angle supérieur à 90° environ.It should be noted that, in the absence of current in the coils 9 and 10, the rotor is subjected to a positioning torque which tends to keep it in one or the other of two rest positions. One of these positions is that shown in FIG. 1, the other is that which the rotor occupies after having turned 180 °. The variation in this positioning torque as a function of the angle of rotation of the rotor is such that the rotor returns to the position it occupied if it is left free after being moved, in one direction or the other, by an angle less than approximately 90 °, and that it rotates to the other rest position if it is left free after being moved by an angle greater than approximately 90 °.

Dans la figure 1, les directions des champs C9 et C10 forment des angles de 45° environ avec la direction de l'axe d'aimantation N - S de l'aimant 8. En pratique, ces angles peuvent être compris entre 30° et 60° environ, selon la forme donnée aux différentes parties du stator.In FIG. 1, the directions of the fields C9 and C10 form angles of approximately 45 ° with the direction of the magnetization axis N - S of the magnet 8. In practice, these angles can be between 30 ° and 60 ° approximately, depending on the shape given to the different parts of the stator.

Dans la suite de cette description, les courants circulant dans les bobines 9 et 10 dans un sens tel que le champ magnétique a le sens indiqué par les flèches C9 et C10 seront arbitrairement qualifiés de positifs. De même, le sens de rotation indiqué par la flèche 11 sera appelé arbitrairement sens de rotation positif.In the following of this description, the currents flowing in the coils 9 and 10 in a direction such that the magnetic field has the direction indicated by the arrows C9 and C10 will be arbitrarily qualified as positive. Likewise, the direction of rotation indicated by arrow 11 will be arbitrarily called positive direction of rotation.

Le tableau de la figure 3 illustre le procédé selon l'invention de commande de ce moteur. Les signes + ou - dans les colonnes désignées par 19 et 110 indiquent qu'un courant positif, respectivement négatif est envoyé dans la bobine 9, respectivement 10, dans le cas illustré par la ligne où ils se trouvent. Les flèches dans les colonnes désignées par C9 et C10 indiquent le sens du champ créé par ces courants. Les flèches dans les trois dernières colonnes désignées par Ra, Rb et Rc indiquent respectivement la position de départ du rotor, la position qu'il atteindrait sous l'influence du champ créé par les bobines 9 ou 10 si le courant était maintenu dans ces bobines, et la position qu'il atteint sous l'influence du couple de positionnement lorsque ce courant est interrompu. Ces diverses positions sont indiquées par des flèches allant du pôle sud de l'aimant 8 à son pôle nord.The table in FIG. 3 illustrates the method according to the invention for controlling this motor. The signs + or - in the columns designated by 19 and 110 indicate that a positive, respectively negative current is sent to the coil 9, respectively 10, in the case illustrated by the line where they are located. The arrows in the columns designated by C9 and C10 indicate the direction of the field created by these currents. The arrows in the last three columns designated by Ra, Rb and Rc respectively indicate the starting position of the rotor, the position it would reach under the influence of the field created by the coils 9 or 10 if the current were maintained in these coils , and the position it reaches under the influence of the positioning torque when this current is interrupted. These various positions are indicated by arrows going from the south pole of magnet 8 to its north pole.

La ligne A du tableau de la figure 3 illustre la manière de commander le moteur pour que le rotor tourne d'un pas, c'est-à-dire de 180°, dans le sens positif à partir de la position qu'il occupe dans la figure 1. Cette position est rappelée dans la colonne Ra de cette ligne A. Une impulsion de courant positif est envoyée dans la bobine 10. Le champ qui résulte de cette impulsion a sensiblement la direction et le sens de la flèche C10 de la figure 1. Aucun courant n'est envoyé dans la bobine 9. Le rotor est soumis à un couple tel que, si l'intensité du courant est suffisante, il tourne dans le sens positif jusqu'à ce qu'il atteigne une position où la direction du champ de l'aimant 8 est parallèle à la direction de la flèche C10 (colonne Rb). Si le courant dans la bobine 10 est interrompu lorsque le rotor atteint cette position, il termine son pas sous l'influence du couple de positionnement. Il se trouve alors dans la position où le champ de l'aimant

Figure imgb0001
direction opposée à celle qu'il avait avant que le courant soit appliqué à la bobine 10 (colonne Rc).Line A in the table in Figure 3 illustrates how to control the motor so that the rotor turns one step, i.e. 180 °, in the positive direction from the position it occupies in FIG. 1. This position is recalled in the column Ra of this line A. A positive current pulse is sent to the coil 10. The field which results from this pulse has substantially the direction and the direction of the arrow C10 of the figure 1. No current is sent to the coil 9. The rotor is subjected to a torque such that, if the intensity of the current is sufficient, it turns in the positive direction until it reaches a position where the direction of the magnet 8 field is parallel to the direction of the arrow C10 (column Rb). If the current in the coil 10 is interrupted when the rotor reaches this position, it finishes its pitch under the influence of the positioning torque. It is then in the position where the field of the magnet
Figure imgb0001
direction opposite to that which it had before the current was applied to the coil 10 (column Rc).

La ligne B du tableau de la figure 3 illustre la manière de commander le moteur pour que le rotor tourne à nouveau d'un pas dans le sens positif à partir de la position qu'il a atteinte à la suite de ce premier pas. Cette position est symbolisée dans la colonne Ra de cette ligne 8. Une impulsion de courant de même intensité que celui de la ligne A du tableau est envoyée dans la bobine 10, mais dans le sens négatif. Le champ magnétique qui en résulte a donc la même direction que celle de la flèche C10, mais le sens opposé. Le couple qui s'exerce sur le rotor a donc le même sens que dans le cas précédent, et le rotor tourne à nouveau dans le sens positif jusqu'à ce que le champ de l'aimant 8 ait une direction paralléle à celle du champ créé par le courant circulant dans la bobine 10 (colonne Rb). A nouveau, lorsque ce courant est interrompu, le rotor termine son pas sous l'influence du couple de positionnement. Il se retrouve dans la position qu'il occupe dans la figure 1, après avoir fait un tour complet dans le sens positif (colonne Rc).Line B of the table in FIG. 3 illustrates the way of controlling the motor so that the rotor turns again one step in the positive direction from the position it has reached following this first step. This position is symbolized in the column Ra of this line 8. A current pulse of the same intensity as that of line A of the table is sent to the coil 10, but in the negative direction. The resulting magnetic field therefore has the same direction as that of arrow C10, but the opposite direction. The torque exerted on the rotor therefore has the same direction as in the previous case, and the rotor turns again in the positive direction until the field of the magnet 8 has a direction parallel to that of the field. created by the current flowing in the coil 10 (column Rb). Again, when this current is interrupted, the rotor ends its pitch under the influence of the positioning torque. It is found in the position it occupies in Figure 1, after having made a full turn in the positive direction (column Rc).

Il est évident que si une impulsion de courant positif est alors à nouveau envoyée dans la bobine 10, le rotor recommence un pas, comme dans le cas de la ligne A du tableau de la figure 3.It is obvious that if a positive current pulse is then again sent to the coil 10, the rotor repeats a step, as in the case of line A in the table of FIG. 3.

La ligne C de ce tableau illustre la manière de commander le moteur pour que son rotor tourne d'un pas dans le sens négatif à partir de la position qu'il occupe à la figure 1 (colonne Ra).Line C of this table illustrates how to control the motor so that its rotor turns one step in the negative direction from the position it occupies in Figure 1 (column Ra).

Dans ce cas, une impulsion de courant positif est envoyée dans la bobine 9, et aucun courant n'est envoyé dans la bobine 10. Le champ qui résulte de cette impulsion a sensiblement la direction et le sens de la flèche C9. Le rotor est soumis à un couple tel qu'il tourne dans le sens négatif jusqu'à ce que la direction du champ de l'aimant 8 devienne parallèle à la direction de la flèche C9 (colonne Rb). Lorsque ce courant est interrompu, le rotor termine son pas sous l'influence du couple de positionnement (colonne Rc). Il a donc tourné d'un demi-tour dans le sens négatif.In this case, a positive current pulse is sent to the coil 9, and no current is sent to the coil 10. The field which results from this pulse has substantially the direction and the direction of the arrow C9. The rotor is subjected to a torque such that it rotates in the negative direction until the direction of the field of the magnet 8 becomes parallel to the direction of the arrow C9 (column Rb). When this current is interrupted, the rotor ends its pitch under the influence of the positioning torque (column Rc). He therefore turned half a turn in the negative direction.

Si une impulsion de courant négatif est maintenant envoyée dans la bobine 9 (ligne D tableau de la figure 3), le champ qui en résulte a la même direction que la flèche C9, mais le sens inverse. Le rotor tourne donc, toujours dans le sens négatif, jusqu'à ce que le champ de l'aimant 8 ait une direction parallè à celle de ce champ créé par le courant négatif dans la bobine 9 (colonne Rb). A nouveau, lorsque ce courant est interrompu, le rotor termine son pas sous l'influence du couple de positionnement (colonne Rc).If a negative current pulse is now sent to the coil 9 (line D table in Figure 3), the resulting field has the same direction as arrow C9, but the opposite direction. The rotor therefore rotates, always in the negative direction, until the field of the magnet 8 has a direction parallel to that of this field created by the negative current in the coil 9 (column Rb). Again, when this current is interrupted, the rotor ends its pitch under the influence of the positioning torque (column Rc).

Le rotor a alors effectué un tour complet dans le sens négatif. Si un courant positif est à nouveau envoyé dans la bobine 9, le rotor recommence un pas comme dans le cas de la ligne C.The rotor then made a full turn in the negative direction. If a positive current is again sent to the coil 9, the rotor repeats a step as in the case of line C.

Il est clair que, dans la pratique, le courant doit être interrompu au plus tard lorsque le rotor atteint la position illustrée par la colonne Rb du tableau de la figure 3, ou même auparavant. La durée des impulsions de courant envoyées dans la bobine 10 ou dans la bobine 9 est choisie en fonction des caractéristiques du moteur et/ou de la charge qu'il entraîne.It is clear that, in practice, the current must be interrupted at the latest when the rotor reaches the position illustrated by the column Rb of the table in FIG. 3, or even before. The duration of the current pulses sent into the coil 10 or into the coil 9 is chosen as a function of the characteristics of the motor and / or of the load which it drives.

Il est facile de voir que le sens de rotation du rotor peut être choisi librement, quelle que soit sa position. Lorsque le rotor est dans la position qu'il occupe à la figure 1, une impulsion de courant positif appliquée à la bobine 10 provoque une rotation dans le sens positif, et une impulsion de courant positif appliquée à la bobine 9 provoque une rotation dans le sens négatif. Lorsque le rotor est dans la position inverse de celle de la figure 1, une impulsion de courant négatif appliquée à la bobine 10 provoque une rotation dans le sens positif, et une impulsion de courant négatif appliquée à la bobine 9 provoque une rotation dans le sens négatif.It is easy to see that the direction of rotation of the rotor can be freely chosen, whatever its position. When the rotor is in the position it occupies in FIG. 1, a positive current pulse applied to the coil 10 causes a rotation in the positive direction, and a positive current pulse applied to the coil 9 causes a rotation in the negative sense. When the rotor is in the opposite position to that of FIG. 1, a negative current pulse applied to the coil 10 causes a rotation in the positive direction, and a negative current pulse applied to the coil 9 causes a rotation in the direction negative.

En résumé, des premières impulsions de courant sont appliquées alternativement dans un sens et dans l'autre uniquement à l'une des bobines pour provoquer la rotation du rotor dans un sens, et des deuxièmes impulsions de courant sont appliquées alternativement dans un sens et dans l'autre uniquement à l'autre bobine pour provoquer la rotation du rotor dans l'autre sens.In summary, first current pulses are applied alternately in one direction and in the other only to one of the coils to cause the rotor to rotate in one direction, and second current pulses are applied alternately in one direction and in the other only to the other coil to cause the rotor to rotate in the other direction.

La figure 4a illustre les impulsions de courant envoyées à la bobine 10 pour faire tourner le rotor dans le sens positif, et la figure 4b illustre les impulsions envoyées à la bobine 9 pour faire tourner le rotor dans le sens négatif.Figure 4a illustrates the current pulses sent to the coil 10 to rotate the rotor in the positive direction, and Figure 4b illustrates the pulses sent to the coil 9 to rotate the rotor in the negative direction.

Pour que le rotor tourne d'un demi-pas en réponse à une de ces impulsions, il faut qu'il se trouve dans la position voulue, c'est-à-dire qu'il doit se trouver dans la position qu'il occupe à la figure 1, au moment où une impulsion de courant positif est envoyée à la bobine 9 ou à la bobine 10 et qu'il doit se trouver dans son autre position de repos au moment où une impulsion de courant négatif est envoyée à l'une ou à l'autre de ces bobines.In order for the rotor to turn half a step in response to one of these pulses, it must be in the desired position, that is, it must be in the position it occupies in FIG. 1, at the moment when a positive current pulse is sent to the coil 9 or to the coil 10 and that it must be in its other rest position at the time when a negative current pulse is sent to the either of these coils.

Si, pour une raison quelconque, cette condition n'est pas remplie, c'est-à-dire que le rotor se trouve dans la position de la figure 1 et qu'une impulsion négative est envoyée à l'une des bobines, ou qu'il se trouve dans son autre position de repos et qu'une impulsion positive est envoyée à cette bobine, le rotor commence à tourner dans le sens inverse de celui qui correspond à la bobine dans laquelle le courant est envoyée. Il ne tourne cependant que d'un angle faible, inférieur à l'angle correspondant à un demi-pas. Le couple de positionnement auquel il est soumis ne change donc pas de signe et le rotor revient à sa position de départ à la fin de l'impulsion.If, for any reason, this condition is not fulfilled, that is to say that the rotor is in the position of FIG. 1 and that a negative pulse is sent to one of the coils, or that it is in its other rest position and that a positive pulse is sent to this coil, the rotor begins to rotate in the opposite direction to that which corresponds to the coil in which the current is sent. However, it only turns at a small angle, less than the angle corresponding to half a step. The positioning torque to which it is subjected therefore does not change sign and the rotor returns to its starting position at the end of the pulse.

L'impulsion suivante aura donc la polarité correcte pour le faire tourner d'un pas, dans le sens voulu. Le sens de rotation n'est donc pas inversé lorsque le rotor n'a pas la position qu'il devrait avoir au moment où une impulsion est envoyée à une des bobines.The next pulse will therefore have the correct polarity to rotate it one step in the desired direction. The direction of rotation is therefore not inverted when the rotor does not have the position it should have when a pulse is sent to one of the coils.

La figure 5 montre le schéma d'un exemple de circuit pour la mise en oeuvre du procédé selon l'invention, et les figures 6a et 6b illustrent quelques signaux mesurés en divers points de ce circuit.FIG. 5 shows the diagram of an example of a circuit for implementing the method according to the invention, and FIGS. 6a and 6b illustrate some signals measured at various points of this circuit.

Dans cet exemple, ainsi que dans les exemples qui seront décrits plus loin, le moteur est utilisé dans une montre électronique pour entraîner des aiguilles d'affichage de l'heure, de la minute et de la seconde, non représentées, à l'aide d'un train d'engrenage également non représenté. Il est évident que ces exemples ne sont pas limitatifs et que l'invention est utilisable quel que soit le dispositif ou l'appareil auquel le moteur est incorporé.In this example, as well as in the examples which will be described later, the motor is used in an electronic watch to drive the hands for displaying the hour, minute and second, not shown, using of a gear train also not shown. It is obvious that these examples are not limiting and that the invention can be used whatever the device or the apparatus in which the motor is incorporated.

Les bobines 9 et 10 du moteur sont branchées dans un double pont formé de six transistors MOS désignés par T1 à T6. Les transistors T1, T3 et T5 sont de type p et ont leur source reliée au pôle positif de la source d'alimentation. Les transistors T2, T4 et T6 sont de type n et ont leur source reliée au pôle négatif de la source d'alimentation. Les drains des transistors T1 et T2, T3 et T4, T5 et T6 sont respectivement reliés à une première borne de la bobine 10, à la deuxième borne de la bobine 10 et à une première borne de la bobine 9, et à la deuxième borne de la bobine 9.The coils 9 and 10 of the motor are connected in a double bridge formed by six MOS transistors designated by T1 to T6. Transistors T1, T3 and T5 are p-type and have their source connected to the positive pole of the power source. The transistors T2, T4 and T6 are of type n and have their source connected to the negative pole of the power source. The drains of the transistors T1 and T2, T3 and T4, T5 and T6 are respectively connected to a first terminal of the coil 10, to the second terminal of the coil 10 and to a first terminal of the coil 9, and to the second terminal coil 9.

Les grilles G1 à G6 des transistors T1 à T6 sont reliées à un circuit logique formé de six portes ET 21 à 26, de deux portes OU 27 et 28, de quatre inverseurs 29 à 32 et de deux flip-flops de type D 33 et 34, reliés les uns aux autres de la manière représentée. Ce circuit logique ne sera pas décrit plus en détail ici, car son fonctionnement, qui est illustré par les diagrammes des figures 6a et 6b, est facile à comprendre.The gates G1 to G6 of the transistors T1 to T6 are connected to a logic circuit formed by six AND gates 21 to 26, two OR gates 27 and 28, four inverters 29 to 32 and two D-type flip-flops 33 and 34, connected to each other in the manner shown. This logic circuit will not be described in more detail here, since its operation, which is illustrated by the diagrams in FIGS. 6a and 6b, is easy to understand.

Ce circuit logique reçoit deux signaux périodiques ayant des fréquences respectives de 1 Hz et de 64 Hz fournies par des sorties 35a et 35b d'un diviseur de fréquence 35. Ce diviseur 35 reçoit d'un oscillateur à quartz 36 un signal ayant une fréquence de, par exemple, 32768 Hz. Il délivre en outre sur des sorties désignées par 35c, 35d et 35e d'autres signaux périodiques ayant respectivement des fréquences de 128, 256 et 2048 Hz qui seront utilisés dans des circuits décrits plus loin.This logic circuit receives two periodic signals having respective frequencies of 1 Hz and 64 Hz supplied by outputs 35a and 35b of a frequency divider 35. This divider 35 receives from a quartz oscillator 36 a signal having a frequency of , for example, 32768 Hz. It also delivers on outputs designated 35c, 35d and 35e other periodic signals having frequencies of 128, 256 and 2048 Hz respectively which will be used in circuits described below.

Le circuit logique reçoit en outre un signal AR de détermination du sens de rotation du moteur, qui est fourni, par exemple, par un circuit de mise à l'heure 38 qui peut être quelconque et qui ne sera pas décrit ici.The logic circuit also receives a signal AR for determining the direction of rotation of the motor, which is supplied, for example, by a time-setting circuit 38 which can be any one and which will not be described here.

Dans cet exemple, ce signal AR est à l'état logique "0" lorsque le rotor doit tourner dans le sens positif, et à l'état logique "1" lorsque le rotor doit tourner dans le sens négatif.In this example, this signal AR is in the logic state "0" when the rotor must turn in the positive direction, and in the logic state "1" when the rotor must turn in the negative direction.

Il est facile de voir que la sortie Q du flip-flop 33 délivre des impulsions de commande qui sont à l'etat "1" pendant environ 7,8 millisecondes, avec une période de une seconde. Entre ces impulsions de commande, les grilles des transistors T1, T3 et T5 sont à l'état logique "1" et les grilles des transistors T2, T4 et T6 sont à l'état logique "0". Comme ces états "1" et "0" sont taprésentés respectivement par la tension de la borne positive et par la tension de la borne négative de la source d'alimentation, les six transistors T1 à T6 sont bloqués.It is easy to see that the output Q of the flip-flop 33 delivers control pulses which are in the state "1" for approximately 7.8 milliseconds, with a period of one second. Between these control pulses, the gates of transistors T1, T3 and T5 are in logic state "1" and the gates of transistors T2, T4 and T6 are in logic state "0". As these states "1" and "0" are represented respectively by the voltage of the positive terminal and by the voltage of the negative terminal of the power source, the six transistors T1 to T6 are blocked.

A la fin de chaque impulsion de commande délivrée par la sortie Q du flip-flop 33, le flip-flop 34 change d'état. Sa sortie Q reste donc alternativement à l'état "0" et à l'état "1" pendant une seconde.At the end of each control pulse delivered by the output Q of the flip-flop 33, the flip-flop 34 changes state. Its output Q therefore remains alternately in state "0" and in state "1" for one second.

On admettra pour commencer que la sortie Q du flip-flop 34 est à l'état "0" et que sa sortie Q est donc à l'état "1".It will be admitted at the outset that the output Q of the flip-flop 34 is in the state "0" and that its output Q is therefore in the state "1".

Dans le cas où le moteur doit tourner dans le sens positif, le signal AR est à "0" (figure 6a). Dans ces conditions, une impulsion de commande délivrée par la sortie Q du flip-flop 33 passe la porte 21 et àtteint la grille G1 du transistor T1 à travers la porte 23 et l'inverseur 30, et la grille G4 du transistor T4 à travers la porte 28. Pendant la durée de cette impulsion, la grille G4 passe donc à "1" et la grille G1 passe à "0". Les transistors T1 et T4 deviennent donc conducteurs, et une impulsion de courant traverse la bobine 10 dans le sens indiqué par la flèche 36a. Si le sens de l'enroulement du fil formant la bobine 10 est choisi convenablement, cette impulsion crée un champ magnétique dans le sens de la flèche C10 de la figure 1. Ce cas correspond donc au cas de la ligne A du tableau de la figure 3. Si, en outre, le rotor se trouve, avant le début de l'impulsion, dans la position représentée à la figure 1, il tourne d'un demi-tour dans le sens positif.If the motor has to turn in the positive direction, the AR signal is at "0" (figure 6a). Under these conditions, a control pulse delivered by the output Q of the flip-flop 33 passes the gate 21 and reaches the gate G1 of the transistor T1 through the gate 23 and the inverter 30, and the gate G4 of the transistor T4 through gate 28. During the duration of this pulse, the gate G4 therefore passes to "1" and the gate G1 passes to "0". The transistors T1 and T4 therefore become conductive, and a current pulse crosses the coil 10 in the direction indicated by the arrow 36a. If the direction of the winding of the wire forming the coil 10 is chosen correctly, this pulse creates a magnetic field in the direction of arrow C10 in FIG. 1. This case therefore corresponds to the case of line A in the table in FIG. 3. If, in addition, the rotor is, before the start of the pulse, in the position shown in FIG. 1, it turns half a turn in the positive direction.

La fin de l'impulsion de commande délivrée par la sortie Q du flip-flop 33 provoque le basculement du flip-flop 34 dont la sortie Q passe à l'état "1 ". Une seconde plus tard, la sortie Q du flip- flop 33 délivre une nouvelle impulsion de commande qui traverse également la porte 21 et atteint, cette fois, la grille G2 du transistor T2 à travers la porte 24, et la grille G3 du transistor T3 à travers la porte 27 et l'inverseur 31. Ces deux transistors deviennent donc conducteurs, et une impulsion de courant traverse la bobine 10 dans le sens inverse de celui de la flêche 36a. Le rotor tourne donc à nouveau d'un pas dans le sens positif. Ce cas correspond à celui de la ligne B du tableau de la figure 3.The end of the control pulse delivered by the Q output of the flip-flop 33 causes the flip-flop 34 to switch, the Q output of which goes to state "1". A second later, the output Q of the flip-flop 33 delivers a new control pulse which also passes through the gate 21 and this time reaches the gate G2 of the transistor T2 through the gate 24, and the gate G3 of the transistor T3 through the door 27 and the inverter 31. These two transistors therefore become conductive, and a current pulse crosses the coil 10 in the opposite direction to that of the arrow 36a. The rotor therefore turns again one step in the positive direction. This case corresponds to that of line B in the table in Figure 3.

Ce processus se répète à chaque impulsion de commande délivrée par la sortie Q du flip-flop 33, tant que le signal AR reste à "0".This process is repeated at each control pulse delivered by the output Q of the flip-flop 33, as long as the signal AR remains at "0".

Si ce signal AR est à l'état "1" (figure 6b), les impulsions de commande délivrées par la sortie Q du flip-flop 33 passent par la porte 22. Lorsque la sortie Q du flip-flop 34 est à "0", ces impulsions passent par la porte 26 et atteignent la grille G4 du transistor T4 à travers la porte 28, et la grille G5 du transistor T5 à travers l'inverseur 32. Ces deux transistors deviennent donc conducteurs, et une impulsion de courant passe dans la bobine 9 dans le sens de la flèche 37. Cette impulsion crée un champ magnétique dans le sens de la flèche C9 de la figure 1, et le rotor tourne d'un pas dans le sens négatif. Ce cas correspond à celui de la ligne C du tableau de la figure 3.If this signal AR is in the state "1" (FIG. 6b), the control pulses delivered by the output Q of the flip-flop 33 pass through the gate 22. When the output Q of the flip-flop 34 is at "0 ", these pulses pass through gate 26 and reach gate G4 of transistor T4 through gate 28, and gate G5 of transistor T5 through inverter 32. These two transistors therefore become conductive, and a current pulse passes in coil 9 in the direction of arrow 37. This pulse creates a magnetic field in the direction of arrow C9 in FIG. 1, and the rotor turns one step in the negative direction. This case corresponds to that of line C in the table in Figure 3.

L'impulsion de comma·.;:G suivante, délivrée une seconde plus tard par la sortie Q du flip-flop 33, passe également par la porte 22. Comme la sortie Q du flip-flop 34 est maintenant à l'état "1", cette impulsion passe par la porte 25 et atteint la grille G6 du transistor T6. Cette impulsion atteint également la grille G3 du transistor T3 à travers la porte 27 et l'inverseur 31. Ces transistors T3 et T6 deviennent donc conducteurs et une impulsion de courant traverse la bobine 9 dans le sens inverse de celui de la flèche 37. Ce cas correspond à celui de la quatrième ligne du tableau de la figure 3, et le rotor tourne donc à nouveau d'un pas dans le sens négatif.The following comma ·.:: G pulse, delivered one second later by output Q of flip-flop 33, also passes through gate 22. As output Q of flip-flop 34 is now in the state " 1 ", this pulse passes through gate 25 and reaches gate G6 of transistor T6. This pulse also reaches the gate G3 of the transistor T3 through the gate 27 and the inverter 31. These transistors T3 and T6 therefore become conductive and a current pulse crosses the coil 9 in the opposite direction to that of arrow 37. This case corresponds to that of the fourth line of the table in FIG. 3, and the rotor therefore turns again one step in the negative direction.

En résumé, le dispositif applique, en réponse à un signal de commande, une première impulsion de courant à une première bobine, alternativement dans un sens et dans l'autre, lorsque le signal de détermination du sens de rotation du rotor est dans son premier état, et une deuxième impulsion de courant à la deuxième bobine, alternativement dans un sens et dans l'autre, lorsque le signal de détermination du sens de rotation du rotor est dans son deuxième état. Dans l'exemple décrit, le signal de commande est constitué par les impulsions fournies par la sortie Q du flip-flop 33.In summary, the device applies, in response to a control signal, a first current pulse to a first coil, alternately in one direction and in the other, when the signal for determining the direction of rotation of the rotor is in its first state, and a second current pulse to the second coil, alternately in one direction and in the other, when the signal for determining the direction of rotation of the rotor is in its second state. In the example described, the control signal consists of the pulses supplied by the output Q of the flip-flop 33.

Le couple fourni par le moteur lorsqu'il est commandé selon le procédé décrit ci-dessus est suffisant dans la plupart des cas. Il est cependant possible d'augmenter ce couple, si nécessaire, en utilisant une variante de ce procédé.The torque provided by the motor when controlled by the method described above is sufficient in most cases. It is however possible to increase this torque, if necessary, by using a variant of this method.

Le tableau de la figure 7 résume cette première variante du procédé selon l'invention.The table in FIG. 7 summarizes this first variant of the method according to the invention.

Pour faire tourner le rotor d'un pas dans le sens positif, à partir de la position qu'il occupe à la figure 1, une impulsion de courant de sens positif est tout d'abord appliquée à la bobine 10, comme dans le procédé décrit ci-dessus (voir la ligne A1 du tableau de la figure 7). Aucun courant n'est envoyé dans la bobine 9. Le champ C10 créé par ce courant amène le rotor dans la position indiquée à la colonne Rb1 de cette ligne A1.To turn the rotor one step in the positive direction, from the position it occupies in Figure 1, a positive current pulse is first applied to the coil 10, as in the method described above (see line A1 of the table in Figure 7). No current is sent to the coil 9. The field C10 created by this current brings the rotor to the position indicated in column Rb1 of this line A1.

Le courant dans la bobine 10 est alors interrompu, et une impulsion de courant de sens également positif est appliquée à la bobine 9 (ligne A2 du tableau de la figure 7). Le champ C9 résultant de ce courant amène le rotor dans la position indiquée à la colonne Rb2.The current in the coil 10 is then interrupted, and a current pulse of equally positive direction is applied to the coil 9 (line A2 of the table in FIG. 7). Field C9 resulting from this current brings the rotor to the position indicated in column Rb2.

Lorsque le courant dans la bobine 9 est interrompu, le couple de positionnement amène le rotor dans la position indiquée à la colonne Rc de la ligne A2 du tableau de la figure 7.When the current in the coil 9 is interrupted, the positioning torque brings the rotor to the position indicated in column Rc of line A2 of the table in FIG. 7.

Pour faire tourner le rotor d'un deuxième pas, toujours dans le sens positif, une impulsion de courant de sens négatif est appliquée à la bobine 10, puis une impulsion de courant de sens négatif est envoyée dans la bobine 9. Les lignes B1 et B2 du tableau de la figure 7 indiquent ces différents courants, les champs qui en résultent et les positions atteintes par le rotor en réponse à ces champs et sous l'influence du couple de positionnement.To turn the rotor a second step, still in the positive direction, a negative current pulse is applied to the coil 10, then a negative current pulse is sent to the coil 9. Lines B1 and B2 of the table in FIG. 7 indicate these different currents, the resulting fields and the positions reached by the rotor in response to these fields and under the influence of the positioning torque.

Pour faire tourner le rotor d'un pas dans le sens négatif, à partir de la position indiquée à la figure 1, une impulsion de courant de sens positif est envoyée dans la bobine 9. Une impulsion de courant de sens également positif est ensuite envoyée dans la bobine 10 et, enfin, le couple de positionnement amène le rotor dans sa deuxième position de repos. Les lignes C1 et C2 du tableau de la figure 7 indiquent ces différents courants, les champs qui en résultent et les positions atteintes par le rotor en réponse à ces champs et sous l'influence du couple de positionnement.To turn the rotor one step in the negative direction, from the position shown in Figure 1, a current pulse of positive direction is sent to the coil 9. A current pulse of also positive direction is then sent in the coil 10 and, finally, the positioning torque brings the rotor into its second rest position. The lines C1 and C2 in the table in FIG. 7 indicate these different currents, the resulting fields and the positions reached by the rotor in response to these fields and under the influence of the positioning torque.

Pour faire tourner le rotor d'un nouveau pas dans le sens négatif, une impulsion de courant de sens négatif est envoyée dans la bobine 9, puis une impulsion de courant de sens négatif est envoyée dans la bobine 10. Les lignes D1 et D2 du tableau de la figure 7 indiquent ces différents courants, les champs qui en résultent et les positions atteintes par le rotor en réponse à ces champs.To rotate the rotor in a new step in the negative direction, a current pulse of negative direction is sent to the coil 9, then a current pulse of negative direction is sent to the coil 10. Lines D1 and D2 of the table in Figure 7 indicate these different currents, the resulting fields and the positions reached by the rotor in response to these fields.

Ainsi, dans cette variante, comme dans le procédé décrit ci-dessus, des premières impulsions de courant sont appliquées à une première bobine alternativement dans un premier sens et dans le deuxième sens pour provoquer la rotation du rotor dans un premier sens, et des deuxièmes impulsions de courant sont appliquées à la deuxième bobine alternativement dans le premier et dans le deuxième sens pour provoquer la rotation du rotor dans le deuxième sens.Thus, in this variant, as in the method described above, first current pulses are applied to a first coil alternately in a first direction and in the second direction to cause the rotation of the rotor in a first direction, and of the second Current pulses are applied to the second coil alternately in the first and in the second direction to cause the rotor to rotate in the second direction.

En outre, une troisième impulsion est appliquée à la deuxième bobine après chaque première impulsion, et une quatrième impulsion est appliquée à la première bobine après chaque deuxième impulsion. Le sens de la troisième ou de la quatrième impulsion est chaque fois le même que celui de la première ou, respectivement, de la deuxième impulsion immédiatement précédente.In addition, a third pulse is applied to the second coil after each first pulse, and a fourth pulse is applied to the first coil after each second pulse. The direction of the third or fourth pulse is the same as that of the first or, respectively, of the second immediately preceding pulse.

De cette manière, le couple fourni par le moteur est notablement augmenté, sans que sa consommation augmente dans les mêmes proportions. En outre, il est toujours possible de commander le moteur à l'aide d'un circuit ne comportant que six transistors de puissance.In this way, the torque supplied by the engine is notably increased, without its consumption increasing in the same proportions. In addition, it is always possible to control the motor using a circuit comprising only six power transistors.

La figure 8 montre le schéma d'un exemple de circuit destiné à mettre en oeuvre cette variante du procédé selon l'invention et les figures 9a et 9b sont des diagrammes représentant des signaux mesurés en quelques points de ce circuit.FIG. 8 shows the diagram of an example of a circuit intended to implement this variant of the method according to the invention and FIGS. 9a and 9b are diagrams representing signals measured at a few points of this circuit.

Le circuit de cette figure 8 comporte un flip-flop de type D 41, dont la sortie Q passe à "1" chaque fois que la sortie 35a du diviseur de fréquence 35, non représenté dans cette figure, passe à l'état "1". L'entrée R de remise à zéro de ce flip-flop 41 est reliée à la sortie 35c du diviseur de fréquence 35, non représenté, qui fournit un signal à une fréquence de 128 Hz. Cette sortie Q du flip-flop 41 repasse donc à "0" 3,9 millisecondes après avoir passé à "1".The circuit of this figure 8 comprises a type D flip-flop 41, the output Q of which changes to "1" each time that the output 35a of the frequency divider 35, not shown in this figure, changes to the state "1 ". The reset input R of this flip-flop 41 is connected to the output 35c of the frequency divider 35, not shown, which supplies a signal at a frequency of 128 Hz. This output Q of the flip-flop 41 therefore returns to "0" 3.9 milliseconds after going to "1".

A cet instant, la sortie Q d'un deuxième flip-flop de type D 42 passe à l'état "1". L'entrée R de remise à zéro de ce flip-flop 42 étant reliée à la sortie 35c du diviseur 35 qui fournit le signal à 128 Hz, à travers un inverseur 43, sa sortie Q repasse à l'état "0" également 3,9 millisecondes après avoir passé à "1".At this instant, the output Q of a second flip- type D 42 flop goes to state "1". The reset input R of this flip-flop 42 being connected to the output 35c of the divider 35 which supplies the signal at 128 Hz, through an inverter 43, its output Q also returns to the state "0" 3 , 9 milliseconds after going to "1".

Un troisième flip-flop de type D 44 bascule à la fin de chaque impulsion fournie par la sortie Q du flip-flop 42. La sortie Q de ce flip-flop 44 reste donc alternativement à l'état "0" et à l'état "1" pendant une seconde.A third type D flip-flop 44 switches at the end of each pulse supplied by the output Q of the flip-flop 42. The output Q of this flip-flop 44 therefore remains alternately at state "0" and at state "1" for one second.

Les deux impulsions de commande consécutives fournies chaque seconde par les sorties Q des deux flip-flops 41 et 42 sont transmises aux grilles G1 à G6 des transistors T1 à T6, identiques à ceux de la figure 5 et non représentés dans cette figure 8, par un circuit logique comprenant des portes ET 45 à 52, des portes OU 53 à 56 et des inverseurs 57 à 60, reliés les uns aux autres de la manière représentée. Ce circuit logique ne sera pas décrit plus en détàil ici, car son fonctionnement, qui est illustré par les diagrammes des figures 9a et 9b, est facile à comprendre.The two consecutive control pulses supplied each second by the outputs Q of the two flip-flops 41 and 42 are transmitted to the gates G1 to G6 of the transistors T1 to T6, identical to those of FIG. 5 and not shown in this FIG. 8, by a logic circuit comprising AND gates 45 to 52, OR gates 53 to 56 and inverters 57 to 60, connected to each other as shown. This logic circuit will not be described in more detail here, since its operation, which is illustrated by the diagrams in FIGS. 9a and 9b, is easy to understand.

Lorsque le signal AR, qui est identique au signal AR de la figure 5, est à l'état "0" (figure 9a), et que la sortie Q du flip-flop 44 est également à l'état "0", chaque première impulsion de commande fournie par la sortie Q du flip-flop 41 rend les transistors T1 et T4 conducteurs. Une impulsion de courant passe donc dans le sens positif dans la bobine 10 (ligne A1, figure 7). Dans les mêmes conditions, chaque deuxième impulsion de commande fournie par la sortie Q du flip-flop 42 rend les transistors T4 et T5 conducteurs, ce qui provoque le passage d'une impulsion de courant dans la bobine 9, dans le sens positif également (ligne A2, figure 7).When the signal AR, which is identical to the signal AR of FIG. 5, is in the state "0" (FIG. 9a), and the output Q of the flip-flop 44 is also in the state "0", each first control pulse supplied by the output Q of the flip-flop 41 makes the transistors T1 and T4 conductive. A current pulse therefore passes in the positive direction in the coil 10 (line A1, FIG. 7). Under the same conditions, each second control pulse supplied by the output Q of the flip-flop 42 makes the transistors T4 and T5 conductive, which causes the passage of a current pulse in the coil 9, also in the positive direction ( line A2, figure 7).

Lorsque le signal AR est à l'état "0" et que la sortie Q du flip-flop 44 est à l'état "1", chaque première impulsion de commande fournie par la sortie Q du flip-flop 41 rend les transistors T2 et T3 conducteurs. Une impulsion de courant passe donc dans la bobine 10 dans le sens négatif (ligne B1, figure 7). Chaque deuxième impulsion de commande fournie par la sortie Q du flip-flop 42 rend les transistors T3 et T6 conducteurs. Une impulsion de courant passe donc dans la bobine 9 également dans le sens négatif (ligne B2, figure 7).When the signal AR is in the state "0" and the output Q of the flip-flop 44 is in the state "1", each first control pulse supplied by the output Q of the flip-flop 41 returns the transistors T2 and T3 conductors. A current pulse therefore passes through the coil 10 in the negative direction (line B1, FIG. 7). Each second control pulse supplied by the output Q of the flip-flop 42 makes the transistors T3 and T6 conductive. A current pulse therefore passes through the coil 9 also in the negative direction (line B2, FIG. 7).

Lorsque le signal AR est à l'état "1" (figure 9b) et que la sortie a du flip-flop 44 est à l'état "0", chaque première impulsion de commande fournie par la sortie Q du flip-flop 41 provoque le passage d'une impulsion de courant positif dans la bobine 9 (ligne C1, figure 7), et chaque deuxième impulsion de commande fournie par la sortie 9 du flip-flop 42 provoque le passage d'une impulsion de courant également positif dans la bobine 10 (ligne C2, figure 7).When the signal AR is in state "1" (FIG. 9b) and the output a of the flip-flop 44 is in the state "0", each first control pulse supplied by the output Q of the flip-flop 41 causes the passage of a positive current pulse in the coil 9 (line C1, FIG. 7), and each second control pulse supplied by the output 9 of the flip-flop 42 causes the passage of an equally positive current pulse in coil 10 (line C2, Figure 7).

Lorsque le signal AR est à l'état "1", et que la sortie Q du flip-flop 44 est également à l'état "1", chaque première impulsion de commande fournie par la sortie Q du flip-flop 41 provoque le passage d'une impulsion de courant négatif dans la bobine 9 (ligne D1, figure 7), et chaque deuxième impulsion de commande fournie par la sortie 9 du flip-flop 42 provoque le passage d'une impulsion de courant, également négatif, dans la bobine 10 (ligne D2, figure 7).When the signal AR is in state "1", and the output Q of flip-flop 44 is also in state "1", each first control pulse supplied by output Q of flip-flop 41 causes the passage of a negative current pulse in the coil 9 (line D1, figure 7), and each second control pulse supplied by the output 9 of the flip-flop 42 causes the passage of a current pulse, also negative, in coil 10 (line D2, Figure 7).

En résumé, le dispositif de la figure 8 délivre aux bobines du moteur, en réponse à un signal de commande, les mêmes premières et deuxièmes impulsions que le dispositif de la figure 5. En outre, il applique une troisième impulsion de courant à la deuxième bobine après chaque première impulsion et une quatrième impulsion de courant à la première bobine après chaque deuxième impulsion. Cette troisième et cette quatrième impulsion ont le même sens que la première, respectivement la deuxième impulsion immédiatement précédente.In summary, the device of FIG. 8 delivers to the coils of the motor, in response to a control signal, the same first and second pulses as the device of FIG. 5. In addition, it applies a third current pulse to the second coil after each first pulse and a fourth current pulse to the first coil after each second pulse. The third and the fourth pulse is t the same direction as the first, respectively the second immediately preceding pulse.

Dans cet exemple, le signal de commande est constitué par les impulsions fournies par les sorties Q des flip-flops 41 et 42.In this example, the control signal consists of the pulses supplied by the outputs Q of the flip-flops 41 and 42.

Dans l'exemple de cette figure 8, les impulsions de commande délivrées par les sorties Q des flip-flops 41 et 42 se suivent sans intervalle et elles ont des durées égales, chacune, à la moitié de la durée des impulsions fournies par la sortie Q du flip-flop 33 dans le cas de la figure 5. Ceci n'est cependant pas obligatoire, et il est possible de choisir pour ces impulsions de commande des durées différentes, pour les adapter aux caractéristiques du moteur et/ou de la charge qu'il entraîne. Il est également possible de laisser un petit intervalle entre elles.In the example of this FIG. 8, the control pulses delivered by the outputs Q of the flip-flops 41 and 42 follow each other without interval and they have durations equal, each one, to half of the duration of the pulses supplied by the output Q of the flip-flop 33 in the case of FIG. 5. This is not however compulsory, and it is possible to choose for these control pulses different durations, to adapt them to the characteristics of the motor and / or of the load. that it entails. It is also possible to leave a small gap between them.

Le tableau de la figure 10 résume une deuxième variante du procédé selon l'invention.The table in FIG. 10 summarizes a second variant of the method according to the invention.

Pour faire tourner le rotor d'un pas dans le sens positif, à partir de la position qu'il occupe à la figure 1, une impulsion de courant de sens négatif est tout d'abord appliquée à la bobine 9 (ligne A1 du tableau de la figure 10). Aucun courant n'est envoyé dans la bobine 10. Le champ C9 créé par cette impulsion amène le rotor dans la position indiquée à la colonne Rb1 de cette ligne A1.To rotate the rotor one step in the positive direction, from the position it occupies in Figure 1, a current pulse of negative direction is first applied to the coil 9 (line A1 of the table in Figure 10). No current is sent to the coil 10. The field C9 created by this pulse brings the rotor to the position indicated in column Rb1 of this line A1.

Le courant dans la bobine 9 est interrompu, et une impulsion de courant de sens positif est appliquée à la bobine 10 (ligne A2 du tableau de la figure 10). Aucun courant n'est envoyé dans la bobine 9. Le champ C10 résultant de cette impulsion amène le rotor dans la position indiquée à la colonne Rb2. Lorsque le courant dans la bobine 10 est interrompu, le couple de positionnement amène le rotor dans la position indiquée à la colonne Rc de la ligne A2.The current in the coil 9 is interrupted, and a current pulse of positive direction is applied to the coil 10 (line A2 in the table of FIG. 10). No current is sent to the coil 9. The field C10 resulting from this pulse brings the rotor to the position indicated in column Rb2. When the current in the coil 10 is interrupted, the positioning torque brings the rotor to the position indicated in column Rc of line A2.

Pour faire tourner le rotor d'un deuxième pas, toujours dans le sens positif, une impulsion de courant de sens positif est appliquée à la bobine 9, puis une impulsion de courant de sens négatif est envoyée dans la bobine 10. Les lignes 81 et 82 du tableau de la figure 10 indiquent ces différents courants, les champs qui en résultent et les positions atteintes par le rotor en réponse à ces champs et sous l'influence du couple de positionnement.To turn the rotor a second step, still in the positive direction, a current pulse of positive direction is applied to the coil 9, then a current pulse of negative direction is sent to the coil 10. Lines 81 and 82 of the table of FIG. 10 indicate these different currents, the resulting fields and the positions reached by the rotor in response to these fields and under the influence of the positioning torque.

Pour faire tourner le rotor d'un pas dans le sens négatif, à partir de la position indiquée à la figure 1, une impulsion de courant de sens négatif est envoyée dans la bobine 10. Une impulsion de courant de sens positif est ensuite envoyée dans la bobine E'3t, enfin, le couple de positionnement amène le rotor dans sa deuxième position de repos. Les lignes C1 et C2 du tableau de la figure 10 indiquent ces différents courants, les champs qui en résultent et les positions atteintes par le rotor en réponse à ces champs et sous l'influence du couple de positionnement.To rotate the rotor one step in the direction negative, from the position indicated in figure 1, a current pulse of negative direction is sent in the coil 10. A current pulse of positive direction is then sent in the coil E'3t, finally, the positioning torque brings the rotor to its second rest position. Lines C1 and C2 in the table in Figure 10 indicate these different currents, the resulting fields and the positions reached by the rotor in response to these fields and under the influence of the positioning torque.

Pour faire tourner le rotor d'un nouveau pas dans le sens négatif, une impulsion de courant de sens positif est envoyée dans la bobine 10, puis une impulsion de courant de sens négatif est envoyée dans la bobine 9. Les lignes D1 et D2 du tableau de la figure 10 indiquent ces différents courants, les champs qui en résultent et les positions atteintes par le rotor en réponse à ces champs et au couple de positionnement.To rotate the rotor in a new direction in the negative direction, a positive current pulse is sent to the coil 10, then a negative current current pulse is sent to the coil 9. Lines D1 and D2 of the The table in FIG. 10 indicates these different currents, the fields which result therefrom and the positions reached by the rotor in response to these fields and to the positioning torque.

Ainsi, dans cette deuxième variante, comme dans le procédé et dans la première variante décrits ci-dessus, des premières impulsions de courant sont appliquées à une première bobine, alternativement dans un premier sens et dans le deuxième sens pour provoquer la rotation du rotor dans un premier sens, et des deuxièmes impulsions de courant sont appliquées à la deuxième bobine, alternativement dans le premier et dans le deuxième sens pour provoquer la rotation du rotor dans le deuxième sens. Comme dans la première variante, une troisième impulsion est appliquée à la deuxième bobine après chaque première impulsion, et une quatrième impulsion est appliquée à la première bobine après chaque deuxième impulsion.Thus, in this second variant, as in the method and in the first variant described above, first current pulses are applied to a first coil, alternately in a first direction and in the second direction to cause the rotation of the rotor in a first direction, and second current pulses are applied to the second coil, alternately in the first and in the second direction to cause the rotor to rotate in the second direction. As in the first variant, a third pulse is applied to the second coil after each first pulse, and a fourth pulse is applied to the first coil after each second pulse.

Il faut noter cependant que, dans cette deuxième variante, la bobine à laquelle les premières impulsions sont appliquées est celle à laquelle les deuxièmes impulsions sont appliquées dans le procédé et dans la première variante, et vice versa. De même, le sens du courant qui doit être appliqué pour provoquer la rotation du rotor dans un sens déterminé à partir d'une position déterminée est chaque fois l'inverse du sens du courant qui est appliqué dans les même conditions dans le procédé et dans sa première variante. En outre, contrairement à ce qui se passe dans la première variante, le sens de cette troisième et de cette quatrième impulsion est chaque fois le sens inverse du sens de la première ou, respectivement, de la deuxième impulsion immédiatement précédente.It should be noted, however, that in this second variant, the coil to which the first pulses are applied is that to which the second pulses are applied in the process and in the first variant, and vice versa. Likewise, the direction of the current which must be applied to cause the rotation of the rotor in a determined direction from a determined position is each time the inverse of the direction of the current which is applied under the same conditions in the process and in its first variant. In addition, contrary to what happens in the first variant, the direction of this third and of this fourth pulse is each time the opposite direction of the direction of the first or, respectively, of the second immediately preceding pulse.

La figure 11 illustre un exemple de circuit permettant la mise en oeuvre de cette variante du procédé, et les figures 12a et 12b sont des diagrammes représentant des signaux mesurés en quelques points de ce circuit lorsque le rotor tourne respectivement dans le sens positif et dans le sens négatif.FIG. 11 illustrates an example of a circuit allowing the implementation of this variant of the method, and FIGS. 12a and 12b are diagrams representing signals measured at some points of this circuit when the rotor turns respectively in the positive direction and in the negative sense.

Les flip-flops 41,42 et 44 et l'inverseur 43 représentés à la figure 11 sont exactement les mêmes et fonctionnent de la même façon que ceux de la figure 8.The flip-flops 41, 42 and 44 and the reverser 43 represented in FIG. 11 are exactly the same and operate in the same way as those in FIG. 8.

Les deux impulsions de commande fournies par les sorties des flip-flops 41 et 42 sont transmises aux grilles G1 à G6 des transistors T1 à T6, identiques à ceux de la figure 5 et non représentés dans cette figure 11, par un circuit logique comportant les portes ET 71 à 82, les portes OU 83 à 88, et les inverseurs 89 à 92, reliés les uns aux autres de la manière représentée.The two control pulses supplied by the outputs of the flip-flops 41 and 42 are transmitted to the gates G1 to G6 of the transistors T1 to T6, identical to those of FIG. 5 and not shown in this FIG. 11, by a logic circuit comprising the AND gates 71 to 82, OR gates 83 to 88, and inverters 89 to 92, connected to each other as shown.

Ce circuit ne sera pas décrit plus en détail, car il est facile de voir, à l'aide des figures 12a et 12b, que les premières impulsions de commande fournies par la sortie Q de flip-flop 41 provoquent le passage des premières impulsions de courant dans la bobine 9 ou le passage des deuxièmes impulsions de courant dans la bobine 10 selon l'état du signal AR, et que les deuxièmes impulsions de commande fournies par la sortie Q du flip-flop 42 provoquent le passage des troisièmes impulsions de courant dans la bobine 10 ou des quatrièmes impulsions de courant dans la bobine 9, toujours selon l'état du signal AR. Le sens de ces impulsions de courant est en outre déterminé par l'état des sorties Q et Q du flip-flop 44. Cet état change à la fin de chaque impulsion fournie par la sortie Q du flip-flop 42, c'est-à-dire à la fin de chaque pas du rotor.This circuit will not be described in more detail, because it is easy to see, with the aid of FIGS. 12a and 12b, that the first control pulses supplied by the output Q of flip-flop 41 cause the passage of the first pulses of current in the coil 9 or the passage of the second current pulses in the coil 10 depending on the state of the signal AR, and that the second control pulses supplied by the output Q of the flip-flop 42 cause the passage of the third current pulses in coil 10 or fourth current pulses in coil 9, always according to the state of the AR signal. The direction of these current pulses is further determined by the state of the outputs Q and Q of the flip-flop 44. This state changes at the end of each pulse supplied by the output Q of the flip-flop 42, that is to say i.e. at the end of each rotor step.

La commande du moteur selon une troisième variante du procédé permet d'augmenter le couple fourni par ce moteur, par rapport à celui qu'il fournit lorsqu'il est commandé selon la deuxième variante, sans augmenter sa consommation dans une trop grande mesure.The control of the motor according to a third variant of the method makes it possible to increase the torque supplied by this motor, compared to that which it provides when it is controlled according to the second variant, without increasing its consumption to a great extent.

Le tableau de la figure 13 résume cette troisième variante. Les lignes Al, A2, B1, B2, C1, C2, D1 et D2 de ce tableau sont identiques aux lignes correspondantes du tableau de la figure 10.The table in Figure 13 summarizes this third variant. The lines A1, A2, B1, B2, C1, C2, D1 and D2 in this table are identical to the corresponding lines in the table in Figure 10.

Pour faire tourner le rotor d'un pas dans le sens positif, à partir de la position qu'il occupe à la figure 1, une impulsion de courant de sens négatif est appliquée à la bobine 9, puis une impulsion de courant de sens positif est appliquée à la bobine 10, comme dans la deuxième variante décrite ci-dessus (lignes A1 et A2 de la figure 13).To turn the rotor one step in the positive direction, from the position it occupies in FIG. 1, a current pulse of negative direction is applied to the coil 9, then a current pulse of positive direction is applied to the coil 10, as in the second variant described above (lines A1 and A2 in Figure 13).

Ensuite, une impulsion de courant est envoyée à nouveau dans la bobine 9, dans le sens positif cette fois, sans que le courant soit interrompu dans la bobine 10. Les champs C9 et C10 qui résultent de ces courants se combinent pour exercer sur le rotor un couple qui s'ajoute au couple de positionnement pour amener le rotor à sa deuxième position de repos (ligne A3 de la figure 13).Then, a current pulse is sent again in the coil 9, in the positive direction this time, without the current being interrupted in the coil 10. The fields C9 and C10 which result from these currents combine to exert on the rotor a torque which is added to the positioning torque to bring the rotor to its second rest position (line A3 in Figure 13).

Pour faire tourner le rotor d'un nouveau pas dans le sens positif, une impulsion de courant positif est envoyée à la bobine 9, puis une impulsion de sens négatif est envoyée à la bobine 10 (lignes B1 et B2 de la figure 13).To turn the rotor in a new step in the positive direction, a positive current pulse is sent to the coil 9, then a negative direction pulse is sent to the coil 10 (lines B1 and B2 of Figure 13).

Ensuite, une impulsion de sens négatif est envoyée à nouveau dans la bobine 9, sans que le courant soit interrompu dans la bobine 10. Les champs C9 et C10 qui résultent de ces courants se combinent à nouveau pour exercer un couple qui s'ajoute au couple de positionnement pour ramener le rotor à la position qu'il occupe à la figure 1 (ligne B3 de la figure 13).Then, a negative direction pulse is sent again into the coil 9, without the current being interrupted in the coil 10. The fields C9 and C10 which result from these currents combine again to exert a torque which is added to the positioning torque for return the rotor to the position it occupies in Figure 1 (line B3 in Figure 13).

De manière analogue, pour faire tourner d'un pas le rotor dans le sens négatif à partir de la position qu'il occupe à la figure 1, les mêmes impulsions de courant que dans la deuxième variante sont appliquées aux bobines 9 et 10 (lignes C1 et C2 de la figure 13), puis une impulsion de courant positif est envoyée à la bobine 10 sans que le courant soit interrompu dans la bobine 9 (ligne C3 de la figure 13).Similarly, to rotate the rotor in a negative direction from the position it occupies in Figure 1, the same current pulses as in the second variant are applied to the coils 9 and 10 (lines C1 and C2 in Figure 13), then a positive current pulse is sent to the coil 10 without the current being interrupted in the coil 9 (line C3 in Figure 13).

Pour faire tourner le rotor d'un nouveau pas dans le sens négatif, les mêmes impulsions de courant que dans la deuxième variante sont appliquées aux bobines 9 et 10 (lignes D1 et D2 de la figure 13) puis une impulsion de courant négatif est envoyée à la bobine 10 sans que le courant soit interrompu dans la bobine 9 (ligne D3 de la figure 13).To turn the rotor in a new step in the negative direction, the same current pulses as in the second variant are applied to the coils 9 and 10 (lines D1 and D2 in Figure 13) then a negative current pulse is sent to the coil 10 without the current being interrupted in the coil 9 (line D3 in FIG. 13).

En résumé, dans cette troisième variante, les premières, deuxièmes, troisièmes et quatrièmes impulsions de courant sont appliquées comme dans la deuxième variante. En outre, une cinquième impulsion de courant est appliquée à la première bobine après le début de chaque troisième impulsion et une sixième impulsion de courant est appliquée à la deuxième bobine après de début de chaque quatrième impulsion, sans que cette troisième ou cette quatrième impulsion soit interrompue. Le sens de la cinquième ou de la sixième impulsion de courant est le sens inverse du sens de la première ou de la deuxième impulsion immédiatement précédente.In summary, in this third variant, the first, second, third and fourth current pulses are applied as in the second variant. In addition, a fifth current pulse is applied to the first coil after the start of each third pulse and a sixth current pulse is applied to the second coil after the start of each fourth pulse, without this third or fourth pulse being interrupted. The direction of the fifth or sixth current pulse is the opposite direction to the direction of the immediately preceding first or second pulse.

La figure 14 illustre un exemple de circuit permettant la mise en oeuvre de cette troisième variante du procédé, et la figure 15 est un diagramme représentant des signaux mesurés en quelques points de ce circuit.FIG. 14 illustrates an example of a circuit allowing the implementation of this third variant of the method, and FIG. 15 is a diagram representing signals measured at a few points of this circuit.

Le circuit de la figure 14 comporte un flip-flop de type D 101 dont l'entrée d'horloge Ck reçoit le signal ayant une fréquence de 1 Hz de la sortie 35a du diviseur 35, non représenté dans cette figure (voir la fig. 5). La sortie Q. de ce flip-flop 101 est reliée à son entrée D, de sorte que sa sortie Q passe à l'état "1" chaque fois que le signal ayant une fréquence de 1 Hz passe lui- même à l'état "1". L'entrée R de remise à zéro du flip-flop 101 reçoit de la sortie 35d du diviseur 35 un signal ayant une fréquence de 256 Hz. La sortie Q du flip-flop 101 repasse donc à l'état "0" environ 1,9 milliseconde après avoir passé à l'état "1". A cet instant, la sortie Q d'un flip-flop 102, également de type D, dont l'entrée Ck est reliée à la sortie Õ du flip-flop 101, passe à l'état "1". Comme l'entrée R de remise à zéro de ce flip-flop 102 reçoit, à travers un inverseur 103, le signal ayant une fréquence de 256 Hz fourni par la sortié 35d du diviseur 35, la sortie Q de ce flip-flop 102 repasse à l'état "0" environ 1,9 milliseconde après avoir passé à l'état "1". A cet instant, la sortie Q d'un flip-flop 104 également de type D, dont l'entrée Ck est reliée à la sortie Q du flip-flop 102, passe à l'état "1". L'entrée R de ce flip-flop 104 recevant également le signal ayant une fréquence de 256 Hz, sa sortie Q repasse à l'état "0" également 1,9 milliseconde environ après avoir passé à l'état "1".The circuit of FIG. 14 comprises a D-type flip-flop 101 whose clock input Ck receives the signal having a frequency of 1 Hz from the output 35a of the divider 35, not shown in this figure (see fig. 5). The output Q of this flip-flop 101 is connected to its input D, so that its output Q goes to state "1" each time the signal having a frequency of 1 Hz itself goes to state "1". The reset input R of the flip-flop 101 receives from the output 35d of the divider 35 a signal having a frequency of 256 Hz. The output Q of the flip-flop 101 therefore returns to the state "0" approximately 1, 9 milliseconds after entering state "1". At this instant, the output Q of a flip-flop 102, also of type D, the input Ck of which is connected to the output Õ of the flip-flop 101, changes to state "1". As the reset input R of this flip-flop 102 receives, through an inverter 103, the signal having a frequency of 256 Hz supplied by the output 35d of the divider 35, the output Q of this flip-flop 102 returns in state "0" about 1.9 milliseconds after going to state "1". At this instant, the output Q of a flip-flop 104 also of type D, the input Ck of which is connected to the output Q of the flip-flop 102, changes to state "1". The input R of this flip-flop 104 also receiving the signal having a frequency of 256 Hz, its output Q returns to the state "0" also about 1.9 milliseconds after having passed to the state "1".

Les sorties Q des flip-flops 101, 102 et 104 délivrent donc chaque seconde trois impulsions successives.The outputs Q of the flip-flops 101, 102 and 104 therefore deliver each second three successive pulses.

Chaque fois que la sortie Õ du flip-flop 104 passe à l'état "1", un flip-flop 105, également de type D, bascule. Sa sortie Q reste donc alternativement à l'état "0" et à l'état "1" pendant une seconde.Each time the output Õ of the flip-flop 104 goes to state "1", a flip-flop 105, also of type D, flips. Its output Q therefore remains alternately in state "0" and in state "1" for one second.

Les trois impulsions de commande fournies respectivement par les sorties Q des flip-flops 101, 102 et 104 sont transmises aux grilles G1 à G6 des transistors T1 à T6, identiques à ceux de la figure 5 et non représentés dans cette figure 14, par un circuit logique comprenant les portes ET 106 à 117, les portes OU 118 à 125 et les inverseurs 126 à 129, reliés les uns aux autres de la manière représentée.The three control pulses supplied respectively by the outputs Q of the flip-flops 101, 102 and 104 are transmitted to the gates G1 to G6 of the transistors T1 to T6, identical to those of FIG. 5 and not represented in this FIG. 14, by a logic circuit comprising AND gates 106 to 117, OR gates 118 to 125 and inverters 126 to 129, connected to each other as shown.

Ce circuit logique ne sera pas décrit plus en détail, car il est facile de voir, à l'aide des figures 15a et 15b, que, comme dans la deuxième variante décrite ci-dessus, les premières impulsions de commande fournies par la sortie 9 du flip-flop 101 provoquent le passage des premières impulsions de courant dans la bobine 9 ou le passage des deuxièmes impulsions de courant dans la bobine 10 selon l'état logique du signal AR, et que les deuxièmes impulsions de commande fournies par la sortie Q du flip-flop 102 provoquent le passage des troisièmes impulsions de courant dans la bobine 10 ou des quatrièmes impulsions de courant dans la bobine 9, toujours selon l'état du signal AR. En outre, les troisièmes impulsions de commande fournies par la sortie Q du flip-flop 104 maintiennent les troisièmes ou les quatrièmes impulsions de courant, et provoquent en même temps le passage des cinquièmes impulsions de courant dans la bobine 9, dans le sens inverse de celui de la première impulsion immédiatement précédente, ou le passage des sixièmes impulsions de courant dans la bobine 10, dans le sens inverse de celui de la deuxième impulsion immédiatement précédente.This logic circuit will not be described in more detail, because it is easy to see, with the aid of FIGS. 15a and 15b, that, as in the second variant described above, the first control pulses supplied by the output 9 of the flip-flop 101 cause the passage of the first current pulses in the coil 9 or the passage of the second current pulses in the coil 10 depending on the logic state of the signal AR, and that the second control pulses supplied by the output Q flip-flop 102 cause the passage of the third current pulses in the coil 10 or the fourth current pulses in the coil 9, always according to the state of the signal AR. In addition, the third control pulses supplied by the output Q of the flip-flop 104 maintain the third or the fourth current pulses, and at the same time cause the passage of the fifth current pulses in the coil 9, in the opposite direction of that of the first immediately preceding pulse, or the passage of the sixth current pulses in the coil 10, in the opposite direction to that of the immediately preceding second pulse.

Ces trois impulsions de commande fournies par les sorties Q des flip-flops 101, 102 et 104 ont des durées égales dans l'exemple décrit ci-dessus. Il est évident que ces impulsions pourraient avoir des durées différentes, adaptées aux caractéristiques du moteur et/ou de la charge qu'il entraîne.These three control pulses supplied by the outputs Q of the flip-flops 101, 102 and 104 have equal durations in the example described above. It is obvious that these pulses could have different durations, adapted to the characteristics of the motor and / or of the load which it drives.

Dans la troisième variante du procédé décrite ci-dessus, un courant circule dans les deux bobines du moteur pendant les cinquièmes ou les sixièmes impulsions. La source d'alimentation du dispositif doit donc fournir, pendant ces cinquièmes ou sixièmes impulsions, deux fois plus de courant que pendant les autres impulsions. Ceci peut conduire à une diminution momentanée de la tension de cette source, avec tous les inconvénients qui sont liés à une telle diminution.In the third variant of the method described above, a current flows in the two coils of the motor during the fifth or sixth pulses. The power source of the device must therefore supply, during these fifth or sixth pulses, twice as much current as during the other pulses. This can lead to a momentary decrease in the voltage of this source, with all the drawbacks which are linked to such a decrease.

Pour éviter ces inconvénients, il est possible d'interrompre le courant alternativement dans l'une et dans l'autre des bobines pendant les cinquièmes, respectivement les sixièmes impulsions. De cette manière, la source d'alimentation du dispositif doit fournir le même courant dans tous les cas.To avoid these drawbacks, it is possible to interrupt the current alternately in one and in the other of the coils during the fifth, respectively the sixth pulses. In this way, the power source of the device must supply the same current in all cases.

Le circuit de la figure 16, qui est un complément au circuit de la figure 14, permet de réaliser cette interruption du courant alternativement dans l'une et dans l'autre bobine pendant ces cinquièmes, respectivement sixièmes impulsions. Ce circuit comporte quatre portes ET 131 à 134 ayant chacune une première entrée reliée, respectivement, à la sortie d'une des portes 120 à 123 de la figure 14. Les sorties de ces portes 131 à 134 sont reliées respectivement à l'entrée de l'inverseur 127, à la grille G2, à l'entrée de l'inverseur 129, et à la grille G6.The circuit of FIG. 16, which is a complement to the circuit of FIG. 14, makes it possible to carry out this interruption of the current alternately in one and in the other coil during these fifths, respectively sixth pulses. This circuit comprises four AND gates 131 to 134 each having a first input connected, respectively, to the output of one of the gates 120 to 123 of FIG. 14. The outputs of these gates 131 to 134 are connected respectively to the input of the inverter 127, at the gate G2, at the input of the inverter 129, and at the gate G6.

Une porte ET 135 a sa première entrée reliée à la sortie Q du flip-flop 104 de la figure 14, et sa deuxième entré reliée à la sortie 35e du diviseur 35 de la figure 5, non représenté dans cette figure 16. Cette sortie délivre un signal ayant une fréquence de, par exemple, 2048 Hz. La sortie de la porte 135 est reliée, à travers un inverseur 136, aux deuxièmes entrées des portes 131 et 132. Une autre porte ET 137 a sa première entrée également reliée à la sortie Q du flip-flop 104 et sa deuxième entrée reliée, par l'intermediaire d'un inverseure 138, à la sortie 35e du diviseur 35. La sortie de la porte 137 est reliée, par l'intermediaire d'un inverseur 139, aux deuxième entrées des portes 133 et 134. Le reste du circuit de la figure 14 n'est pas modifié.An AND gate 135 has its first input connected to the output Q of the flip-flop 104 of FIG. 14, and its second input connected to the output 35e of the divider 35 of FIG. 5, not shown in this FIG. 16. This output delivers a signal having a frequency of, for example, 2048 Hz. The output of gate 135 is connected, through an inverter 136, to the second inputs of gates 131 and 132. Another AND gate 137 has its first input also connected to the output Q of the flip-flop 104 and its second input connected, by the intermediary of an inverter 138, to the output 35e of the divider 35. The output of the door 137 is connected, by means of an inverter 139, at the second inputs of doors 133 and 134. The rest of the circuit of FIG. 14 is not modified.

Lorsque, pendant une troisième impulsion de command fournie par la sortie Q du flip-flop 104, les deux bobines doivent être parcourues par des courants positifs (cas des lignes A3 et C3 du tableau de la figure 13), les sorties des portes OU 120 et 122 passent à l'état "1". La figure 16 montre que, dans ce cas, la grille G5 du transistor T5 n'est mise à l'état "0" que lorsque le signal à 2048 Hz est à l'état "1". De même, la grille G1 du transistor T1 n'est mise à l'état "0" que lorsque ce signal à 2048 Hz est à l'état "0". Le transistor T1 est donc bloqué lorsque le transistor T5 est conducteur, réciproquement. Le transistor T4, par contre, reste en permanence conducteur. Il en résulte que les deux bobines sont parcourues alternativement par le courant.When, during a third command pulse supplied by the output Q of the flip-flop 104, the two coils must be traversed by positive currents (case of lines A3 and C3 in the table of FIG. 13), the outputs of the gates OR 120 and 122 go to state "1". FIG. 16 shows that, in this case, the gate G5 of the transistor T5 is only put in the state "0" when the signal at 2048 Hz is in the state "1". Likewise, the gate G1 of the transistor T1 is only set to the "0" state when this signal at 2048 Hz is in the "0" state. The transistor T1 is therefore blocked when the transistor T5 is conductive, vice versa. The transistor T4, on the other hand, remains permanently conductive. It follows that the two coils are traversed alternately by the current.

Lorsque les deux bobines doivent être parcourues par des courants négatifs (cas des lignes B3 et D3 du tableau de la figure 13), ce sont les sorties des portes OU 121 et 123 qui passent à l'état "1". Dans ce cas, la grille G6 du transistor T6 n'est mise à l'état "1" que lorsque le signal à 2048 Hz est également à l'état "1", et la grille G2 du transistor T2 n'est mise à l'état "1" que lorseque ce signal est à l'état 220". Le transistor T2 est donc bloqué lorsque le transistor T6 est conducteur, et réciproquement.When the two coils must be traversed by negative currents (case of lines B3 and D3 in the table of figure 13), it is the outputs of the OR gates 121 and 123 which pass to the state "1". In this case, the gate G6 of the transistor T6 is only set to the state "1" when the signal at 2048 Hz is also in the state "1", and the gate G2 of the transistor T2 is not set to state "1" when this signal is in state 220 ". The transistor T2 is therefore blocked when the transistor T6 is conductive, and vice versa.

Le transistor T3, par contre, reste conducteur en permanence. Il en résulte que les deux bobines sont également parcourues alternativement par un courant.The transistor T3, on the other hand, remains conductive at all times. As a result, the two coils are also traversed alternately by a current.

Dans le procédé et ses variantes décrits ci-dessus, les durées des diverses impulsions sont prédéterminées. Il est bien entendu possible d'ajuster la durée de ces impulsions à la grandeur de la charge réellement entrainée par le moteur, pour diminuer autant que possible la consommation d'énergie électrique du système.In the method and its variants described above, the durations of the various pulses are predetermined. It is of course possible to adjust the duration of these pulses to the magnitude of the load actually driven by the motor, to reduce as much as possible the electrical energy consumption of the system.

Les circuits permettant de réaliser cet ajustement, qui sont bien connus et qui ne seront pas décrits ici, mesurent en général la valeur d'une grandeur électrique dépendante du courant qui çircule dans la bobine, comparent cette valeur mesurée avec une valeur de référence et utilisent le résultat de cette comparaison pour asservir la durée des impulsions motrices à la charge entraînée par le moteur.The circuits making this adjustment, which are well known and which will not be described here, generally measure the value of an electrical quantity dependent on the current flowing in the coil, compare this measured value with a reference value and use the result of this comparison to control the duration of the driving pulses to the load driven by the motor.

Ces circuits comportent généralement une résistance branchée en série avec la bobine du moteur. La chute de tension dans cette résistance, qui est proportionnelle au courant circulant dans la bobine, est utilisée comme grandeur d'entrée du circuit d'asservissement. La présence de cette résistance entraîne une diminution de la tension appliquée au moteur et une augmentation de la consommation du système.These circuits generally include a resistor connected in series with the motor coil. The voltage drop across this resistor, which is proportional to the current flowing in the coil, is used as the input variable to the servo circuit. The presence of this resistance causes a reduction in the voltage applied to the motor and an increase in the consumption of the system.

Dans le procédé selon l'invention et dans ses deux premières variantes, une seule des deux bobines est parcourue à chaque instant par un courant. Il en est de même, dans la troisième variante, pendant la première et la deuxième impulsion de commande.In the method according to the invention and in its first two variants, only one of the two coils is traversed at each instant by a current. It is the same, in the third variant, during the first and the second control pulse.

Cette particularité permet de réaliser un asservissement de la durée des premières, deuxièmes, troisièmes et quatrièmes impulsions de courant à la charge entraîinée par le moteur sans avoir à brancher une résistance en série avec les bobines. Il suffit pour cela, par exemple, de mesurer pendant chaque impulsion de courant appliquée à l'une des bobines la tension induite dans l'autre bobine, qui n'est pas parcourue par le courant. Cette mesure peut être utilisée pour ajuster la durée des impulsions de courant.This feature allows the duration of the first, second, third and fourth pulses of current to be enslaved to the load driven by the motor without having to connect a resistor in series with the coils. It suffices for this, for example, to measure during each current pulse applied to one of the coils the voltage induced in the other coil, which is not traversed by the current. This measurement can be used to adjust the duration of the current pulses.

La figure 17 illustre un exemple de circuit mettant en oeuvre ce procédé d'asservissement, appliqué au cas de la figure 5.FIG. 17 illustrates an example of a circuit implementing this servo-control method, applied to the case of FIG. 5.

Tous les éléments décrits dans cette figure 5, à l'exception du diviseur de fréquence 35 et de l'oscillateur 36, sont reproduits dans cette figure 17, avec les mêmes références.All the elements described in this figure 5, with the exception of the frequency divider 35 and the oscillator 36, are reproduced in this figure 17, with the same references.

Le circuit de la figure 17 comporte un circuit de mesure 141 qui peut être de n'importe quel type et qui ne sera pas décrit en détail ici. Le circuit de la figure 17 comporte en outre six portes de transmission 142 à 147 et une porte OU 148. La sortie de cette porte 148 est reliée à l'entrée R de remise à zéro du flip-flop 33. L'une des entrées de la porte 148 est reliée à la sortie 35b du diviseur 35, non représenté, et l'autre de ses entrées est reliée à la sortie du circuit 141. Les premières bornes des portes de transmission 142 et 143 sont reliées, ensemble, au drain des transistors T1 et T2, et donc à une des bornes de la bobine 10. Les premières bornes des portes de transmission 144 et 145 sont reliées, ensemble, au drain des transistors T3 et T4, c'est-à-dire à l'autre borne de la bobine 10 et à une des bornes de la bobine 9. Les premières bornes des portes de transmission 146 et 147 sont reliées, ensemble, au drain des transistors T5 et T6, c'est-à-dire à l'autre borne de la bobine 9. Les deuxièmes bornes des portes 142, 144 et 146 sont reliées, ensemble, à l'une des entrées du circuit de mesure 141 et les deuxièmes bornes des portes 143, 145 et 147 sont reliées ensemble à l'autre entrée de ce circuit de mesure 141.The circuit of FIG. 17 includes a measurement circuit 141 which can be of any type and which will not be described in detail here. The circuit of FIG. 17 further comprises six transmission doors 142 to 147 and an OR gate 148. The output of this gate 148 is connected to the reset input R of the flip-flop 33. One of the inputs of the door 148 is connected to the output 35b of the divider 35, not shown, and the other of its inputs is connected to the output of the circuit 141. The first terminals of the transmission doors 142 and 143 are connected, together, to the drain transistors T1 and T2, and therefore at one of the terminals of the coil 10. The first terminals of the transmission gates 144 and 145 are connected, together, to the drain of the transistors T3 and T4, that is to say to the other terminal of the coil 10 and to one of the terminals of the coil 9. The first terminals of the transmission doors 146 and 147 are connected, together, to the drain of the transistors T5 and T6, that is to say to the other terminal of the coil 9. The second terminals of the doors 142, 144 and 146 are connected, together, to one of the inputs of the measurement circuit 141 and the second terminals of the doors 143, 145 and 147 are connected together to the other input of this measurement circuit 141.

Les électrodes de commande des portes de transmission 142 à 147 sont reliées, respectivement, aux sorties des portes 26, 25, 27, 28, 23 et 24. De cette manière, lorsqu'un courant positif passe dans la bobine 10, les portes de transmission 145 et 146 sont conductrices, et le circuit de mesure 141 est relié aux bornes de la bobine 9. Lorsqu'un courant négatif passe dans cette bobine 10, les portes de transmission 144 et 147 sont conductrices, et le circuit de mesure 141 est également relié aux bornes de la bobine 9, mais dans le sens inverse du sens précédent. La polarité du signal appliqué aux entrées du circuit 141 est donc la même dans les deux cas.The control electrodes of the transmission doors 142 to 147 are connected, respectively, to the outputs of doors 26, 25, 27, 28, 23 and 24. In this way, when a positive current flows through the coil 10, the doors of transmission 145 and 146 are conductive, and the measurement circuit 141 is connected to the terminals of the coil 9. When a negative current flows through this coil 10, the transmission gates 144 and 147 are conductive, and the measurement circuit 141 is also connected to the terminals of the coil 9, but in the opposite direction to the previous direction. The polarity of the signal applied to the inputs of circuit 141 is therefore the same in both cases.

Lorsqu'un courant positif passe dans la bobine 9, les portes de transmission 142 et 145 sont conductrices, et c'est la bobine 10 qui est reliée aux entrées du circuit 141. Lorsqu'un courant négatif passe dans la bobine 9, les portes de transmission 143 et 144 sont conductrices et la bobine 10 est également reliée aux entrées du circuit 141, en sens inverse du précédent. La polarité du signal appliqué à ces entrées est donc la même dans ces deux cas.When a positive current passes through the coil 9, the transmission doors 142 and 145 are conductive, and it is the coil 10 which is connected to the inputs of the circuit 141. When a negative current passes through the coil 9, the doors transmission 143 and 144 are conductive and the coil 10 is also connected to the inputs of the circuit 141, in the opposite direction to the previous one. The polarity of the signal applied to these inputs is therefore the same in these two cases.

Quelle que soit la bobine parcourue par un courant, la sortie du circuit 114 délivre un signal "1" lorsque, par exemple, la tension appliquée à ses entrées dépasse une valeur déterminée. Ce signal remet la sortie Q du flip-flop 33 à "0", ce qui interrompt le courant circulant dans la bobine utilisée.Whatever the coil through which a current flows, the output of circuit 114 delivers a signal "1" when, for example, the voltage applied to its inputs exceeds a determined value. This signal resets the output Q of the flip-flop 33 to "0", which interrupts the current flowing in the coil used.

Si, pour une raison ou une autre, la sortie du circuit 141 ne passe pas à l'état "1", la sortie Q du flip-flop 33 est néanmoins remise à l'état "0" par le signal provenant de la sortie 35b du diviseur 35, comme dans le cas de la figure 5. Cette disposition évite que le flip-flop 33 ne reste indéfiniment enclenché, et donc que du courant ne circule en permanence dans une des bobines.If, for one reason or another, the output of circuit 141 does not go to state "1", the output Q of flip-flop 33 is nevertheless reset to state "0" by the signal from the output 35b of the divider 35, as in the case of FIG. 5. This arrangement avoids that the flip-flop 33 does not remain indefinitely engaged, and therefore that current does not circulate permanently in one of the coils.

D'autres circuits pourraient être prévus, notamment un circuit dans lequel la mesure de la tension induite dans la bobine non parcourue par le courant ne serait pas réalisée pendant chaque impulsion, mais à intervalles plus longs. Cette mesure servirait à déterminer une durée d'impulsions qui serait alors mémorisée et qui serait utilisée pour les impulsions suivantes.Other circuits could be provided, in particular a circuit in which the measurement of the voltage induced in the coil not traversed by the current would not be carried out during each pulse, but at longer intervals. This measurement would be used to determine a pulse duration which would then be memorized and which would be used for the following pulses.

Le circuit 141 pourrait être aussi réalisé sous la forme d'un circuit détectant uniquement la rotation ou la non-rotation du rotor. Les impulsions de courant auraient normalement toutes la même durée. Lorsque le circuit 141 détecterait que le rotor n'a pas tourné en réponse à une de ces impulsions normales, une impulsion de rattrapage, de plus grande durée que la durée normale, serait alors envoyée au moteur par son circuit de commande.The circuit 141 could also be produced in the form of a circuit detecting only the rotation or the non-rotation of the rotor. The current pulses would normally all have the same duration. When the circuit 141 detects that the rotor has not rotated in response to one of these normal pulses, a catch-up pulse, of greater duration than the normal duration, would then be sent to the motor by its control circuit.

Il est évident que le même genre de circuit pourrait être adapté sans difficulté au cas des figures 8 et 11.It is obvious that the same kind of circuit could be adapted without difficulty to the case of FIGS. 8 and 11.

Claims (13)

1. Method for controlling a bidirectional stepping motor including a stator comprising a core (1, 2) which presents a first, a second and a third pole face defining therebetween a substantially cylindrical space (4) and which includes a first and a second magnetic circuit respectively coupling the first pole face to the second pole face and the first pole face to the third pole face, the stator moreover comprising a first (9) and a second (10) winding coupled respectively to the first and the second magnetic circuit and the motor further including a rotor comprising a permanent magnet (8) rotatably mounted in said space (4), characterized in that it consists in apply alternately in a first and in a second sense, in order to effect rotation of the rotor by one step in a first sense for each of the first pulses and in applying second current pulses solely to the second winding (10) alternately in the first sense and in the second sense, to effect rotation, of the rotor by one step in the second sense for each of the second pulses, no current being applied to the second winding (10) over the duration of the first pulses and no current being applied to the first winding (9) over the duration of the second pulses.
2. Method according to claim 1, characterized in that it consists in applying to the second winding (10), following each first pulse, a third current pulse having the same sense as the immediately preceding first pulse and in applying to the first winding (9), following each second pulse, a fourth current pulse having the same sense as the immediately preceding second pulse.
3. Method according to claim 1, characterized in that it consists in applying to the second winding (10) following each first pulse, a third current pulse the sense of which is inverted from that of the immediately preceding first pulse,and in applying to the first winding (9), following each second pulse, a fourth current pulse the sense of which is inverted from that of the immediately preceding second pulse.
4. Method according to claim 3, characterized in that it consists in applying to the first winding (9) after the beginning of each third pulse, a fifth pulse the sense of which is inverted from that of the immediately preceding first pulse, and in applying to the second winding (10), after the beginning of each fourth pulse, a sixth pulse. the sense of which is inverted from that of the immediately preceding second pulse.
5. Method according to claim 4, characterized in that it consists in measuring, at least during a pulse applied to one of the windings (9, 10), the voltage induced in the other winding (9, 10) and in adjusting the duration of said pulses in response to the value of said induced voltage.
6. Method according to any of claims 1, 2 or 3, characterized in that in consists in measuring, at least during a pulse applied to one of the windings (9, 10), the voltage induced in the other winding (9, 10), and in adjusting the duration of said pulses in response to the value of said induced voltage.
7. Control arrangement for a bidirectional stepping motor including a stator comprising a core which presents a first, a second and a third pole face defining therebetween a substantially cylindrical space (4) and which includes a first and a second magnetic circuit respectively coupling the first pole face to the second pole face and the first pole face to the third pole face, the stator moreover comprising a first (9) and a second (10) winding coupled respectively to the first and the second magnetic circuit, and the motor further including a rotor comprising a permanent magnet (8) rotatably mounted in said space (4), the control arrangement including means (38) for supplying a signal having a first and a second state to determine the rotation sense of the rotor (AR), and means (35, 35) for supplying a control signal each time the rotor is to turn through a step, characterized in that it includes furthermore control means (27 - 34; 41 - 60; 71 - 92; 101 - -129) for supplying, in response to the control signal, a first current pulse solely to the first winding (9), alternately in a first sense and in the second sense for effecting rotation of the rotor by one step in a first sense for each of said first pulses when the signal to determine the rotation sense (AR) is in its first state, and for supplying a second pulse solely to the second winding (10) alternately in the first and in the second sense, for effecting rotation of the rotor by one step in the second sense for each of the second pulses when the signal to determine the rotation sense is in its second state.
8. Control arrangement according to claim 7, characterized in that the control means (21 - 34; 41 - 60; 71 -92; 101 - 729) include means (42,46, 47, 53, 54) for supplying, in response to the control signal, a third current pulse to the second winding (10) following each first pulse and a fourth current pulse to the first winding (9) following each second pulse, the third and fourth current pulses having the same sense as the respective first and second immediately preceding pulses.
9. Control arrangement according to claim 7, characterized in that the control means (21 - 34; 41 - 60; 71 - 92; 101 - -129) include means (42, 72, 74, 76, 78, 80, 82, 83 - 86) for supplying, in response to the control signal, a third current pulse to the second winding (10) following each first pulse and a fourth current pulse to the first winding (9) following each second pulse, the third and fourth current pulses having the sense inverted from the sense of the respective first and second immediately preceding pulses.
10. Control arrangement according to claim 9, characterized in that the control means (21 - 34; 41 -60; 71 - 92; 101 - 129) include means (104, 111, 112, 115, 116, 118, 119, 120 - 123) for supplying in response to a control signal, a fifth current pulse to the first winding (9) after the beginning of each third pulse and a sixth currenfpulse to the second winding (10) after the beginning of each fourth pulse, the fifth and the sixth current pulses having the sense inverted from the sense of the respective first and second immediately preceding pulses.
11. Control arrangement according to claim 10, characterized in that it further includes means (131 - 139) for alternately interrupting the third and the fifth pulse over the duration of the fifth pulse and for alternately interrupting the fourth and the sixth pulse over the duration of the sixth pulse.
12. Control arrangement according to claim 7 characterized in that it further includes means (141) for measuring, at least during a pulse supplied to a winding (9, 10), the voltage induced in the other winding (9, 10), means (142 - 147) for selectively coupling the measuring means (141) to said other winding (9, 10) in response to the signal (AR) to determine the rotation sense and to the control signal, and means (148) for adjusting the duration of the pulses in response to the measured induced voltage.
13. Control arrangement according to either of claims 8 or 9, characterized in that it further includes means (141) for measuring, at least during a pulse supplied to a winding (9, 10), the voltage induced in the other winding (9, 10), means (142 - 147) for selectively coupling the measuring means (141) to said other winding (9, 10) in response to the signal (AR) to determine the rotation sense and to the control signal, and means (148) for adjusting the duration of the pulses in response to the measured induced voltage.
EP83810044A 1982-02-15 1983-02-03 Method and means for controlling a bidirectional step-motor Expired EP0087387B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH918/82 1982-02-15
CH91882A CH647128GA3 (en) 1982-02-15 1982-02-15

Publications (2)

Publication Number Publication Date
EP0087387A1 EP0087387A1 (en) 1983-08-31
EP0087387B1 true EP0087387B1 (en) 1986-09-03

Family

ID=4198198

Family Applications (1)

Application Number Title Priority Date Filing Date
EP83810044A Expired EP0087387B1 (en) 1982-02-15 1983-02-03 Method and means for controlling a bidirectional step-motor

Country Status (6)

Country Link
US (1) US4514676A (en)
EP (1) EP0087387B1 (en)
JP (1) JPS58151899A (en)
CH (1) CH647128GA3 (en)
DE (1) DE3365760D1 (en)
HK (1) HK49488A (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH650125GA3 (en) * 1983-06-29 1985-07-15
CH654974GA3 (en) * 1984-05-04 1986-03-27
FR2585901A3 (en) * 1985-02-28 1987-02-06 Ebauchesfabrik Eta Ag METHOD AND DEVICE FOR CONTROLLING A TWO-COIL MOTOR
JPS6222583U (en) * 1985-07-24 1987-02-10
CH661835GA3 (en) * 1985-09-11 1987-08-31
CH673751B5 (en) * 1988-05-11 1990-10-15 Asulab Sa
EP0758500B1 (en) * 1995-03-01 2004-11-17 Koninklijke Philips Electronics N.V. Circuit for controlling an electric motor depending on the rotor position
US6731093B1 (en) * 2002-02-28 2004-05-04 Timex Group B.V. 2-step bi-directional stepping motor
JP4619081B2 (en) * 2004-09-29 2011-01-26 シチズンホールディングス株式会社 Reversible stepping motor
JP2015061467A (en) * 2013-09-20 2015-03-30 カシオ計算機株式会社 Stepping motor and clock

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3005941A (en) * 1960-04-15 1961-10-24 Bendix Corp Stepper motor control
JPS507017A (en) * 1973-05-23 1975-01-24
GB1451359A (en) * 1973-11-30 1976-09-29 Citizen Watch Co Ltd Pulse motor driven circuit
GB2054978B (en) * 1979-07-06 1984-06-13 Ebauches Sa Electromagnetic motor rotatable in either direction
CH625646A5 (en) * 1979-07-06 1981-09-30 Ebauches Sa Electromagnetic motor with two directions of rotation
WO1981001205A1 (en) * 1979-10-18 1981-04-30 Portescap Step by step micromotor for a clockwork
EP0030611B1 (en) * 1979-12-12 1985-07-03 Braun Aktiengesellschaft Method and arrangement for the control and regulation of a motor having a permanent-magnet rotor
GB2079493B (en) * 1980-01-30 1983-09-07 Portescap Electric motor control device

Also Published As

Publication number Publication date
JPS58151899A (en) 1983-09-09
US4514676A (en) 1985-04-30
DE3365760D1 (en) 1986-10-09
EP0087387A1 (en) 1983-08-31
HK49488A (en) 1988-07-15
CH647128GA3 (en) 1985-01-15

Similar Documents

Publication Publication Date Title
EP0341582B1 (en) Control method for a bidirectional step motor, and bidirectional step motor controlled by this method
EP0171635B1 (en) Method and apparatus to recognise the position of the rotor of a stepping motor
EP0103542A1 (en) Stepping motor assembly
EP0087387B1 (en) Method and means for controlling a bidirectional step-motor
EP0143227B1 (en) Electro-magnetic stepping motor with two coupled rotors
EP0161582B1 (en) Stepping motor assembly
EP0092521B1 (en) Motor and method of controlling it
EP0085648B1 (en) Stepping motor with two directions of rotation, in particular for electronic time pieces, and motor unit comprising the same
EP0131760B1 (en) Control apparatus for two bidirectional step motors
EP0077293B1 (en) Process and device for controlling a stepping motor in a clock mechanism
EP0443294B1 (en) Method for feeding a monophase stepping motor
EP1890204B1 (en) Electronic timepiece comprising a resonator
EP0132633B1 (en) Electromagnetic stepping motor
EP0060806A1 (en) Method of reducing the power consumption of a stepping motor, and device for carrying out this method
EP0092522B1 (en) Reversible step motor and method of controlling the same
FR2752496A1 (en) ELECTROMECHANICAL TRANSDUCER HAVING TWO PERMANENT MAGNET ROTORS
FR2466131A1 (en) BIPOLAR SINGLE-PHASE STEP MOTOR WITH TWO DIRECTION OF ROTATION
EP0782242B1 (en) Multi-rotor electromechanical transducer and control method thereof
EP0189732A1 (en) Driving device for an electric motor with permanent magnetized rotor
EP0108711B1 (en) Method and device for controlling a step motor
EP0217164B1 (en) Electronic timepiece with an analogous display having a seconds indicating organ
EP0250862B1 (en) Method and device for controlling a stepper motor
EP0155661B1 (en) Control circuit for a stepping motor
EP0062273B1 (en) Method of controlling a stepping motor
EP3779611B1 (en) Electromechanical watch

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): DE FR GB

17P Request for examination filed

Effective date: 19831027

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

REF Corresponds to:

Ref document number: 3365760

Country of ref document: DE

Date of ref document: 19861009

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20000127

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20000128

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20000223

Year of fee payment: 18

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010203

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20010203

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20011031

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20011201