EP0079526B1 - Radiant heating system with direct-fired combustion chamber - Google Patents

Radiant heating system with direct-fired combustion chamber Download PDF

Info

Publication number
EP0079526B1
EP0079526B1 EP82110132A EP82110132A EP0079526B1 EP 0079526 B1 EP0079526 B1 EP 0079526B1 EP 82110132 A EP82110132 A EP 82110132A EP 82110132 A EP82110132 A EP 82110132A EP 0079526 B1 EP0079526 B1 EP 0079526B1
Authority
EP
European Patent Office
Prior art keywords
combustion chamber
heating system
radiant heating
pressure
circulating fan
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP82110132A
Other languages
German (de)
French (fr)
Other versions
EP0079526A1 (en
Inventor
Alfred Geibel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
G&H Montage GmbH
Original Assignee
G&H Montage GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by G&H Montage GmbH filed Critical G&H Montage GmbH
Priority to AT82110132T priority Critical patent/ATE11336T1/en
Publication of EP0079526A1 publication Critical patent/EP0079526A1/en
Application granted granted Critical
Publication of EP0079526B1 publication Critical patent/EP0079526B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D5/00Hot-air central heating systems; Exhaust gas central heating systems
    • F24D5/06Hot-air central heating systems; Exhaust gas central heating systems operating without discharge of hot air into the space or area to be heated
    • F24D5/08Hot-air central heating systems; Exhaust gas central heating systems operating without discharge of hot air into the space or area to be heated with hot air led through radiators

Definitions

  • the invention relates to a radiant heating system with at least one radiant tube arrangement which is guided closed from an outflow side to a backflow side of a directly fired combustion chamber according to the preamble of claim 1.
  • Radiant heating systems of this type with direct firing are explained in practical use for natural gas and liquid gas operation and, for example, in DE-C No. 2743819.
  • the air to be circulated in the radiation pipe arrangement is introduced directly into the combustion chamber and comes into contact with the flame there. Together with the flue gases of the flame, which are only present in a few percent of the air circulated at a high speed of over 10 m / s, the air is fed from the discharge side of the combustion chamber to the suction port of a circulation fan, which passes the air through as a heating medium expediently sends the radiation arrangement in pairs and in countercurrent radiation tubes.
  • the heating medium heats the surface of the radiation pipes, which are installed on the ceiling of a factory, for example, so that they emit radiant heat.
  • the outflow end of the radiation tube arrangement is returned to the combustion chamber, so that the air can re-enter the combustion chamber from there.
  • an overpressure pipe arranged behind the circulation fan By means of an overpressure pipe arranged behind the circulation fan, a small amount of the heating medium is removed from the circuit and into the environment in order to keep the entire circulation volume of the heating medium constant despite the continuous low supply due to the exhaust gases entrained in the combustion chamber.
  • the radiant heating system While with such a radiant heating system a number of essential advantages such as uniform heat emission, lack of drafts, pleasant warmth in the lounge area, no heat build-up under the ceiling, low heating costs and short heating-up times in the context of heating larger halls or the like can be achieved, there is direct firing a problem in the contact of the flame with the circulated air in that the circulated air carries pollutants in the exhaust gases.
  • the radiation tubes are generally designed as spiral-seam tubes and are therefore exposed to possible leaks as well as, of course, in the event of local mechanical damage. Through this, the heating medium with the pollutants from the exhaust gas could leave the closed circuit and penetrate into the hall to be heated or the like, since the radiation tube arrangement receives the heating medium under excess pressure.
  • the invention has for its object to provide a radiant heating system according to the preamble of claim 1, in which any escape of exhaust gas pollutants from the radiation tube arrangement is excluded with certainty.
  • the circulation fan is arranged in the vicinity of the return flow side of the combustion chamber, the radiation tubes lie on the suction side thereof, so that underpressure now prevails in them instead of excess pressure. In the event of any leakage in the radiation tubes, ambient air is thus sucked into the radiation tubes to a limited extent, but the heating medium and thus also pollutants from the exhaust gas can be excluded with certainty.
  • a further advantage of such an arrangement of the circulation fan is that it conveys heating medium at a low temperature at the somewhat cold end of the radiant tube arrangement and, owing to the higher density of the cooler heating medium, has better efficiency and higher delivery capacity for a given drive power.
  • the arrangement according to the invention of the circulation fan on the backflow side of the combustion chamber gives rise to the problem that the combustion chamber itself and through the combustion chamber, at least a part of the radiation tube arrangement with a smaller distance from the pressure side of the circulation fan can nevertheless come under excess pressure.
  • This is disadvantageous because an internal overpressure would then have to be expected at least for part of the length of the radiation tube arrangement and, in the case of the usual atmospheric burner, an overpressure in the combustion chamber would prevent the desired flame formation.
  • the invention further provides that a swirl zone for converting between the pressure side of the circulation fan and the return flow side of the combustion chamber dynamic pressure of the heating medium is provided in static pressure, and that the volume relief opening is provided in the region of this swirling zone.
  • Fig. 1 is a circuit diagram of a radiation heating system according to the invention.
  • Fig. 2 shows a section through the swirl zone of the radiant heating system according to FIG. 1 in an enlarged view to illustrate the chosen design.
  • a radiant heating system essentially consists of a shortened radiation tube arrangement 1, in the radiation tubes of which air is circulated as a heating medium by means of a circulation fan 2 and heated in a combustion chamber 3.
  • the heat is given off by heating the walls of the radiation tubes, in practice the tubes are guided in pairs next to one another and flowed through in countercurrent in order to obtain the most uniform heat output over the entire tube length, averaged over both tubes.
  • the combustion chamber 3 is fired directly, so that the air brushes the flame directly in the interior of the combustion chamber 3, approximately according to the dashed line 4, and is guided through a baffle 5 from the return side designated 6 to the outlet side labeled 7 of the combustion chamber 3 .
  • the combustion chamber 3 is operated atmospherically, but is equipped with a feed blower 8 for the reasons explained below.
  • the circulation fan 2 is arranged, even more strongly than is shown in the drawing as a result of the shortened representation of the radiation tube arrangement 1, in the immediate vicinity of the return side 6 of the combustion chamber 3, so that the air is not forced through the radiation tube arrangement 1, but rather is sucked through.
  • This ensures that, in the event of any leak, at most ambient air can flow into the radiation tubes, but not heating medium, which contains exhaust gases from the combustion chamber 3, can escape into the environment.
  • the circulation fan 2 is thus located at the cooler end of the flow path of the heated air through the radiation tube arrangement 1 and can thus promote already cooled air with more favorable efficiency.
  • the pressure side of the circulation fan 2 is then at a very short distance from the return flow side 6 of the combustion chamber 3, so that without additional measures there is a risk that the overpressure on the pressure side of the circulation fan 2 will enter the combustion chamber 3 and through it into the initial area of the Radiation tube arrangement 1 is continued, so that an initial region of the radiation tubes would still receive excess pressure and atmospheric combustion could not be easily maintained.
  • a swirl zone designated overall with 10 is inserted in the connection stub 9, which in practice is short, between the pressure side of the circulation fan 2 and the backflow side 6 of the combustion chamber 3, in which dynamic pressure of the air is converted into static pressure.
  • a volume relief opening 11 of large cross section is provided, from which an overpressure pipe 12 is led to the outside air at 13.
  • Such a quantity of air is discharged through the pressure pipe 12 as corresponds to the additional gas quantity generated in the combustion chamber 3 by the exhaust gases of the flame denoted by 14, which must be introduced into the closed circuit and consequently also removed from it again.
  • the structural design of the swirling zone 10 can be seen in more detail in FIG. 2. Thereafter, in the example, the swirling zone 10 is designed as a chamber 15, into which ends 9a and 9b of the connecting piece 9 protrude and end at a mutual distance a, which corresponds approximately to the diameter d of the connecting piece 9.
  • the distance a or the diameter d can be, for example, 300 mm.
  • the chamber can have a circular cross section and a diameter D corresponding to 2 xd, in the example case it can be 600 mm.
  • the quantity relief opening 11 is arranged approximately in a round shape with a diameter d 'of 100 mm net and leads into the overpressure tube 12, the large cross section of the quantity relief opening 10 allowing largely unimpeded and low-speed extraction of the air in the outer annular space of the chamber 15.
  • the outer annular space of the chamber 15 thus serves, as it were, as a pressure supply space for the pressure pipe 12, neglecting the frictional resistance in the pressure pipe 12, this storage space of the chamber 15 can be regarded as open to the environment via the quantity relief opening 11.
  • the feed blower 8 ensures that the feed pressure is always kept at a maximum of about 15 mm WS above the combustion chamber pressure by means of the feed blower 8 in order to support a clean flame formation.
  • the circulation fan 2 starts after the main switch and the control switch (not shown) are switched on.
  • the voltage is switched through to a gas pressure monitor 16.
  • the gas pressure monitor 16 only switches the voltage on to a vacuum monitor 17 and a combustion air pressure monitor 18 when the gas pressure is above the set minimum pressure.
  • the vacuum monitor 17 for example set to -1 mbar, is connected a maximum of 1 m behind the discharge side 7 of the combustion chamber 3 and monitors the vacuum in the entire radiation pipe arrangement 1. If the vacuum at the vacuum monitor 17 corresponds to the set value, voltage is released to the combustion air pressure monitor 18 and from there to a terminal of a flame monitor 19 designated by 7. The program sequence of the flame monitor 19 then takes place.
  • the ignition stage is released if combustion air pressure is present. Monitoring takes place via the combustion air pressure monitor 18. After ignition and feedback to the flame monitor 7, the main load is switched on via a slowly opening magnetic valve of the flame monitor 19. If there is no burner ignition, the system is switched off.
  • the flow temperature in the radiation pipe arrangement 1 is monitored and regulated via a control thermostat 20. After reaching the set flow temperature, the large step is switched back to the small step (approx. 35%) via the control thermostat 20.
  • the system is switched off using a room thermostat, not shown.
  • the feed blower 8 feeds combustion air in an amount of approximately 1.1 m 3 / h per 1000 kcal, the control of the air pressure switch 18 taking place.
  • a flow temperature sensor and at 23 a return temperature sensor of the radiation tube arrangement 1 are illustrated, while 24 denotes a measuring device for detecting the air quantity and the air pressure in the radiation tube arrangement 1.
  • the diffuser sheets 25 are schematically shown in FIG. 1, which could be used in the area of the distance a between the nozzle ends 9a, 9b in order to bring about a greater swirling out of the edge region of the flow coming from the nozzle end 9a. In practice, however, it has been shown that such diffuser sheets 25 are not required for the described dimensioning of the diameter d and the distance a.
  • a fine adjustment of the pressure or the amount of exhaust gas in the pressure pipe 12 can take place via a regulating flap 26 in the connecting piece 9 downstream of the swirling zone 10 and / or via a regulating flap 27 in the pressure pipe 12, in which a measuring device 28 is also arranged, which measures the fixed set amount of exhaust gas for a given combustion output and the exhaust gas temperature; which may be between 110 and 160 ° C. Since regulating flaps 26 and 27 are fundamentally flow obstacles that generate flow losses, it is desirable that they are regularly open during operation and that they are only used for fine adjustment if necessary. In principle, even without regulating flaps 26 and 27, by appropriate dimensioning in the area of the swirl zone 10, the required amount of exhaust gas is blown off through the pressure pipe 12 and a pressure drop to approximately atmospheric pressure takes place in the connecting piece 9 behind the swirl zone 10.
  • the pressure pipe 12 can contain a heat exchanger in a manner not shown in which the residual energy of the hot exhaust gas is partially made usable again. Ver on the flow conditions in the pressure pipe 12 equally large cross-section, this has no significant influence.
  • the entire radiation tube arrangement 1 lies in a negative pressure area and therefore it is impossible for pollutants to escape into the environment when leaks occur, while on the other hand no increased drive power of the circulation fan 2 is required and the latter can even be made smaller, since it conveys cooler air in the vicinity of the return flow side 6 of the combustion chamber 3 than in the area of the discharge side 7.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion Of Fluid Fuel (AREA)
  • Gas Burners (AREA)

Abstract

1. A radiant heating system comprising at least one closed radiant tube system (1), which extends from the outlet side (7) to the return side (6) of a directly fired combustion chamber (3) and in which a gaseous heating fluid, such as particularly air, is adapted to be circulated by means of a circulating fan (2), also comprising a discharge opening (11), which is open to the outside air and serves to discharge surplus quantities of the heating fluid from the closed cycle in dependence on the supply of exhaust gas in the combustion chamber, characterized in that the circulating fan (2) is arranged near the return side (6) of the combustion chamber, an agitating zone (10) is provided between the pressure side of the circulating fan (2) and the return side (6) of the combustion chamber (3) and serves to convert dynamic pressure of the heating fluid into static pressure, and the discharge opening (11) is provided adjacent to the agitating zone (10).

Description

Die Erfindung betrifft eine Strahlungsheizungsanlage mit wenigstens einer geschlossen von einer Abströmseite zu einer Rückströmseite einer direkt befeuerten Brennkammer geführten Strahlungsrohranordnung nach dem Oberbegriff des Anspruchs 1.The invention relates to a radiant heating system with at least one radiant tube arrangement which is guided closed from an outflow side to a backflow side of a directly fired combustion chamber according to the preamble of claim 1.

Derartige Strahlungsheizungsanlagen mit direkter Befeuerung sind für Erd- und Flüssiggasbetrieb im praktischen Einsatz und beispielsweise in der DE-C Nr. 2743819 erläutert. Die in der Strahlungsrohranordnung umzuwälzende Luft wird dabei direkt in die Brennkammer eingeführt und gelangt dort in Berührung mit der Flamme. Zusammen mit den Abgasen der Flamme, die nur in einer Menge von wenigen Prozenten an der mit hoher Geschwindigkeit von über 10 m/s umgewälzten Luft vorliegen, wird die Luft von der Abgabeseite der Brennkammer dem Saugstutzen eines Umwälzventilators zugeführt, der die Luft als Heizmedium durch zweckmässig paarweise und im Gegenstrom durchströmte Strahlungsrohre der Strahlungsanordnung schickt. Dabei erwärmt das Heizmedium die Oberfläche der Strahlungsrohre, die etwa an der Decke einer Fabrikhalle verlegt sind, so dass diese Strahlungswärme abgeben. Die Strahlungsrohranordnung ist mit ihrem abströmseitigen Ende wieder zur Brennkammer zurückgeführt, so dass von dort die Luft erneut in die Brennkammer eintreten kann. Mittels eines hinter dem Umwälzventilator angeordneten Überdruckrohres wird eine geringe Menge des Heizmediums aus dem Kreislauf heraus und in die Umgebung abgeführt, um trotz der dauernden geringen Mengenzufuhr infolge der in der Brennkammer mitgenommenen Abgase die gesamte Umwälzmenge des Heizmediums konstant zu halten.Radiant heating systems of this type with direct firing are explained in practical use for natural gas and liquid gas operation and, for example, in DE-C No. 2743819. The air to be circulated in the radiation pipe arrangement is introduced directly into the combustion chamber and comes into contact with the flame there. Together with the flue gases of the flame, which are only present in a few percent of the air circulated at a high speed of over 10 m / s, the air is fed from the discharge side of the combustion chamber to the suction port of a circulation fan, which passes the air through as a heating medium expediently sends the radiation arrangement in pairs and in countercurrent radiation tubes. The heating medium heats the surface of the radiation pipes, which are installed on the ceiling of a factory, for example, so that they emit radiant heat. The outflow end of the radiation tube arrangement is returned to the combustion chamber, so that the air can re-enter the combustion chamber from there. By means of an overpressure pipe arranged behind the circulation fan, a small amount of the heating medium is removed from the circuit and into the environment in order to keep the entire circulation volume of the heating medium constant despite the continuous low supply due to the exhaust gases entrained in the combustion chamber.

Während mit einer solchen Strahlungsheizungsanlage eine Reihe wesentlicher Vorteile wie gleichmässige Wärmeabgabe, fehlende Zugerscheinungen, angenehme Wärmewirkung in der Aufenthaltszone, kein Wärmestau unter der Dekke, niedrige Heizkosten und kurze Anheizzeit im Rahmen der Beheizung grösserer Hallen oder dergleichen erzielt werden, liegt im Falle einer direkten Befeuerung durch die Berührung der Flamme mit der umgewälzten Luft ein Problem darin, dass die umgewälzte Luft Schadstoffe der Abgase mitführt. Die Strahlungsrohre sind in der Regel als Wickelfalzrohre ausgebildet und von daher sowie natürlich auch im Falle örtlicher mechanischer Beschädigungen möglichen Undichtheiten ausgesetzt. Durch diese hindurch könnte Heizmedium mit den Schadstoffen aus dem Abgas den geschlossenen Kreislauf verlassen und in die zu heizende Halle oder dergleichen eindringen, da die Strahlungsrohranordnung das Heizmedium unter Überdruck erhält.While with such a radiant heating system a number of essential advantages such as uniform heat emission, lack of drafts, pleasant warmth in the lounge area, no heat build-up under the ceiling, low heating costs and short heating-up times in the context of heating larger halls or the like can be achieved, there is direct firing a problem in the contact of the flame with the circulated air in that the circulated air carries pollutants in the exhaust gases. The radiation tubes are generally designed as spiral-seam tubes and are therefore exposed to possible leaks as well as, of course, in the event of local mechanical damage. Through this, the heating medium with the pollutants from the exhaust gas could leave the closed circuit and penetrate into the hall to be heated or the like, since the radiation tube arrangement receives the heating medium under excess pressure.

Demgegenüber liegt der Erfindung die Aufgabe zugrunde, eine Strahlungsheizungsanlage nach dem Oberbegriff des Anspruchs 1 zu schaffen, bei der jegliches Entweichen von Abgasschadstoffen aus der Strahlungsrohranordnung mit Gewissheit ausgeschlossen ist.In contrast, the invention has for its object to provide a radiant heating system according to the preamble of claim 1, in which any escape of exhaust gas pollutants from the radiation tube arrangement is excluded with certainty.

Die Lösung dieser Aufgabe erfolgt durch die kennzeichnenden Merkmale des Anspruchs 1.This object is achieved by the characterizing features of claim 1.

Dadurch, dass der Umwälzventilator in der Nachbarschaft der Rückströmseite der Brennkammer angeordnet ist, liegen die Strahlungsrohre an dessen Saugseite, so dass in ihnen anstelle von Überdruck nun Unterdruck herrscht. Im Falle irgendeines Lecks der Strahlungsrohre wird somit allenfalls Umgebungsluft in geringem Umfange in die Strahlungsrohre eingesaugt, ein Austritt des Heizmediums und damit auch von Schadstoffen aus dem Abgas jedoch mit Gewissheit ausgeschlossen. Ein weiterer Vorteil einer solchen Anordnung des Umwälzventilators liegt darin, dass er am gewissermassen kalten Ende der Strahlungsrohranordnung Heizmedium mit geringer Temperaturfördert und infolgeder höheren Dichte des kühleren Heizmediums besseren Wirkungsgrad und höhere Förderleistung bei gegebener Antriebsleistung besitzt.Because the circulation fan is arranged in the vicinity of the return flow side of the combustion chamber, the radiation tubes lie on the suction side thereof, so that underpressure now prevails in them instead of excess pressure. In the event of any leakage in the radiation tubes, ambient air is thus sucked into the radiation tubes to a limited extent, but the heating medium and thus also pollutants from the exhaust gas can be excluded with certainty. A further advantage of such an arrangement of the circulation fan is that it conveys heating medium at a low temperature at the somewhat cold end of the radiant tube arrangement and, owing to the higher density of the cooler heating medium, has better efficiency and higher delivery capacity for a given drive power.

Jedoch ergibt die erfindungsgemässe Anordnung des Umwälzventilators an der Rückströmseite der Brennkammer das Problem, dass die Brennkammer selbst und durch die Brennkammer hindurch zumindest ein Teil der Strahlungsrohranordnung mit geringerem Abstand von der Druckseite des Umwälzventilators dennoch unter Überdruck geraten können. Dies ist deshalb nachteilig, weil dann zumindest für einen Teil der Länge der Strahlungsrohranordnung dann mit innerem Überdruck zu rechnen wäre und im Falle des üblichen atmosphärischen Brenners ein Überdruck in der Brennkammer die gewünschte Flammenausbildung verhindern würde. Zwar könnte daran gedacht werden, den Überdruck vor der Brennkammer einfach abzudrosseln, jedoch würde sich dadurch ein sehr erheblicher Energieverlust mit der Notwendigkeit der Installation einer erheblich grösseren Antriebsleitung des Umwälzventilators ergeben, was nicht nur vom Energieverbrauch her generell vermieden werden soll, sondern beim üblichen elektrischen Antrieb des Umwälzventilators im Einzelfall sogar Stromleistungen erfordern würde, die üblicherweise gar nicht installiert sind und äusserst kostenaufwendige Stromleitungsinstallationen erforderlich machen würden. Um den Umwälzventilator somit in der Nachbarschaft der Rückströmseite der Brennkammer installieren zu können und dabei dennoch einen wesentlichen Druckaufbau in der Brennkammer ohne übermässige Verluste zu verhindern, ist erfindungsgemäss weiter vorgesehen, dass zwischen der Druckseite des Umwälzventilators und der Rückströmseite der Brennkammer eine Verwirbelungszone zur Umwandlung von dynamischem Druck des Heizmediums in statischen Druck vorgesehen ist, und dass im Bereich dieser Verwirbelungszone die Mengenentlastungsöffnung vorgesehen ist. Durch die Umwandlung von dynamischem Druck des Heizmediums in statischen Druck in der Verwirbelungszone wird ein Vorlagedruck für die Mengenentlastungsöffnung erzeugt. Durch diese hindurch entweicht dann die Überschussmenge des Heizmediums im Kreis infolge der ständigen Abgaszufuhr in der Brennkammer. Zugleich erfolgt hierdurch ein Druckabfall des Gesamtdrucks hinter der Verwirbelungszone mit der Mengenentlastungsöffnung derart, dass der vom Umwälzventilator erzeugte Überdruck am rückströmseitigen Eintritt des Heizmediums in die Brennkammer praktisch abgebaut ist. Im Bereich der Flamme und an der Abgabeseite der Brennkammer herrscht dann bereits Unterdruck, der bis zur Saugseite des Umwälzventilators am gegenüberliegenden Ende der Strahlungsrohranordnung im Sinne einer Verstärkung des Unterdrucks weiter ansteigt. Somit ist bei nur geringen Energieverlusten sichergestellt, dass in der Brennkammer und insbesondere auch über die gesamte Länge der Strahlungsrohre ein Aufbau von Überdruck vermieden wird, und statt dessen die Strahlungsrohre über ihre gesamte Länge mit gegenüber der Umgebung mehr oder weniger kräftigem Unterdruck betrieben werden.However, the arrangement according to the invention of the circulation fan on the backflow side of the combustion chamber gives rise to the problem that the combustion chamber itself and through the combustion chamber, at least a part of the radiation tube arrangement with a smaller distance from the pressure side of the circulation fan can nevertheless come under excess pressure. This is disadvantageous because an internal overpressure would then have to be expected at least for part of the length of the radiation tube arrangement and, in the case of the usual atmospheric burner, an overpressure in the combustion chamber would prevent the desired flame formation. Although it could be thought of simply throttling off the excess pressure in front of the combustion chamber, this would result in a very considerable loss of energy with the need to install a considerably larger drive line for the circulation fan, which should not only be avoided in general in terms of energy consumption, but also in the case of conventional electrical equipment Driving the circulation fan in individual cases would even require power outputs that are usually not installed at all and would require extremely costly power line installations. In order to be able to install the circulation fan in the vicinity of the return flow side of the combustion chamber and still prevent substantial pressure build-up in the combustion chamber without excessive losses, the invention further provides that a swirl zone for converting between the pressure side of the circulation fan and the return flow side of the combustion chamber dynamic pressure of the heating medium is provided in static pressure, and that the volume relief opening is provided in the region of this swirling zone. By converting the dynamic pressure of the heating medium into static pressure in the swirl zone, a template pressure is generated for the quantity relief opening. The excess amount of the heating medium in the circuit then escapes through this as a result of the constant supply of exhaust gas in the combustion chamber mer. At the same time, this results in a pressure drop in the total pressure behind the swirling zone with the quantity relief opening in such a way that the excess pressure generated by the circulation fan is practically reduced at the return-side inlet of the heating medium into the combustion chamber. In the area of the flame and on the discharge side of the combustion chamber there is already negative pressure, which continues to rise up to the suction side of the circulation fan at the opposite end of the radiation tube arrangement in order to reinforce the negative pressure. Thus, with only slight energy losses, it is ensured that a build-up of excess pressure is avoided in the combustion chamber and in particular also over the entire length of the radiation tubes, and instead the radiation tubes are operated over their entire length with a vacuum that is more or less powerful than the environment.

Die Vorteile der Erfindung ergeben sich aus der nachfolgenden Beschreibung einer Ausführungsform anhand der Zeichnung.The advantages of the invention result from the following description of an embodiment with reference to the drawing.

Es zeigenShow it

Fig. 1 eine schaltbildliche Darstellung einer erfindungsgemässen Strahlungsheizungsanlage, undFig. 1 is a circuit diagram of a radiation heating system according to the invention, and

Fig. 2 einen Schnitt durch die Verwirbelungszone der Strahlungsheizungsanlage gemäss Fig. 1 in vergrösserter Darstellung zur Veranschaulichung des gewählten konstruktiven Aufbaus.Fig. 2 shows a section through the swirl zone of the radiant heating system according to FIG. 1 in an enlarged view to illustrate the chosen design.

Wie in Fig. 1 schaubildlich veranschaulicht ist, besteht eine Strahlungsheizungsanlage im wesentlichen aus einer verkürzt dargestellten Strahlungsrohranordnung 1, in deren Strahlungsrohre Luft als Heizmedium mittels eines Umwälzventilators 2 umgewälzt und in einer Brennkammer 3 aufgeheizt wird. Die Wärmeabgabe erfolgt durch die Erwärmung der Wände der Strahlungsrohre, wobei in der Praxis die Rohre paarweise nebeneinander geführt und im Gegenstrom durchströmt sind, um über beide Rohre gemittelt eine möglichst gleichmässige Wärmeabgabe über die gesamte Rohrlänge zu erhalten. Die Brennkammer 3 ist direkt befeuert, so dass die Luft etwa gemäss der gestrichelt angedeuteten Linie 4 im Inneren der Brennkammer 3 unmittelbar die Flamme bestreicht und dabei durch eine Schikane 5 von der mit 6 bezeichneten Rückströmseite zu der mit 7 bezeichneten Abströmseite der Brennkammer 3 geführt ist. Die Brennkammer 3 ist atmosphärisch betrieben, jedoch aus den weiter unten erläuterten Gründen mit einem Füttergebläse 8 ausgerüstet.As illustrated in FIG. 1, a radiant heating system essentially consists of a shortened radiation tube arrangement 1, in the radiation tubes of which air is circulated as a heating medium by means of a circulation fan 2 and heated in a combustion chamber 3. The heat is given off by heating the walls of the radiation tubes, in practice the tubes are guided in pairs next to one another and flowed through in countercurrent in order to obtain the most uniform heat output over the entire tube length, averaged over both tubes. The combustion chamber 3 is fired directly, so that the air brushes the flame directly in the interior of the combustion chamber 3, approximately according to the dashed line 4, and is guided through a baffle 5 from the return side designated 6 to the outlet side labeled 7 of the combustion chamber 3 . The combustion chamber 3 is operated atmospherically, but is equipped with a feed blower 8 for the reasons explained below.

Der Umwälzventilator 2 ist, noch stärker als es in der Zeichnung infolge der verkürzten Darstellung der Strahlungsrohranordnung 1 zum Ausdruck kommt, in unmittelbarer Nachbarschaft zur Rückströmseite 6 der Brennkammer 3 angeordnet, so dassdie Luft nicht durch die Strahlungsrohranordnung 1 hindurchgedrückt, sondern vielmehr hindurchgesaugt wird. Hierdurch stellt sich eine Druckverteilung ein, wie sie entlang der schematisch dargestellten Strahlungsrohranordnung 1 veranschaulicht ist, also mit von der Abströmseite 7 der Brennkammer 3 zur Saugseite des Umwälzventilators 2 ansteigendem, also vergrössertem Underdruck. Hierdurch wird sichergestellt, dass im Falle irgendeines Lecks allenfalls Umgebungsluft in die Strahlungsrohre hineinströmen, nicht jedoch Heizmedium, welches Abgase aus der Brennkammer 3 enthält, in die Umgebung austreten kann. Weiterhin liegt damit der Umwälzventilator 2 am kühleren Ende des Strömungswegs der aufgeheizten Luft durch die Strahlungsrohranordnung 1 hindurch und kann somit bereits abgekühlte Luft mit günstigerem Wirkungsgrad fördern.The circulation fan 2 is arranged, even more strongly than is shown in the drawing as a result of the shortened representation of the radiation tube arrangement 1, in the immediate vicinity of the return side 6 of the combustion chamber 3, so that the air is not forced through the radiation tube arrangement 1, but rather is sucked through. This results in a pressure distribution, as illustrated along the schematically illustrated radiation tube arrangement 1, that is to say with an increased, that is to say increased, underpressure from the outflow side 7 of the combustion chamber 3 to the suction side of the circulation fan 2. This ensures that, in the event of any leak, at most ambient air can flow into the radiation tubes, but not heating medium, which contains exhaust gases from the combustion chamber 3, can escape into the environment. Furthermore, the circulation fan 2 is thus located at the cooler end of the flow path of the heated air through the radiation tube arrangement 1 and can thus promote already cooled air with more favorable efficiency.

Jedoch liegt dann die Druckseite des Umwälzventilators 2 in sehr kurzem Abstand zur Rückströmseite 6 der Brennkammer 3, so dass ohne weitere Zusatzmassnahmen zu befürchten ist, dass der Überdruck an der Druckseite des Umwälzventilators 2 in die Brennkammer 3 hinein und durch diese hindurch in den Anfangsbereich der Strahlungsrohranordnung 1 fortgesetzt wird, so dass ein Anfangsbereich der Strahlungsrohre dennoch Überdruck erhalten würde und eine atmosphärische Verbrennung nicht ohne weiteres aufrecht erhalten werden könnte. Um dies zu vermeiden, ist in den in der Praxis kurzen Verbindungsstutzen 9 zwischen der Druckseite des Umwälzventilators 2 und der Rückströmseite 6 der Brennkammer 3 eine insgesamt mit 10 bezeichnete Verwirbelungszone eingefügt, in der dynamischer Druck der Luft in statischen Druck umgesetzt wird. Im Bereich der Verwirbelungszone ist eine Mengenentlastungsöffnung 11 grossen Querschnitts vorgesehen, von der aus ein Überdruckrohr 12 zur Aussenluft bei 13 geführt ist. Durch das Überdruckrohr 12 hindurch wird eine solche Menge an Luft abgeführt, wie dies der in der Brennkammer 3 durch die Abgase der mit 14 bezeichneten Flamme erzeugten zusätzlichen Gasmenge entspricht, die in den geschlossenen Kreislauf eingeführt und demzufolge auch wieder aus ihm entnommen werden muss.However, the pressure side of the circulation fan 2 is then at a very short distance from the return flow side 6 of the combustion chamber 3, so that without additional measures there is a risk that the overpressure on the pressure side of the circulation fan 2 will enter the combustion chamber 3 and through it into the initial area of the Radiation tube arrangement 1 is continued, so that an initial region of the radiation tubes would still receive excess pressure and atmospheric combustion could not be easily maintained. In order to avoid this, a swirl zone designated overall with 10 is inserted in the connection stub 9, which in practice is short, between the pressure side of the circulation fan 2 and the backflow side 6 of the combustion chamber 3, in which dynamic pressure of the air is converted into static pressure. In the area of the swirling zone, a volume relief opening 11 of large cross section is provided, from which an overpressure pipe 12 is led to the outside air at 13. Such a quantity of air is discharged through the pressure pipe 12 as corresponds to the additional gas quantity generated in the combustion chamber 3 by the exhaust gases of the flame denoted by 14, which must be introduced into the closed circuit and consequently also removed from it again.

Der konstruktive Aufbau der Verwirbelungszone 10 ist aus Fig. 2 näher ersichtlich. Danach ist die Verwirbelungszone 10 im Beispielsfalle als Kammer 15 ausgebildet, in die Enden 9a und 9b des Verbindungsstutzens 9 hineinragen und mit einem gegenseitigen Abstand a voneinander enden, der etwa dem Durchmesser d des Verbindungsstutzens 9 entspricht. Des Abstand a bzw. der Durchmesser d kann beispielsweise 300 mm betragen. Hierdurch wird in der mit gestrichelten Pfeilen angedeuteten Weise erreicht, dass eine Kernströmung aus dem Stutzenende 9a unter Überwindung des freien Abstandes a in das Stutzenende 9b eintritt und dort weitergeführt ist, so dass die Strömungsenergie nicht vollständig vernichtet wird, ein Randbereich der Strömung aus dem Stutzenende 9a jedoch unter seitlicher Auffächerung ausgelenkt wird und in den radial äusseren Bereich der Kammer 15 unter annähernd vollständiger Umwandlung des dynamischen Druckes in statischen Druck hineinwirbelt. Die Kammer kann im Beispielsfalle einen kreisrunden Querschnitt besitzen und einen Durchmesser D entsprechend 2 x d, im Beispielsfalle also von 600 mm aufweisen. In der Umfangswand der Kammer 15 ist die Mengenentlastungsöffnung 11 etwa in runder Form mit einem Durchmesser d' von 100 mm angeordnet und führt in das Überdruckrohr 12, wobei der grosse Querschnitt der Mengenentlastungsöffnung 10 einen weitgehend ungehinderten und geschwindigkeitsarmen Abzug der Luft im äusseren Ringraum der Kammer 15 ermöglicht. Der äussere Ringraum der Kammer 15 dient somit gewissermassen als Druckvorlageraum für das Überdruckrohr 12, wobei unter Vernachlässigung des Reibungswiderstandes im Überdruckrohr 12 dieser Vorlageraum der Kammer 15 als über die Mengenentlastungsöffnung 11 zur Umgebung hin offen angesehen werden kann.The structural design of the swirling zone 10 can be seen in more detail in FIG. 2. Thereafter, in the example, the swirling zone 10 is designed as a chamber 15, into which ends 9a and 9b of the connecting piece 9 protrude and end at a mutual distance a, which corresponds approximately to the diameter d of the connecting piece 9. The distance a or the diameter d can be, for example, 300 mm. As a result, in the manner indicated by dashed arrows, a core flow from the nozzle end 9a, while overcoming the free distance a, enters the nozzle end 9b and is continued there, so that the flow energy is not completely destroyed, an edge region of the flow from the nozzle end 9a, however, is deflected with lateral fanning out and swirls into the radially outer region of the chamber 15 with almost complete conversion of the dynamic pressure into static pressure. In the example case, the chamber can have a circular cross section and a diameter D corresponding to 2 xd, in the example case it can be 600 mm. In the peripheral wall of the chamber 15, the quantity relief opening 11 is arranged approximately in a round shape with a diameter d 'of 100 mm net and leads into the overpressure tube 12, the large cross section of the quantity relief opening 10 allowing largely unimpeded and low-speed extraction of the air in the outer annular space of the chamber 15. The outer annular space of the chamber 15 thus serves, as it were, as a pressure supply space for the pressure pipe 12, neglecting the frictional resistance in the pressure pipe 12, this storage space of the chamber 15 can be regarded as open to the environment via the quantity relief opening 11.

Hierdurch ergibt sich ein drastischer Abbau des Stroms des auf der Verwirbelungszone 10 vorliegenden, relativ hohen Überdrucks im Verbindungsstutzen 9 auf einen nur noch geringen Überdruck an der Rückströmseite 6 der Brennkammer 3, bzw. bei Bedarf auch ein praktisch vollständiger Abbau des Überdrucks, so dass bereits in der Brennkammer 3 vor der Flamme 14 die Unterdruckzone des Kreislaufs beginnt. Das Füttergebläse 8 stellt dabei sicher, dass der Vorlagedruck mittels des Füttergebläses 8 stets maximal etwa 15 mm WS über dem Brennkammerdruck gehalten wird, um eine saubere Flammenausbildung zu unterstützen.This results in a drastic reduction in the flow of the relatively high overpressure present in the swirling zone 10 in the connecting piece 9 to only a slight overpressure on the backflow side 6 of the combustion chamber 3, or, if necessary, a virtually complete reduction in the overpressure, so that already in the combustion chamber 3 before the flame 14, the vacuum zone of the circuit begins. The feed blower 8 ensures that the feed pressure is always kept at a maximum of about 15 mm WS above the combustion chamber pressure by means of the feed blower 8 in order to support a clean flame formation.

Im Betrieb läuft nach dem Einschalten des nicht näher dargestellten Haupt- und des Steuerschalters der Umwälzventilator 2 an. Wenn der Umwälzventilator 2 seine Enddrehzahl erreicht hat, erfolgt die Spannungsdurchschaltung auf einen Gasdruckwächter 16. Der Gasdruckwächter 16 schaltet nur dann die Spannung weiter auf einen Unterdruckwächter 17 und einen Verbrennungsluftdruckwächter 18, wenn der Gasdruck über dem eingestellten Minimaldruck liegt.In operation, the circulation fan 2 starts after the main switch and the control switch (not shown) are switched on. When the circulation fan 2 has reached its final speed, the voltage is switched through to a gas pressure monitor 16. The gas pressure monitor 16 only switches the voltage on to a vacuum monitor 17 and a combustion air pressure monitor 18 when the gas pressure is above the set minimum pressure.

Der beispielsweise auf -1 mbar eingestellte Unterdruckwächter 17 ist maximal 1 m hinter der Abgabeseite 7 der Brennkammer 3 angeschlossen und überwacht den Unterdruck in der gesamten Strahlungsrohranordnung 1. Entspricht der Unterdruck am Unterdruckwächter 17 dem eingestellten Wert, so erfolgt Spannungsfreigabe auf den Verbrennungsluftdruckwächter 18 und von dort auf eine mit 7 bezeichnete Klemme eines Flammenwächters 19. Danach erfolgt der Programmablauf des Flammenwächters 19.The vacuum monitor 17, for example set to -1 mbar, is connected a maximum of 1 m behind the discharge side 7 of the combustion chamber 3 and monitors the vacuum in the entire radiation pipe arrangement 1. If the vacuum at the vacuum monitor 17 corresponds to the set value, voltage is released to the combustion air pressure monitor 18 and from there to a terminal of a flame monitor 19 designated by 7. The program sequence of the flame monitor 19 then takes place.

Nach der Vorspülzeit, in der der Testwert im Flammenwächter 19 veränderlich eingestellt ist, wird die Zündstufe freigegeben, wenn Verbrennungsluftdruck vorhanden ist. Die Überwachung erfolgt über den Verbrennungsluftdruckwächter 18. Nach erfolgterZündung und Rückmeldung auf den Flammenwächter 7 wird die Hauptlast über ein langsam öffnendes Magnetventil des Flammenwächters 19 zugeschaltet. Erfolgt keine Brennerzündung, so wird die Anlage abgeschaltet.After the pre-purge time, in which the test value in the flame monitor 19 is variably set, the ignition stage is released if combustion air pressure is present. Monitoring takes place via the combustion air pressure monitor 18. After ignition and feedback to the flame monitor 7, the main load is switched on via a slowly opening magnetic valve of the flame monitor 19. If there is no burner ignition, the system is switched off.

Über einen Regelthermostat 20 wird die Vorlauftemperatur in der Strahlungsrohranordnung 1 überwacht und geregelt. Nach Erreichen der eingestellten Vorlauftemperatur wird über den Regelthermostat 20 die grosse Stufe auf die kleine Stufe (ca. 35%) zurückgeschaltet.The flow temperature in the radiation pipe arrangement 1 is monitored and regulated via a control thermostat 20. After reaching the set flow temperature, the large step is switched back to the small step (approx. 35%) via the control thermostat 20.

Um ein unzulässiges Ansteigen der Vorlauftemperatur zu verhindern, wie dies etwa beim Ausfall des Regelthermostats 20 erfolgen könnte, erfolgt eine Abschaltung der Anlage über einen eingebauten Sicherheitsthermostaten 21, der sich selbst verriegelt und nur mechanisch entriegelt werden kann.In order to prevent an inadmissible rise in the flow temperature, as could occur, for example, if the control thermostat 20 failed, the system is switched off via a built-in safety thermostat 21, which locks itself and can only be unlocked mechanically.

Nach Erreichen der Raumtemperatur erfolgt die Abschaltung der Anlage über einen nicht dargestellten Raumthermostaten.After the room temperature has been reached, the system is switched off using a room thermostat, not shown.

Das Füttergebläse 8 fördert Verbrennungsluft in einer Menge von etwa 1,1 m3/h je 1000 kcal zu, wobei die Kontrolle über den Luftdruckwächter 18 erfolgt.The feed blower 8 feeds combustion air in an amount of approximately 1.1 m 3 / h per 1000 kcal, the control of the air pressure switch 18 taking place.

Bei 22 sind ein Vorlauftemperaturfühler und bei 23 ein Rücklauftemperaturfühler der Strahlungsrohranordnung 1 veranschaulicht, während mit 24 ein Messgerät zur Erfassung der Luftmenge und des Luftdrucks in der Strahlungsrohranordnung 1 bezeichnet ist.At 22, a flow temperature sensor and at 23 a return temperature sensor of the radiation tube arrangement 1 are illustrated, while 24 denotes a measuring device for detecting the air quantity and the air pressure in the radiation tube arrangement 1.

Wie die vorstehende Beschreibung zeigt, sind vielfache Abwandlungen und Abänderungen der veranschaulichten Ausbildung einer erfindungsgemässen Strahlungsheizungsanlage möglich. So sind insbesondere für die Verwirbelungszone 10 auch andere konstruktive Ausbildungen einer Druckentspannungsvorrichtung einsetzbar, welche den Vorlagedruck des Umwälzventilators 2 im wesentlichen auf Atmosphärendruck abbauen. In Fig. 1 sind insoweit schematisch die Diffusorbleche 25 eingezeichnet, die im Bereich des Abstandes a zwischen den Stutzenenden 9a, 9b eingesetzt werden könnten, um eine verstärkte Auswirbelung des Randbereiches der aus dem Stutzenende 9a kommenden Strömung herbeizuführen. In der Praxis hat sich jedoch gezeigt, dass derartige Diffusorbleche 25 bei der geschilderten Bemessung des Durchmessers d und des Abstandes a nicht erforderlich sind. Eine Feinregulierung des Druckes bzw. der Abgasmenge im Überdruckrohr 12 kann über eine Regulierklappe 26 in den Verbindungsstutzen 9 stromab der Verwirbelungszone 10 und/oder über eine Regulierklappe 27 im Überdruckrohr 12 erfolgen, in dem überdies ein Messgerät 28 angeordnet ist, welches die festeingestellte Abgasmenge für eine gegebene Brennleistung sowie die Abgastemperatur; die zwischen 110 und 160°C liegen möge, erfasst. Da Regulierklappen 26 und 27 grundsätzlich Strömungshindernisse sind, die Strömungsverluste erzeugen, ist anzustreben, dass diese im Betrieb regelmässig offenstehen und nur bei Bedarf zu einer Feineinstellung ergänzend herangezogen werden. Grundsätzlich lässt sich auch ohne Regulierklappen 26 und 27 durch entsprechende Bemessung im Bereich der Verwirbelungszone 10 erreichen, dass die jeweils erforderliche Abgasmenge durch das Überdruckrohr 12 hindurch abgeblasen wird und dabei in Verbindungsstutzen 9 hinter der Verwirbelungszone 10 ein Druckabfall auf annähernd Atmosphärendruck erfolgt.As the above description shows, multiple modifications and variations of the illustrated embodiment of a radiant heating system according to the invention are possible. Thus, in particular for the swirling zone 10, other constructive designs of a pressure relief device can be used, which reduce the supply pressure of the circulation fan 2 essentially to atmospheric pressure. In this respect, the diffuser sheets 25 are schematically shown in FIG. 1, which could be used in the area of the distance a between the nozzle ends 9a, 9b in order to bring about a greater swirling out of the edge region of the flow coming from the nozzle end 9a. In practice, however, it has been shown that such diffuser sheets 25 are not required for the described dimensioning of the diameter d and the distance a. A fine adjustment of the pressure or the amount of exhaust gas in the pressure pipe 12 can take place via a regulating flap 26 in the connecting piece 9 downstream of the swirling zone 10 and / or via a regulating flap 27 in the pressure pipe 12, in which a measuring device 28 is also arranged, which measures the fixed set amount of exhaust gas for a given combustion output and the exhaust gas temperature; which may be between 110 and 160 ° C. Since regulating flaps 26 and 27 are fundamentally flow obstacles that generate flow losses, it is desirable that they are regularly open during operation and that they are only used for fine adjustment if necessary. In principle, even without regulating flaps 26 and 27, by appropriate dimensioning in the area of the swirl zone 10, the required amount of exhaust gas is blown off through the pressure pipe 12 and a pressure drop to approximately atmospheric pressure takes place in the connecting piece 9 behind the swirl zone 10.

Das Überdruckrohr 12 kann in nicht näher dargestellter Weise einen Wärmetauscher enthalten, in dem die Restenergie des heissen Abgases teilweise wieder nutzbar gemacht wird. Auf die Strömungsverhältnisse im Überdruckrohr 12 vergleichsweise grossen Querschnitts hat dies keinen wesentlichen Einfluss.The pressure pipe 12 can contain a heat exchanger in a manner not shown in which the residual energy of the hot exhaust gas is partially made usable again. Ver on the flow conditions in the pressure pipe 12 equally large cross-section, this has no significant influence.

Somit wird mit der Erfindung insgesamt erreicht, dass die gesamte Strahlungsrohranordnung 1 in einem Unterdruckbereich liegt und daher ein Austreten von Schadstoffen in die Umgebung bei auftretenden Lecks unmöglich ist, während anderseits hierzu keine erhöhte Antriebsleistung des Umwälzventilators 2 erforderlich ist und dieser sogar kleiner bauen kann, da er in der Nachbarschaft der Rückströmseite 6 der Brennkammer 3 kühlere Luft fördert als im Bereich der Abgabeseite 7.Thus, with the invention as a whole it is achieved that the entire radiation tube arrangement 1 lies in a negative pressure area and therefore it is impossible for pollutants to escape into the environment when leaks occur, while on the other hand no increased drive power of the circulation fan 2 is required and the latter can even be made smaller, since it conveys cooler air in the vicinity of the return flow side 6 of the combustion chamber 3 than in the area of the discharge side 7.

Claims (9)

1. A radiant heating system comprising at least one closed radiant tube system (1), which extends from the outlet side (7) to the return side (6) of a directly fired combustion chamber (3) and in which a gaseous heating fluid, such as particularly air, is adapted to be circulated by means of a circulating fan (2), also comprising a discharge opening (11), which is open to the outside air and serves to discharge surplus quantities of the heating fluid from the closed cycle in dependence on the supply of exhaust gas in the combustion chamber, characterized in that the circulating fan (2) is arranged near the return side (6) of the combustion chamber, an agitating zone (10) is provided between the pressure side of the circulating fan (2) and the return side (6) of the combustion chamber (3) and serves to convert dynamic pressure of the heating fluid into static pressure, and the discharge opening (11) is provided adjacent to the agitating zone (10).
2. A radiant heating system according to claim 1, characterized in that the combustion chamber (3) is succeeded by a feeding blower (8) for boosting the combustion gases to a superatmospheric pressure.
3. A radiant heating system according to claim 1 or 2, characterized in that a core flow adjacent to the axis of the line is conducted substantially without turbulence through the agitating zone (10).
4. A radiant heating system according to claim 3, characterized in that a portion larger in cross-section (chamber 15) is provided in the pipe (9) which connects the fan (2) and the combustion chamber (3) and said portion serves to receive the agitated marginal portions of the flow.
5. A radiant heating system according to claim 4, characterized in that the enlarged portion consists of a coaxial chamber (15), which is inserted into the line comprising the connecting pipe (9).
6. A radiant heating system according to claim 4 or 5, characterized in that the enlarged portion has a diameter D which is about twice the diameter (d) of the end portions (9a and 9b) of the connecting pipe, which adjoins the enlarged portion.
7. A radiant heating system according to any of claims 4 to 6, characterized in that the end portions (9a, 9b) of the pipe (9) connecting the circulating fan (2) and the combustion chamber (3) protrude into the interior of the enlarged portion (chamber 15).
8. A radiant heating system according to any of claims 4 to 7, characterized in that the axial distance (a) between the end portions (9a, 9b) of the connecting pipe is approximately as large as the diameter (d) of the end portions (9a, 9b) of the connecting pipe.
9. A radiant heating system according to any of claims 1 to 8, characterized in that the discharge opening (11) has a large cross-section which is in excess of about 50 mm and particularly in excess of about 100 mm in diameter.
EP82110132A 1981-11-03 1982-11-03 Radiant heating system with direct-fired combustion chamber Expired EP0079526B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT82110132T ATE11336T1 (en) 1981-11-03 1982-11-03 RADIANT HEATING SYSTEM WITH DIRECT FIRED COMBUSTION CHAMBER.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3143602A DE3143602C2 (en) 1981-11-03 1981-11-03 Radiant heating system with directly fired combustion chamber
DE3143602 1981-11-03

Publications (2)

Publication Number Publication Date
EP0079526A1 EP0079526A1 (en) 1983-05-25
EP0079526B1 true EP0079526B1 (en) 1985-01-16

Family

ID=6145493

Family Applications (1)

Application Number Title Priority Date Filing Date
EP82110132A Expired EP0079526B1 (en) 1981-11-03 1982-11-03 Radiant heating system with direct-fired combustion chamber

Country Status (3)

Country Link
EP (1) EP0079526B1 (en)
AT (1) ATE11336T1 (en)
DE (2) DE3143602C2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3403993A1 (en) * 1984-02-06 1985-08-14 Kraftanlagen Ag, 6900 Heidelberg Device for space heating
US4712734A (en) * 1986-05-08 1987-12-15 Johnson Arthur C W Low-intensity infrared heating system with effluent recirculation
IT1266128B1 (en) * 1993-10-11 1996-12-20 Termotecniche Fraccaro O T F S ROOM HEATING DEVICE
FR2787557B1 (en) * 1998-12-22 2001-03-09 Dominique Boudrie LOW TEMPERATURE HEATING DEVICE AND METHOD
FR2874419B1 (en) * 2004-08-17 2006-10-06 Lgl France Sa HEATING DEVICE FOR AN AIR CONDITIONING INSTALLATION OF AN ENCLOSURE
ITPD20050133A1 (en) * 2005-05-11 2006-11-12 Systema Spa HEATING SYSTEM WITH RADIANT TUBES
ITTV20050171A1 (en) * 2005-11-08 2007-05-09 Termotecniche Fraccaro O T F S DEVICE FOR HEATING, ELECTRICITY PRODUCTION AND COOLING OF PREMISES.
GB2443642A (en) * 2006-11-10 2008-05-14 Whiteside Accoutants Hot air radiator comprising an air extracting machine
ITVI20090234A1 (en) 2009-09-25 2011-03-26 Termotecniche Fraccaro S R L Off DEVICE FOR HEATING HIGH ENVIRONMENTALLY EFFECTIVE ENVIRONMENTS, AS WELL AS THE HEATING SYSTEM INCLUDES THIS DEVICE
EP3056809A1 (en) 2015-02-12 2016-08-17 Carlieuklima S.p.A. Heating plant with radiant ducts
ITUB20152466A1 (en) * 2015-07-24 2017-01-24 Oscar Pallaro HEATING SYSTEM WITH RADIANT TAPES
IT201600085950A1 (en) * 2016-08-18 2018-02-18 Oscar Pallaro RADIANT DUCTS HEATING SYSTEM

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE375820C (en) * 1923-05-18 Otto Schulz Central heating
FR606020A (en) * 1924-11-13 1926-06-05 J & O G Pierson Heating improvement with hot gases
US3399833A (en) * 1966-12-14 1968-09-03 Comb Res Corp Low intensity radiant heater system and burner therefor
GB1448073A (en) * 1974-05-08 1976-09-02 Radiant Tube Systems Ltd Space heating systems and apparatus
DE7730177U1 (en) * 1977-09-29 1980-12-04 Gruenzweig + Hartmann Montage Gmbh, 6700 Ludwigshafen Holding device for hot air pipes of a ceiling heating system

Also Published As

Publication number Publication date
ATE11336T1 (en) 1985-02-15
DE3143602C2 (en) 1984-05-10
DE3143602A1 (en) 1983-05-11
DE3261975D1 (en) 1985-02-28
EP0079526A1 (en) 1983-05-25

Similar Documents

Publication Publication Date Title
EP0079526B1 (en) Radiant heating system with direct-fired combustion chamber
DE112018003288T5 (en) Heater and method for heating air and water in a recreational vehicle and recreational vehicle
DE2519091A1 (en) ROOM HEATING DEVICE
DE2625615A1 (en) GAS HEATING
DE2846120C2 (en) Water storage heater
EP0439765B1 (en) Steam generator
DE2428381A1 (en) CONTINUOUS STEAM GENERATOR
EP0092063B1 (en) Steam generator
DE2054607A1 (en) Automatic control device for soaking furnaces
DE2102024B2 (en) STEAM GENERATOR
EP1798470B1 (en) Heating device and its method of operation
DE10162952A1 (en) heat exchanger device
DE3623103C2 (en)
DE2115257A1 (en) Water heater
DE874678C (en) Pipe gas heaters, especially for solid fuels, preferably for use in two-stage gas turbine plants
DE3742143A1 (en) Method for decontaminating waste gas of a boiler installation or boiler installation with external waste gas recycling
DE2113076A1 (en) Heating boiler
DE4109576A1 (en) ON THE WALL MOUNTABLE GAS BOILER WITH BLOWER, CLOSED TO THE ROOM
DE102016010167A1 (en) Warm air heating
AT216710B (en) Hot air oven
AT279855B (en) Wall air heater
DE19532273A1 (en) Monoblock boiler for hot water cleaning equipment
EP4092321A1 (en) Hydrogen gas burner apparatus
AT397856B (en) Heating system for heating and for warming up service water
AT6506U1 (en) BURNER FOR SOLID FUELS

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT BE CH DE FR LI LU

RBV Designated contracting states (corrected)

Designated state(s): AT BE CH DE FR LI LU

17P Request for examination filed

Effective date: 19830601

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): AT BE CH DE FR LI LU

REF Corresponds to:

Ref document number: 11336

Country of ref document: AT

Date of ref document: 19850215

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3261975

Country of ref document: DE

Date of ref document: 19850228

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

REG Reference to a national code

Ref country code: CH

Ref legal event code: PUE

Owner name: GERD KUEBLER

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19921029

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19930505

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19930917

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 19931015

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19931112

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19931126

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19931130

EPTA Lu: last paid annual fee
BERE Be: lapsed

Owner name: GERD KUBLER

Effective date: 19931130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19940901

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19941103

Ref country code: AT

Effective date: 19941103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19941130

Ref country code: CH

Effective date: 19941130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19950731

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST