EP0075515B1 - Procédé et installation de récupération du pétrole par combustion in situ - Google Patents

Procédé et installation de récupération du pétrole par combustion in situ Download PDF

Info

Publication number
EP0075515B1
EP0075515B1 EP82401680A EP82401680A EP0075515B1 EP 0075515 B1 EP0075515 B1 EP 0075515B1 EP 82401680 A EP82401680 A EP 82401680A EP 82401680 A EP82401680 A EP 82401680A EP 0075515 B1 EP0075515 B1 EP 0075515B1
Authority
EP
European Patent Office
Prior art keywords
oxygen
conduit
injection
flame
combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP82401680A
Other languages
German (de)
English (en)
Other versions
EP0075515A1 (fr
Inventor
Guy Savard
Robert Gum Hong Lee
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Air Liquide Canada Inc
Original Assignee
Air Liquide Canada Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Air Liquide Canada Inc filed Critical Air Liquide Canada Inc
Priority to AT82401680T priority Critical patent/ATE16624T1/de
Publication of EP0075515A1 publication Critical patent/EP0075515A1/fr
Application granted granted Critical
Publication of EP0075515B1 publication Critical patent/EP0075515B1/fr
Expired legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/30Specific pattern of wells, e.g. optimising the spacing of wells
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B41/00Equipment or details not covered by groups E21B15/00 - E21B40/00
    • E21B41/0078Nozzles used in boreholes
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/16Enhanced recovery methods for obtaining hydrocarbons
    • E21B43/24Enhanced recovery methods for obtaining hydrocarbons using heat, e.g. steam injection
    • E21B43/243Combustion in situ

Definitions

  • the invention relates to the recovery of petroleum by in situ combustion from deposits located in underground sedimentary formations.
  • Process regulation is essential and complex. To monitor the advance of the combustion front and to predict operational problems, basic data must be obtained and analyzed, in particular the air speed and its pressure, the injection rate of the water, gas evacuation speed in different wells, casing pressures on production wells, gas analysis, oil and water production rate, temperature measurements. Among the other data, which we need more rarely, but on a regular basis, we must mention the density and viscosity of the oil leaving each well, the determination of chlorine in water, the pH of water, the pressure drop of the injectors.
  • the first group of data makes it possible to make calculations on the movement of the forehead, the efficiency of combustion and the use of oxygen.
  • the second set of data makes it possible to make corrections to the calculated data and to prepare for the arrival of the thermal front in a production well.
  • Patent FR-A-1 473 669 discloses a process for recovering petroleum by in situ combustion with the possibility of optionally resorting to the combustion of petroleum from the deposit by an activated combustion gas, such as composed of carbon dioxide, water vapor and enriched with large quantities of oxygen.
  • the invention proposed by this application relates to a process for recovering petroleum by combustion, in situ from a sedimentary formation constituting an oil deposit according to which a gas supporting combustion is introduced such as air or air and water or a gas enriched in oxygen or pure oxygen, by at least one injection well extending from the surface and crossing overburden up to the interior of the deposit, in an injection zone so as to burn part of the oil by creating a flame front, which is advanced to a certain point, and to cause the flow, through a treatment zone, of fluids whose petroleum, to a number of production wells through which fluids are extracted.
  • a gas supporting combustion such as air or air and water or a gas enriched in oxygen or pure oxygen
  • the method according to this proposed invention is characterized in that, when the gas supporting combustion is oxygen, it is introduced by a separate conduit separate from the injection well, this conduit leaving the surface, passing through the dead - land and arriving separately in the deposit near the injection well.
  • the installation for applying this method is characterized in that it also comprises at least one oxygen conduit distinct and separate from the injection well, starting from the surface, passing through the overburden and arriving in the area of treatment at a point located at a distance from the injection well much less than the distance between an injection well and a production well, said conduit being equipped with means for introducing oxygen into the formation.
  • in situ combustion is regulated by the strategic placement of one or more fluid conduits, starting from the surface and crossing the overburden to reach the treatment zone, at a point located at a certain distance from the injection well, the regulating fluid being introduced into the deposit via said conduit, independently of the fluid injected into the injection well.
  • the control fluid introduced is oxygen, serving as auxiliary combustion gas and replacing the injection of a gas supporting combustion such as air in the well. injection.
  • the fluid conduit is located near the injection well, but it is separated by a short distance, so as to allow the establishment, on the surface, of a separate regulation equipment.
  • oxygen and water can be introduced alternately, the oxygen being sent through the fluid conduit and the water through the injection well.
  • a regulating fluid conduit is placed in this zone, and oxygen is introduced to accelerate the flame front and improve the scanning.
  • a regulation duct in this area and introduce appropriate fluids to slow down the flame front and improve the sweep .
  • the invention is preferably used with a conventional in situ combustion model, preferably a multi-well mesh type well layout arrangement, in which air and water are introduced into a well. injection, which leaves the surface and crosses overburden to reach the oil field,. in an injection zone, under conditions leading to the combustion of part of the oil and the flow of part of the oil through a treatment zone to at least one production well, disposed at a certain distance from the injection well.
  • an oxygen introduction conduit is placed strategically, extending from the surface and crossing the overburden to the oil deposit, in the treatment zone.
  • the oxygen conduit is placed near the injection well, but at a sufficient distance so that the equipment for regulating oxygen at the surface is distinct from the equipment. relatively complex regulator at the head of the injection well.
  • the separate oxygen conduit may be approximately 3 to 4.6 m from the injection well.
  • air and water in a representative treatment cycle, are introduced alternately into the injection well to advance the flame front to a certain point.
  • the air injection is then stopped, then the injection well is used to introduce essentially only water.
  • the air is replaced by oxygen, which is introduced into the deposit by the oxygen pipe to continue the advance of the flame front.
  • the invention also relates to a method of recovering petroleum from an underground sedimentary formation by the wet combustion process, method according to which there is an injection well, equipped to introduce air, or l water, or both, under conditions ensuring the combustion of part of the oil by air, and a certain number of production wells, arranged at a certain distance from the injection well, towards which one is s' drain the oil through a processing area.
  • a separate oxygen conduit starts from the surface, passes through the overburden and arrives in the formation treatment area, at a point located at a relatively short distance from the injection well.
  • the injection well is fitted with conventional, relatively complex air and water control equipment. The fact that the oxygen pipe is separated considerably simplifies the surface control system for both the air injection well and the oxygen pipe.
  • FIG. 1 shows a layout arrangement of “three-mesh” wells, comprising three injection wells A, A 1 and A 2 .
  • a series of production wells B are placed, for example, symmetrically with respect to the injection well A, at a certain distance from the latter. Air is injected through the injection well A into the underground formation in an injection area, to allow combustion of the oil.
  • the production wells B located in the production areas are equipped with pumping means so that, when combustion begins in the vicinity of injection well A, the fluids, which include combustion products, water, steam and petroleum, are drawn from the injection zone in the vicinity of well A, through a treatment zone, to reach a production zone at well B.
  • a flame front is produced in the treatment zone between the injection zone and the production zone.
  • a cycle is carried out according to which air is introduced for two days, then water for one day, and this cycle is repeated continuously for several months or several years.
  • the injection well A is located in the center of the mesh and the production wells B are at the corners of the hexagon, at a distance of approximately 122 m.
  • the oil formation can be several tens to several hundred meters from the surface, for example 610 m.
  • the thickness of the formation can range from a minimum of 0.3 m to more than 30 m. For example, most of the oil found in the Lloydminister area occurs in formations about 6 m thick. Exploitation can continue for several months before recovery begins in the production wells of oil from on-site combustion.
  • an oxygen conduit C starts from the surface, crosses overburden and arrives in the oil deposit, in the treatment zone, at a relatively short distance from the injection well A.
  • the oxygen duct C can be 4.6 m from the injection well.
  • the oxygen duct be located at a certain distance from the injection well so as to allow independent realization l 'exploitation of both. In all cases, a fluid must constantly flow through the oxygen pipe and through the injection well. According to the invention, once the flame front has advanced in the treatment zone, to the desired point, the injection of air and water is stopped in the injection well A and the introduction of oxygen in the oxygen line, alternating with the injection of water into the injection well.
  • the production well pumps are turned on and a certain amount of oil is extracted before in situ combustion.
  • the flame can then be lit, for example by lowering a gas burner into the injection well, by sending air or natural gas to promote combustion.
  • the burner can either remain in place or be recovered, depending on the circumstances.
  • Figure 2 is a theoretical view of what happens during in situ wet combustion.
  • This figure is a vertical section through an underground sedimentary formation containing petroleum, also known as an oil deposit, which has undergone wet combustion.
  • the formation consists of an injection zone surrounding the injection well A, intended to introduce air to maintain the combustion of petroleum in the deposit and water to modify the heat transfer according to the method of wet combustion, and a production area surrounding the production well B, intended to extract the fluids pushed forward by the flame front. Between these two zones is a treatment zone, and the different materials making up this zone, at a particular stage of operation, are indicated by legends in the figure.
  • a gas injection tube C is placed strategically in the treatment zone to introduce oxygen intended to promote combustion or to regulate the advance of the flame front, as will be described. in detail below.
  • an oxygen conduit so that it penetrates into the burned region, then introduce oxygen to promote combustion, oxygen which will replace the air injected into well A.
  • a representative method could include two days of oxygen injection and one day of water injection, during the entire treatment period, which can last up to several years.
  • the injection well A is approximately 125 m (a) from the production well B.
  • the thickness of the sedimentary formation is between 0.3 and 30 m, and it can be at a depth of about 610 m, being covered by overburden in which there may be separate additional sedimentary oil formations by rock.
  • Oxygen line C should be placed approximately 3.0 to 4.6 m from the injection well.
  • FIG. 4 represents an installation according to the invention, in vertical section, in an underground formation.
  • the reference A designates an air-water injection well.
  • the well consists of a borehole, lined with a steel casing 15, which starts from the surface, descends through the overburden and arrives in the underground sedimentary formation in which the oil deposit is found.
  • the borehole, outside the casing 15, is suitably filled with standard filling materials which form an envelope 17 internally lining the borehole.
  • the casing 17 is lined with perforations 19 to allow the fluids to exit the borehole.
  • the casing 15 is lined with a casing shoe 21.
  • a lined tube 23 starts from a wellhead 25, located on the surface, to arrive at a “recoverable packer 26, the lower end of which is centered in the envelope 17.
  • An air and water pipe 27 starts from an injection unit, and can send air head or pressurized water to the wellhead 25.
  • Gate valves 29 and 31 are provided, as well as check valves 33 and full-flow valves 35 and 36 for regulating the flow of air or water to the tube 23.
  • the apparatuses placed above from well A are frequently called "Christmas tree".
  • an oxygen conduit C is placed, formed by a borehole housing a steel casing 37 and a concrete casing 36 filling the space between the borehole and the casing.
  • An oxygen tube 41 which extends beyond the casing 37 and passes through a recoverable "packer” 43 to come out from below, extends into the borehole.
  • the oxygen tube starts from the surface, crosses the overburden and enters the underground sedimentary formation, in the treatment zone located between the injection well A and the production wells.
  • oxygen 45 starts from a pressurized oxygen source, passes through a full-flow valve 47 and arrives at the oxygen tube 41. Since only oxygen is introduced into the conduit C, the tube 41 does not need to be made of an expensive stainless steel such as that which is necessary for the injection well A where the presence of water causes corrosion. In addition, only relatively simple oxygen control equipment is required.
  • the lower end of the oxygen tube has a safety injector D, which is described in detail below.
  • Figure 5 is an enlarged partial vertical section of the bottom of the oxygen conduit.
  • the end of the tube 41 carries an external thread intended to receive a cylindrical connector member 51 over its entire length.
  • the member 51 has an internal bore, which has a cylindrical part 53, enlarged and tapped, meshing with the end of the pipe 41.
  • the bore narrows into a frustoconical part 54 to arrive at a groove 55, which defines the inlet of a throttled central cylindrical passage 57.
  • the lower end of the element 51 has an annular recess 58, which receives the end of a pipe 59 made of nickel alloy.
  • the pipe 59 and the connector member 51 are welded to each other at 61.
  • a tip element 63 is mounted at the lower end of the pipe 59.
  • the element 63 has a cylindrical body over its entire length, with an upper annular recess 60 receiving the end of the pipe 59.
  • the element 63 and the pipe 59 are welded to each other at 65.
  • the body of the element 63 has a central passage, which has an upper frustoconical part 67 narrowing to a short cylindrical groove 69, then widening in part frustoconical 71 ending in a shorter and wider frustoconical part 73.
  • Parts 51 and 63 are made of a non-fissurable nickel alloy.
  • the dimensions of the oxygen pipe depend to a large extent on the force required to pull the packer.
  • the smallest diameter would be approximately 51 mm, the largest of 254 mm, 178 mm corresponding to a practical intermediate diameter. This diameter must be sufficient to allow the introduction of cement.
  • a tube with a diameter of 51 mm is sufficient.
  • the maximum diameter corresponds to a pipe which can be part of the well itself and still be cemented.
  • the pressure is generally the same as that of air, and is between 28 and 70 kg / cm 2 .
  • An empirical calculation method calculates the pressure, which will be about half a pound for 30 cm deep. The specific pressure depends on both the depth and the porosity of the formation.
  • the boreholes can have any diameter.
  • a plunger is provided to expel the cement.
  • a unit on the surface supplies oxygen at low pressure at a rate of at least 18 tonnes per day, and compresses it to a pressure of 28 to 70 kg / cm 2.
  • the oxygen pipe must be equipped with to allow rapid replacement of oxygen with other fluids.
  • At least part of the passage, through which the oxygen-containing gas is introduced, must be throttled so as to have a diameter such that the speed of the gas is greater than the maximum speed of the flame likely to to occur.
  • This injector has throttled grooves, arranged in series, followed by an outlet opening of increasing diameter intended to allow the expansion of the gas. in order to reduce its speed and minimize the sanding effect inside the casing.
  • the safety injector as shown can be used not only for oxygen, but also for oxygen mixed with another fluid having desirable properties for the in situ combustion of a hydrocarbon deposit, for example CO 2 , N 2 air, H 2 0, etc ...
  • the tube downstream of the packer must resist cracking in contact with oxygen, heat, corrosion and erosion. Besides this, the tube must have maximum security. In an oil formation, for example, there may be disturbances and fuel seepage inside and around the injection tube. '
  • a hydrocarbon can burn in the presence of air giving a flame having a certain speed. If the same hydrocarbon burns with oxygen, its flame propagation rate may be much higher.
  • the methane-air mixture gives a maximum flame propagation speed of 0.46 m / s, while the methane-oxygen flame has a maximum propagation speed of 4.57 m / s.
  • the hydrogen-air mixture has a maximum flame propagation speed of 3 m / s, while the hydrogen-oxygen flame has a maximum flame propagation speed of 14 m / s.
  • the flame propagation speed H 2 -0 2 is approximately 19.81 m / s under a pressure of 21 kg / cm 2 , approximately 28.35 m / s under a pressure of 63 kg / cm 2 , and 30.48 m / s under a pressure of 105 kg / cm 2.
  • a nozzle can be installed at the outlet of the tube, to accelerate the oxidizing gas to a speed greater than the maximum speed of propagation of the flame, to avoid a flashback in the tube.
  • one or more other nozzles can be placed upstream of the outlet nozzle, to resist any backfire.
  • the flow rate of the oxidizing gas through the tube (which has sufficient mechanical strength) is high enough for the speed of the gas to be greater than the maximum speed of propagation of the flame likely to be at the level of the well. injection, it is not necessary to use nozzles accelerating the oxidizing gas.
  • nozzles can be in the form of a straight bore, or they can be of a venturi type, such as that shown in FIG. 5, intended to avoid cracks in contact with oxygen which would reduce the resistance mechanical, and to prevent any backfire in the tube.
  • it is relatively resistant to corrosion.
  • a tube with a diameter of 50.8 mm, nomenclature 80 is used (that is to say a tube having an external diameter of 60.31 mm and an internal diameter of 49.21 mm, the spacing of its walls being 5.5 mm), for its mechanical strength, because it has a free length of 550 m.
  • a venturi nozzle is placed at the bottom, at the injector outlet. As additional security, another nozzle is placed upstream.
  • the injector is designed, for example, for an oxygen flow rate of 84,950 m 3 / day under a pressure of 31.5 kg / cm 2 at ambient temperature.
  • the groove of the venturi nozzle has a diameter of about 11.4 mm, which allows the oxidizing gas to '' have a speed of 30.5 m / s, a speed which is higher than any flame propagation speed that can be encountered at the bottom of an injection well or an oxygen pipe.
  • the outlet orifice (s) of the injector may be in the form of one or more holes. Each hole must be dimensioned so as to give the oxidizing gas injected a speed greater than the maximum flame propagation speed that can be encountered.
  • the downhole injector can only be used for oxidizing gas or a mixture of gases, or it can be used alternately with water injection, intermittently.
  • it can be used for the oxidizing gas and the mixture of gases with the other injected fluids (for example H 2 0 and / or air), injected into the formation by another injection well.
  • the other injected fluids for example H 2 0 and / or air
  • water, air or other fluids need not be free of hydrocarbons (e.g. petroleum).
  • all the fluids intended for the injection well must be injected into the formation using only this single injector, all the fluids must be free of petroleum, in particular when the oxidizing gas is oxygen.
  • the invention is characterized by the introduction, defined in a strategic manner, of oxygen instead of air as a gas promoting combustion; by oxygen is meant here an oxygen having a volume concentration of 90% (under normal conditions), or more, and preferably a concentration of at least 99.5%.
  • the theoretical scanning efficiency which can be obtained with oxygen is about 45 to 50%, which is considerably lower than when using air. Indeed, there is less nitrogen ballast and a higher partial pressure of C0 2 in the oxygen combined with the coke. There is more C0 2 in the oil, which decreases its viscosity, increases the production rate and decreases the entrainment of nitrogen in the production well. It is difficult to dissolve the emulsion that forms at the production well when using air as the combustion promoting gas. When using oxygen, the emulsion formed is easier to dissolve.
  • the product leaving the production well, when using air contains petroleum and sand, water, gas, C0 2 and nitrogen, a little methane, a little hydrogen and a little sulfur.
  • the tube must simply have sufficient mechanical strength to withstand the forces applied during its installation, and its outlet orifice must be suitably shaped so as to withstand the temperatures to which it may be exposed.
  • the tube When, for example, the duct is installed in front of the flame front, the tube can be protected by a jacket of water or thick cement. There must always be a flow of fluid through the tube, in the same way as in the injection well, to avoid any backflow in the conduit.
  • the extreme flexibility of using a pipe of this type for injecting oxygen is clear from the description above.
  • conduits can go up to levels below which water is injected into the injection well in the case of wet combustion.
  • oxygen can be introduced near the bottom of the oil deposit or at intermediate points.

Landscapes

  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Fluid Mechanics (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Fats And Perfumes (AREA)
  • Lubricants (AREA)
  • Air Supply (AREA)
  • Removal Of Floating Material (AREA)
  • Gasification And Melting Of Waste (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Processing Of Solid Wastes (AREA)

Description

  • L'invention concerne la récupération du pétrole par combustion in situ à partir de gisements se trouvant dans des formations sédimentaires souterraines.
  • Des procédés de récupération du pétrole par combustion in situ à partir de formations souterraines sont décrits dans les textes publiés suivants : « The Petroleum Reservoir ·, cours de formation accélérée de Selley, Anstey et Dono- hue, International Human Resources Develop- ment Corporation, Boston, Mass, 1981 ; le manuel « Enhanced Recovery of Residual and Heavy Oils », 2e édition, sous la direction de M. M. Schumacher, édité par Noyes Data Corporation, Parkridge, New Jersey, Etats-Unis, 1980 ; « Heavy Oil Recovery by In Situ Combustion par le Dr Phillip D. White, Texas Petroleum Engineers Inc., Dallas, Texas, communication présentée par la S.P.E., Section Dallas, séminaire de formation continue, printemps 1980 ; « Twenty Years Ope- ration of an In Situ Combustion Project », par Jenkins et Kirkpatrick, Petroleum Society of C.I.M., 1978 ; et un article intitulé « ln Situ Combustion Process - Results of a Five-Well Field Experiment, Southern Oklahoma,., par Moss, White et McNeil, Magnolia Petroleum Company, Dallas, Society of Petroleum Engineers of AIME, présenté lors de la 33e Réunion Annuelle d'Automne de la Société, Houston, du 5 au 8 octobre 1958.
  • L'article de White indique qu'en 1979, les procédés de combustion in situ ne représentaient encore qu'un faible pourcentage de la totalité de la production du pétrole par les méthodes thermiques. Il en conclut que l'un des éléments dissuasifs réside en ce que les procédés par combustion exigent un effort technique beaucoup plus intense que les autres procédés. En effet, ces. procédés nécessitent des équipements bien conçus destinés à la régulation des puits, à une -collecte rapide et précise des données, à une analyse rapide des données et, également, des opérateurs sur le terrain parfaitement formés. L'article indique que ces améliorations ne pourront être apportées que si ce type de procédé est très largement répandu.
  • La régulation du procédé est essentielle et complexe. Pour suivre l'avance du front de combustion et pour prévoir les problèmes d'exploitation, il faut obtenir des données de base et les analyser, en particulier la vitesse de l'air, et sa pression, le taux d'injection de l'eau, la vitesse d'évacuation des gaz dans les différents puits, les pressions de cuvelage sur les puits de production, l'analyse du gaz, le taux de production de l'huile et de l'eau, les mesures de la température. Parmi les autres données, dont on a besoin plus rarement, mais d'une manière régulière, il faut citer la densité et la viscosité du pétrole sortant de chaque puits, le dosage du chlore dans l'eau, le pH de l'eau, la chute de pression des injecteurs. Le premier groupe de données permet de faire des calculs sur le mouvement du front, l'efficacité de la combustion et l'utilisation de l'oxygène. Le deuxième ensemble de données permet d'apporter des corrections aux données calculées et de se préparer à l'arrivée du front thermique dans un puits de production.
  • On connaît par le brevet FR-A-1 473 669 (Deuts- che Erdôl) un procédé de récupération de pétrole par combustion in situ avec la possibilité de recourir éventuellement à la combustion du pétrole du gisement par un gaz de combustion activé, tel que composé d'anhydride carbonique, de vapeur d'eau et enrichi de grandes quantités d'oxygène.
  • On connaît également par le brevet US-A-3 007 520 (FREY) un procédé similaire dont le gaz de combustion est éventuellement de l'oxygène, mais également de l'air, du CO et autres, les gaz de combustion étant introduits dans le gisement par des puits d'injection. Dans aucun de ces procédés des précautions ne sont prises pour séparer l'une de l'autre, l'introduction de l'oxygène dans le gisement et l'introduction dans le gisement des autres gaz de combustion.
  • L'invention proposée par cette demande a pour objet un procédé de récupération de pétrole par combustion, in situ à partir d'une formation sédimentaire constituant un gisement de pétrole selon lequel on introduit un gaz entretenant la combustion tel que de l'air ou de l'air et de l'eau ou un gaz enrichi en oxygène ou de l'oxygène pur, par au moins un puits d'injection s'étendant de la surface et traversant des morts-terrains jusqu'à l'intérieur du gisement, dans une zone d'injection de façon à brûler une partie du pétrole en créant un front de flamme, qu'on fait progresser jusqu'à un certain point, et à provoquer l'écoulement, à travers une zone de traitement, des fluides dont le pétrole, vers un certain nombre de puits de production par lesquels les fluides sont extraits.
  • Le procédé selon cette invention proposée est caractérisé en ce que, lorsque le gaz entretenant la combustion est de l'oxygène, on l'introduit par un conduit distinct et séparé du puits d'injection, ce conduit partant de la surface, traversant les morts-terrains et arrivant séparément dans le gisement à proximité du puits d'injection.
  • L'installation d'application de ce procédé est caractérisée en ce qu'elle comprend également au moins un conduit d'oxygène distinct et séparé du puits d'injection, partant de la surface, traversant les morts-terrains et arrivant dans la zone de traitement en un point situé à une distance du puits d'injection beaucoup moindre que la distance entre un puits d'injection et un puits de production ledit conduit étant équipé de moyens pour introduire dans la formation de l'oxygène.
  • Selon le procédé de l'invention, la combustion in situ est régulée par la mise en place stratégique d'un ou plusieurs conduits de fluide, partant de la surface et traversant les morts-terrains pour arriver à la zone de traitement, en un point situé à une certaine distance du puits d'injection, le fluide de régulation étant introduit dans le gisement par l'intermédiaire dudit conduit, indépendamment du fluide injecté dans le puits d'injection. Selon un mode de réalisation préféré de l'invention, le fluide de régulation introduit est de l'oxygène, servant de gaz auxiliaire de combustion et remplaçant l'injection d'un gaz entretenant la combustion tel que l'air dans le puits d'injection. Dans ce cas, le conduit de fluide se trouve à proximité du puits d'injection, mais il en est séparé par une faible distance, de façon à permettre la mise en place, à la surface, d'un équipement de régulation distinct. Dans le cas d'un procédé de combustion par voie humide, on peut introduire alternativement l'oxygène et l'eau, l'oxygène étant envoyé par le conduit de fluide et l'eau par le puits d'injection.
  • Selon un autre mode de réalisation, quand, lors de la surveillance du front de flamme propagé par l'air provenant du puits d'injection, on détecte une zone froide dans laquelle le front de flamme se déplace par exemple trop lentement pour s'immiscer dans la géométrie de la disposition d'implantation de puits et pour l'efficacité du balayage, on place un conduit de fluide de régulation dans cette zone, et on introduit de l'oxygène pour accélérer le front de flamme et améliorer le balayage. Ou bien encore, si lors de la surveillance, on voit que le front de flamme avance trop rapidement dans une certaine zone, on peut introduire un conduit de régulation dans cette zone et introduire des fluides appropriés pour ralentir le front de flamme et améliorer le balayage.
  • L'invention est de préférence utilisée avec un modèle classique de combustion in situ, de préférence une disposition d'implantation de puits du type à mailles à plusieurs puits, dans lequel on introduit de l'air et de l'eau dans un puits d'injection, qui part de la surface et traverse les morts-terrains pour arriver dans le gisement de pétrole, . dans une zone d'injection, dans des conditions conduisant à la combustion d'une partie du pétrole et à l'écoulement d'une partie du pétrole à travers une zone de traitement vers au moins un puits de production, disposé à une certaine distance du puits d'injection. Selon l'invention, on place d'une manière stratégique un conduit d'introduction d'oxygène, s'étendant de la surface et traversant les morts-terrains jusqu'au gisement de pétrole, dans la zone de traitement. Selon un mode de réalisation de l'invention, le conduit d'oxygène est placé à proximité du puits d'injection, mais à une distance suffisante pour que l'équipement de régulation de l'oxygène à la surface soit distinct de l'équipement de régulation relativement complexe se trouvant à la tête du puits d'injection. Par exemple, dans une disposition d'implantation de puits du type à mailles hexagonales à plusieurs puits, dans laquelle le puits d'injection est situé à environ 122 m de plusieurs, par exemple six puits de production, le conduit d'oxygène séparé peut se trouver à environ 3 à 4,6 m du puits d'injection.
  • Dans ce mode de réalisation, l'air et l'eau, dans un cycle de traitement représentatif, sont introduits alternativement dans le puits d'injection pour faire avancer le front de flamme jusqu'à un certain point. On arrête alors l'injection d'air, puis on utilise le puits d'injection pour introduire essentiellement uniquement de l'eau. On remplace l'air par de l'oxygène, qui est introduit dans le gisement par le conduit d'oxygène pour continuer l'avance du front de flamme.
  • L'invention concerne aussi un mode de récupération du pétrole à partir d'une formation sédimentaire souterraine par le procédé de combustion par voie humide, mode selon lequel on a un puits d'injection, équipé pour introduire de l'air, ou de l'eau, ou les deux, dans des conditions assurant la combustion d'une partie du pétrole par l'air, et un certain nombre de puits de production, disposés à une certaine distance du puits d'injection, vers lesquels on fait s'écouler le pétrole à travers une zone de traitement. Un conduit d'oxygène séparé part de la surface, traverse les morts-terrains et arrive dans la zone de traitement de la formation, en un point situé à une certaine distance, relativement faible, du puits d'injection. Le puits d'injection est équipé d'un appareillage de régulation classique, relativement complexe, de l'air et de l'eau. Le fait que le conduit d'oxygène soit séparé simplifie considérablement le système de régulation à la surface tant pour le puits d'injection d'air que pour le conduit d'oxygène.
  • L'invention sera mieux comprise au vu de la description qui suit et des dessins annexés, qui représentent des exemples de réalisation de l'invention, dessins dans lesquels :
    • la figure 1 est un schéma, en vue de dessus, illustrant une disposition d'implantation de trois mailles de puits, équipés selon l'invention ;
    • la figure 2 est une coupe verticale schématique d'une formation souterraine sédimentaire, à grande échelle ;
    • la figure 3 est un diagramme schématique montrant une courbe représentative de la répartition des températures dans une formation qui a subi un procédé classique de combustion in situ, à l'échelle de la figure 2 ;
    • la figure 4 est une coupe verticale schématique, partiellement en élévation, d'une formation dans laquelle est placée une installation de combustion par voie humide équipée selon l'invention ;
    • la figure 5 est une coupe verticale d'un injecteur de sécurité selon l'invention.
  • La figure 1 représente une disposition d'implantation de puits « à trois mailles», comprenant trois puits d'injection A, A1 et A2. Une série de puits de production B sont placés par exemple d'une manière symétrique par rapport au puits d'injection A, à une certaine distance de ce dernier. On injecte de l'air à travers le puits d'injection A dans la formation souterraine dans une zone d'injection, pour permettre la combustion du pétrole. Les puits de production B se trouvant dans les zones de production sont équipés de moyens de pompage de sorte que, quand la combustion commence au voisinage du puits d'injection A, les fluides, qui comprennent des produits de combustion, de l'eau, de la vapeur et du pétrole, sont entraînés de la zone d'injection au voisinage du puits A, à travers une zone de traitement, pour arriver à une zone de production au puits B. Un front de flamme est produit dans la zone de traitement entre la zone d'injection et la zone de production.
  • Selon un mode représentatif d'une combustion classique par voie humide, on effectue un cycle selon lequel on introduit de l'air pendant deux jours, puis de l'eau pendant un jour, et l'on répète ce cycle d'une manière continue pendant plusieurs mois ou plusieurs années. Par exemple, le puits d'injection A est situé au centre de la maille et les puits de production B se trouvent aux coins de l'hexagone, à une distance d'environ 122 m. La formation pétrolifère peut se trouver à de plusieurs dizaines à plusieurs centaines de mètres de la surface, par exemple à 610 m. L'épaisseur de la formation peut aller d'un minimum de 0,3 m à plus de 30 m. Par exemple, la plus grande partie du pétrole que l'on rencontre dans la zone de Lloydminister se présente dans des formations d'épaisseur d'environ 6 m. L'exploitation peut se continuer pendant plusieurs mois avant que ne commence la récupération, dans les puits de production, du pétrole provenant de la combustion in situ.
  • Selon l'invention, un conduit d'oxygène C part de la surface, traverse les morts-terrains et arrive dans le gisement de pétrole, dans la zone de traitement, à une certaine distance, relativement faible, du puits d'injection A. Par exemple, dans la disposition d'implantation représentée, le conduit d'oxygène C peut être à 4,6 m du puits d'injection.
  • Bien que cette distance ne soit pas critique, il n'en reste pas moins qu'il est souhaitable que le conduit d'oxygène se trouve à une certaine distance du puits d'injection de façon à permettre de réaliser d'une manière indépendante l'exploitation de l'un et de l'autre. Dans tous les cas, un fluide doit s'écouler en permanence à travers le conduit d'oxygène et à travers le puits d'injection. Selon l'invention, une fois que le front de flamme a avancé dans la zone de traitement, jusqu'au point souhaité, on arrête l'injection d'air et d'eau dans le puits d'injection A et on introduit de l'oxygène dans le conduit d'oxygène, en alternance avec l'injection d'eau dans le puits d'injection.
  • Dans une opération caractéristique de démarrage, on met en marche les pompes du puits de production et on extrait une certaine quantité de pétrole avant la combustion in situ. On peut ensuite allumer la flamme, par exemple en descendant un brûleur à gaz dans le puits d'injection, en envoyant de l'air ou du gaz naturel pour favoriser la combustion. Le brûleur peut ou bien rester en place, ou bien être récupéré, selon les circonstances.
  • La figure 2 est une vue théorique de ce qui se passe lors d'une combustion in situ par voie humide. Cette figure est une coupe verticale d'une formation souterraine sédimentaire contenant du pétrole, également dénommée gisement de pétrole, qui a subi une combustion par voie humide. La formation se compose d'une zone d'injection entourant le puits d'injection A, destiné à introduire de l'air pour entretenir la combustion du pétrole dans le gisement et de l'eau pour modifier le transfert de chaleur selon la méthode de combustion par voie humide, et d'une zone de production entourant le puits de production B, destiné à extraire les fluides poussés en avant par le front de flamme. Entre ces deux zones se trouve une zone de traitement, et les différentes matières composant cette zone, à un stade particulier de l'exploitation, sont indiquées par des légendes sur la figure. Selon l'invention, un tube d'injection de gaz C est placé d'une manière stratégique dans la zone de traitement pour introduire l'oxygène destiné à favoriser la combustion ou réguler l'avance du front de flamme, comme on va le décrire en détail ci-après. Par exemple, dès que le front de flamme est arrivé en un certain point (voir figure 2), on peut placer un conduit d'oxygène, de façon à ce qu'il pénètre dans la région brûlée, puis introduire de l'oxygène pour favoriser la combustion, oxygène qui remplacera l'air injecté dans le puits A. Dans le cas d'une combustion par voie humide, on peut alterner l'introduction d'oxygène dans le conduit d'oxygène et l'introduction d'eau dans le puits d'injection. Une méthode représentative pourrait comprendre deux jours d'injection d'oxygène et un jour d'injection d'eau, pendant toute la période de traitement, qui peut durer jusqu'à plusieurs années.
  • Dans la disposition d'implantation du type comportant trois mailles à sept puits représentée à la figure 1, le puits d'injection A est à environ 125 m (a) du puits de production B. La zone de traitement, entre le puits A et les puits B, couvre environ 4 hectares. L'épaisseur de la formation sédimentaire est comprise entre 0,3 et 30 m, et elle peut être à une profondeur d'environ 610 m, en étant recouverte par des morts-terrains dans lesquels il peut y avoir des formations pétrolifères sédimentaires supplémentaires séparées par de la roche. Le conduit d'oxygène C doit être placé à environ 3,0 à 4,6 m du puits d'injection.
  • La figure 4 représente une installation selon l'invention, en coupe verticale, dans une formation souterraine. Sur cette figure, le repère A désigne un puits d'injection d'air-eau. Le puits est formé d'un puits de forage, garni d'un cuvelage en acier 15, qui part de la surface, descend à travers les morts-terrains et arrive dans la formation sédimentaire souterraine dans laquelle se trouve le gisement de pétrole. Le trou de forage, à l'extérieur du cuvelage 15, est rempli d'une manière appropriée de matériaux de remplissage standards qui forment une enveloppe 17 doublant intérieurement le trou de forage. L'enveloppe 17 est garnie de perforations 19 pour permettre aux fluides de sortir du trou de forage. Le cuvelage 15 est garni d'un sabot de cuvelage 21. Un tube garni 23 part d'une tête de puits 25, située à la surface, pour arriver à un « packer récupérable 26, dont l'extrémité inférieure est centrée dans l'enveloppe 17. Une conduite d'air et d'eau 27 part d'une unité d'injection, et peut envoyer à la tête de puits 25 de l'air ou de l'eau sous pression. Des robinets-vannes 29 et 31 sont prévus, de même que des clapets de retenue 33 et des vannes à passage intégral 35 et 36 pour réguler l'écoulement d'air ou d'eau vers le tube 23. Les appareils placés au-dessus du puits A sont fréquemment appelés « arbre de Noël ».
  • A une certaine distance du puits d'injection A, est placé un conduit d'oxygène C, formé d'un trou de forage logeant un cuvelage en acier 37 et une enveloppe en béton 36 remplissant l'espace entre le trou de forage et le cuvelage. Un tube d'oxygène 41, qui se prolonge au-delà du cuvelage 37 et traverse un « packer » récupérable 43 pour ressortir par le bas, s'étend dans le trou de forage. Le tube d'oxygène part de la surface, traverse les morts-terrains et pénètre dans la formation sédimentaire souterraine, dans la zone de traitement se trouvant entre le puits d'injection A et les puits de production B. Une conduite d'alimentation en oxygène 45 part d'une source d'oxygène sous pression, traverse une vanne à passage intégral 47 et arrive au tube d'oxygène 41. Comme, seul de l'oxygène est introduit dans le conduit C, le tube 41 n'a pas besoin d'être réalisé en un acier inoxydable onéreux tel que celui qui est nécessaire pour le puits d'injection A où la présence d'eau provoque une corrosion. De plus, on n'a besoin que d'un équipement de régulation de l'oxygène relativement simple.
  • L'extrémité inférieure du tube d'oxygène possède un injecteur de sécurité D, qui est décrit en détail ci-après.
  • La figure 5 est une coupe verticale partielle agrandie du fond du conduit d'oxygène. L'extrê- mité du tube 41 porte un filetage extérieur destiné à recevoir un organe connecteur 51 cylindrique sur toute sa longueur. L'organe 51 possède un alésage intérieur, lequel possède une partie cylindrique 53, élargie et taraudée, engrénant avec l'extrémité du tuyau 41. L'alésage se rétrécit en une partie tronconique 54 pour arriver à une gorge 55, qui définit l'entrée d'un passage cylindrique central étranglé 57. L'extrémité inférieure de l'élément 51 possède un évidement annulaire 58, qui reçoit l'extrémité d'un tuyau 59 en alliage de nickel. Le tuyau 59 et l'organe connecteur 51 sont soudés l'un à l'autre en 61.
  • Un élément de bout 63 est monté à l'extrémité inférieure du tuyau 59. L'élément 63 possède un corps cylindrique sur toute sa longueur, avec un évidement annulaire supérieur 60 recevant l'extrémité du tuyau 59. L'élément 63 et le tuyau 59 sont soudés l'un à l'autre en 65. Le corps de l'élément 63 possède un passage central, lequel possède une partie tronconique supérieure 67 se rétrécissant jusqu'à une courte gorge cylindrique 69, puis s'élargissant en une partie tronconique 71 se terminant par une partie tronconique plus courte et plus large 73. Les pièces 51 et 63 sont en un alliage de nickel non fissurable.
  • Les dimensions du conduit d'oxygène dépendent pour une grande part de la force nécessaire à la traction du « packer ». Le diamètre le plus petit serait d'environ 51 mm, le plus grand de 254 mm, 178 mm correspondant à un diamètre intermédiaire pratique. Ce diamètre doit être suffisant pour permettre d'introduire du ciment. En ce qui concerne l'introduction de l'oxygène, il suffit d'un tube d'un diamètre de 51 mm. Le diamètre maximum correspond à un conduit qui peut faire partie du puits proprement dit et être quand même cimenté. Pour favoriser la combustion, la pression est généralement la même que celle de l'air, et elle est comprise entre 28 et 70 kg/cm2. Une méthode de calcul empirique permet de calculer la pression, qui sera d'environ une demi-livre pour 30 cm de profondeur. La pression spécifique dépend à la fois de la profondeur et de la porosité de la formation. Les trous de forage peuvent avoir un diamètre quelconque. Il est prévu un piston plongeur pour chasser le ciment. Une unité se trouvant à la surface fournit de l'oxygène à basse pression à raison d'au moins 18 tonnes par jour, et le comprime à une pression de 28 à 70 kg/cm2. Le conduit d'oxygène doit être équipé de façon à permettre le remplacement rapide de l'oxygène par d'autres fluides.
  • Pour des raisons de sécurité, au moins une partie du passage, à travers lequel le gaz contenant l'oxygène est introduit, doit être étranglée de façon à avoir un diamètre tel que la vitesse du gaz soit supérieure à la vitesse maximum de la flamme susceptible de se produire. C'est ce que l'on obtient en utilisant un injecteur tel que celui décrit sur la figure 5. Cet injecteur possède des gorges étranglées, disposées en série, suivies d'un orifice de sortie de diamètre croissant destiné à permettre la détente du gaz dans le but de diminuer sa vitesse et réduire au maximum l'effet de sablage à l'intérieur du cuvelage.
  • L'injecteur de sécurité tel que représenté est utilisable, non seulement pour l'oxygène, mais aussi pour l'oxygène mélangé à un autre fluide présentant des propriétés souhaitables pour la combustion in situ d'un gisement d'hydrocarbures, par exemple CO2, N2 air, H20, etc...
  • Le tube en aval du « packer doit résister à la fissuration au contact de l'oxygène, à la chaleur, à la corrosion et à l'érosion. Outre celà, le tube doit présenter une sécurité maximum. Dans une formation d'hydrocarbures, par exemple, il peut se produire des perturbations et y avoir des suintements de combustibles à l'intérieur et autour du tube d'injection.'
  • Un hydrocarbure peut brûler en présence d'air en donnant une flamme ayant une certaine vitesse. Si ce même hydrocarbure brûle avec de l'oxygène, sa vitesse de propagation de flamme peut être beaucoup plus élevée. Par exemple, le mélange méthane-air donne une vitesse maximum de propagation de flamme de 0,46 m/s, tandis que la flamme méthane-oxygène présente une vitesse maximum de propagation de 4,57 m/s. Le mélange hydrogène-air présente une vitesse maximum de propagation de flamme de 3 m/s, tandis que la flamme hydrogène-oxygène présente une vitesse maximum de propagation de flamme de 14 m/s. Comme, parmi les différentes espèces possibles que l'on peut rencontrer dans une formation d'hydrocarbures lors d'une combustion in situ, c'est le mélange hydrogène-oxygène qui donne une flamme ayant la vitesse de propagation maximum la plus élevée, il est impératif, du point de vue de la sécurité, de prendre ses précautions contre la vitesse de propagation de cette flamme.
  • Un autre facteur qu'il convient de prendre en considération est l'effet de la pression sur la vitesse de propagation de la flamme. Par exemple, la vitesse de propagation de la flamme H2-02 est d'environ 19,81 m/s sous une pression de 21 kg/cm2, d'environ 28,35 m/s sous une pression de 63 kg/cm2, et de 30,48 m/s sous une pression de 105 kg/cm2.
  • Lors de la conception des tubes d'injection au fond du forage, il faut en outre prendre en compte la résistance mécanique. Pour obtenir la résistance mécanique voulue, le diamètre intérieur du tube est généralement trop grand, de façon à permettre au gaz oxydant de s'écouler à une vitesse suffisamment élevée pour éviter un retour de flamme dans le tube. Dans ce cas, on peut installer une buse à la sortie du tube, pour accélérer le gaz oxydant jusqu'à une vitesse supérieure à la vitesse maximum de propagation de la flamme, pour éviter un retour de flamme dans le tube. Pour avoir une sécurité supplémentaire, on peut placer une ou plusieurs autres buses en amont de la buse de sortie, pour résister à tout retour de flamme.
  • Si le débit du gaz oxydant à travers le tube (qui présente une résistance mécanique suffisante) est suffisamment élevé pour que la vitesse du gaz soit plus grande que la vitesse maximum prévue de propagation de la flamme susceptible de se trouver au niveau du puits d'injection, il n'est pas nécessaire de faire appel à des buses accélérant le gaz oxydant.
  • Ces buses peuvent se présenter sous la forme d'un alésage droit, ou bien elles peuvent être d'un type à venturi, tel que celui représenté sur la figure 5, destiné à éviter les fissurations au contact de l'oxygène qui diminueraient la résistance mécanique, et à empêcher tout retour de flamme dans le tube.
  • De préférence, on choisira par exemple le monel, pour sa résistance à la combustion au contact de l'oxygène gazeux. De plus, il est relativement résistant à la corrosion. On utilise un tube de diamètre de 50,8 mm, nomenclature 80 (c'est-à-dire un tube ayant un diamètre externe de 60,31 mm et un diamètre interne de 49,21 mm, l'espacement de ses parois étant de 5,5 mm), pour sa résistance mécanique, car il présente une longueur libre de 550 m.
  • Pour éviter un retour de flamme, on place une buse à venturi au fond, à l'orifice de sortie de l'injecteur. A titre de sécurité complémentaire, on place une autre buse en amont.
  • L'injecteur est conçu par exemple pour un débit d'oxygène de 84 950 m3/jour sous une pression de 31,5 kg/cm2 à la température ambiante. Pour être certain que l'on évitera le retour de flamme grâce à l'une ou l'autre des deux buses, la gorge de la buse à venturi présente un diamètre d'environ 11,4 mm, ce qui permet au gaz oxydant d'avoir une vitesse de 30,5 m/s, vitesse qui est plus élevée que toute vitesse de propagation de flamme que l'on peut rencontrer au fond d'un puits d'injection ou d'un conduit d'oxygène.
  • L'orifice ou les orifices de sortie de l'injecteur peuvent se présenter sous la forme d'un ou plusieurs trous. Chaque trou doit être dimensionné de façon à donner au gaz oxydant injecté une vitesse supérieure à la vitesse maximum de propagation de flamme que l'on peut rencontrer.
  • L'injecteur au fond du trou ne peut être utilisé que pour le gaz oxydant ou un mélange de gaz, ou bien il peut être utilisé en alternance avec une injection d'eau, de manière intermittente. Par exemple, il peut être utilisé pour le gaz oxydant et le mélange de gaz avec les autres fluides injectés (par exemple H20 et/ou air), injectés dans la formation par un autre puits d'injéction. Dans ce cas, l'eau, l'air ou les autres fluides n'ont pas besoin d'être exempts d'hydrocarbures (par exemple de pétrole). Par ailleurs, si tous les fluides destinés au puits d'injection doivent être injectés dans la formation en n'utilisant que ce seul injecteur, tous les fluides devront être exempts de pétrole, en particulier quand le gaz oxydant est l'oxygène.
  • L'invention est caractérisée par l'introduction, définie d'une manière stratégique, de l'oxygène en remplacement de l'air en tant que gaz favorisant la combustion ; par oxygène, on entend ici un oxygène ayant une concentration en volume de 90 % (dans les conditions normales), ou plus, et de préférence une concentration d'au moins 99,5 %.
  • Le fait d'utiliser un conduit d'oxygène séparé permet, par rapport à un puits d'injection équipé pour injecter de l'air et de l'eau, d'introduire d'une manière sélective l'oxygène sans faire appel aux dépenses très élevées, du point de vue technique et matériel, d'un puits d'injection équipé pour l'injection d'oxygène. Par exemple, du fait de la présence d'éléments et de composés corrosifs dans l'eau, qui, en présence d'oxygène, ont tendance à accélérer l'action de la corrosion, il est nécessaire d'utiliser dans un puits d'injection des matériaux donnant une protection suffisante contre la corrosion. Ces matériaux peuvent être par exemple des aciers inoxydables, de l'inconel, du monel, de l'haystellite, etc. De plus, la présence de pétrole dans l'air éjecté, provoquée par la lubrification du compresseur d'air, peut, en présence d'oxygène, créer un risque d'explosion. Pour résoudre ce problème, il faut faire appel à des filtres à huiles spéciaux. L'installation nécessaire, pour des raisons de sécurité, à la régulation des débits de l'air et/ou de l'oxygène exige une installation complexe en surface.
  • Si l'on utilise un conduit séparé pour l'injection de l'oxygène, on évite ces problèmes. L'eau ne s'écoule pas à travers le conduit d'oxygène, de sorte que ce dernier est entièrement sec et il n'est pas nécessaire d'utiliser des matériaux anti-corrosion. On peut donc utiliser des tubes en acier moins cher. Compte tenu du coût relativement plus faible de ce conduit d'oxygène, on peut en utiliser plusieurs en des points successifs au fur et à mesure de l'avance du front de flamme. Il peut aussi être souhaitable, dans certaines conditions, d'utiliser de l'oxygène avec différentes concentrations d'air, d'azote ou de dioxyde de carbone ou d'autre gaz en un ou plusieurs points de la disposition d'implantation de puits de façon à produire des effets spéciaux tels que décrits dans la présente invention.
  • Le rendement théorique de balayage que l'on peut obtenir avec de l'oxygène est d'environ 45 à 50 %, ce qui est considérablement plus faible que quand on utilise de l'air. En effet, il y a moins de ballast d'azote et une pression partielle de C02 plus élevée dans l'oxygène combiné au coke. Il y a plus de C02 dans le pétrole, ce qui diminue sa viscosité, augmente le débit de production et diminue l'entraînement d'azote dans le puits de production. Il est difficile de dissoudre l'émulsion qui se forme au niveau du puits de production quand on utilise de l'air en tant que gaz favorisant la combustion. Quand on utilise de l'oxygène, l'émulsion formée est plus facile à dissoudre. Le produit sortant du puits de production, quand on utilise l'air, contient du pétrole et du sable, de l'eau, du gaz, du C02 et de l'azote, un peu de méthane, un peu d'hydrogène et un peu de soufre. Quand on utilise de l'oxygène, il y a très peu d'azote, plus de CO2, moins de sable, d'eau et de méthane. Le débit critique d'air serait d'environ 5 660 m3 par puits et par jour. Avec ce même débit critique, on a cinq fois plus d'oxygène, un débit de production plus élevé, un entraînement plus faible et on récupère un tiers de plus de pétrole.
  • Les différents avantages qu'il y a à utiliser l'oxygène, par rapport à l'air, dans une combustion in situ, ont été décrits dans le brevet canadien N° 770 434, Moore du 31 octobre 1967, et dans le brevet des Etats-Unis d'Amérique N° 3 208 519, Moore du 28 septembre 1965. Ces brevets décrivent les avantages qu'il y a à utiliser de l'oxygène ou un gaz contenant jusqu'à 80 % d'oxygène libre. Cependant, le procédé de l'invention ne doit pas être confondu avec ceux décrits dans les brevets de Moore, qui utilisent un puits d'injection, à la fois pour l'oxygène et pour l'eau. Au contraire, selon l'invention, on effectue l'introduction de l'oxygène dans un conduit simple séparé dans lequel l'oxygène peut être envoyé par l'intermédiaire d'un train de tiges de faible coût, par exemple en acier doux au carbone. Le tube doit simplement présenter une résistance mécanique suffisante pour résister aux forces appliquées lors de son installation, et son orifice de sortie doit être convenablement façonné de façon à résister aux températures auxquelles il risque d'être exposé. Quand, par exemple, le conduit est installé en avant du front de flamme, le tube peut être protégé par une enveloppe d'eau ou un ciment épais. Il doit toujours y avoir un écoulement de fluide à travers le tube, de la même façon que dans le puits d'injection, pour éviter tout reflux dans le conduit. L'extrême souplesse d'utilisation d'un conduit de ce type pour l'injection d'oxygène ressort clairement de la description ci-dessus.
  • Il existe un certain nombre de brevets décrivant des variantes du procédé de combustion in situ, comportant l'injection d'autres substances en même temps que l'air et/ou l'eau, et il n'est pas jugé nécessaire de les étudier en détail, car elles sont connues dans la technique et n'affectent en rien la réalisation générale du procédé selon l'invention. En outre, il est bien entendu que la représentation de l'implantation des puits est simplifiée. On a représenté une disposition d'implantation de puits à trois mailles, mais il peut y avoir un nombre quelconque de mailles dans le plan d'implantation d'un champ. En outre, on n'a pas représenté les puits d'observations, qui sont souvent utilisés pour étudier la nature des formations sédimentaires souterraines. Il est bien entendu que les différents moyens utilisés dans ce but et pour surveiller l'avance du front de flamme peuvent être utilisés en combinaison avec l'invention.
  • L'utilisation d'un ou plusieurs conduits d'oxygène séparés permet aussi une grande souplesse pour l'injection de l'oxygène dans la formation, non seulement au-dessus de la zone de traitement, mais aussi à différents niveaux. Par exemple, des conduits peuvent aller jusqu'à des niveaux en dessous desquels l'eau est injectée dans le puits d'injection dans le cas d'une combustion par voie humide. Par exemple, l'oxygène peut être introduit au voisinage du fond du gisement de pétrole ou en des points intermédiaires. Quand l'eau a tendance à s'écouler vers le bas et l'oxygène vers le haut, une disposition de ce genre peut améliorer les interactions entre l'oxygène introduit et l'eau injectée en ce qui concerne la propagation et la régulation du front de flamme. Avec un simple conduit, le niveau de l'orifice de sortie peut être plus facilement ajusté qu'avec un puits d'injection.
  • Les critères concernant les quantités relatives d'oxygène et d'eau qu'il faut injecter aux différents stades de la combustion in situ et dans les différents états produits par cette dernière ont déjà été établis. D'une manière générale, le rapport entre l'eau et l'oxygène libre doit être inférieur à celui auquel la combustion s'éteindrait. Simultanément, il faut injecter suffisamment d'eau dans le puits d'injection pour maintenir la perméabilité à l'eau de la partie chauffée du gisement en arrière du front de flamme et pour réduire la température à l'intérieur de cette partie chauffée. Les quantités précises, pour un traitement donné, dépendent de différents facteurs, comme cela est étudié dans l'état actuel de la technique.

Claims (18)

1. Procédé de récupération de pétrole par combustion in situ à partir d'une formation sédimentaire constituant un gisement de pétrole selon lequel on introduit un gaz entretenant la combustion, tel que de l'air ou de l'air et de l'eau ou un gaz enrichi en oxygène ou de l'oxygène pur, par au moins un puits d'injection s'étendant à partir de la surface et traversant des morts-terrains jusqu'à l'intérieur du gisement, dans une zone d'injection de façon à brûler une partie du pétrole en créant un front de flamme qu'on fait progresser jusqu'à un certain point,.et à provoquer l'écoulement, à travers une zone de traitement, des fluides dont le pétrole, vers un certain nombre de puits de production par lesquels les fluides sont extraits, caractérisé en ce que, lorsque le gaz entretenant la combustion est de l'oxygène, on l'introduit par un conduit (C) distinct et séparé du puits d'injection, ce conduit partant de la surface, traversant les morts-terrains et arrivant séparément dans le gisement à proximité du puits d'injection (A, A1, A2).
2. Procédé suivant la revendication 1 dans lequel on introduit de l'air et de l'eau par le puits d'injection pour faire avancer le front de flamme jusqu'à un certain point, caractérisé en ce que, pour faire poursuivre l'avancement du front de flamme au-delà de ce point, on arrête l'introduction de l'eau et on introduit l'oxygène par son conduit (C) distinct et séparé.
3. Procédé suivant la revendication 2 caractérisé en ce que, pour faire progresser le front de flamme au-delà d'un certain point de la zone de traitement, on place un autre conduit (C) distinct en arrière du front de flamme, après son passage par ce point, et on introduit de l'oxygène par cet autre conduit, pour créer une source supplémentaire de chaleur en arrière dudit front de flamme.
4. Procédé suivant la revendication 1 caractérisé en ce que l'oxygène est injecté, dans le conduit d'oxygène (C) distinct et séparé, à une vitesse supérieure à la vitesse maximale de propagation de la flamme au voisinage immédiat de ce conduit d'oxygène (C).
5. Procédé suivant la revendication 1 caractérisé en ce que l'avancement du front de flamme à travers la zone de traitement est régulé par la mise en place de conduits d'oxygène (C) supplémentaires à l'intérieur de la zone de traitement, pour augmenter l'efficacité du balayage.
6. Procédé suivant la revendication 1 caractérisé en ce que, lorsque des irrégularités perturbatrices de la symétrie du schéma de la combustion in situ se produisent, on place au moins un conduit d'oxygène (C) séparé et distinct du puits d'injection (A, A,, A2) partant de la surface et traversant les morts-terrains jusque dans la zone de traitement, et on introduit de l'oxygène par ledit conduit (C) pour modifier l'avance du front de flamme, dans le but d'améliorer la symétrie du balayage.
7. Procédé suivant la revendication 1 caractérisé en ce que la symétrie du balayage est améliorée et régulée par la mise en place sélective de conduits d'oxygène (C) et par l'introduction d'oxygène par lesdits conduits (C).
8. Procédé suivant la revendication 1 dans lequel on démarre et on poursuit la combustion du pétrole dans le gisement par injection d'air dans le puits d'injection, caractérisé en ce qu'on arrête l'injection d'air et on introduit de l'oxygène par au moins un conduit (C) distinct et séparé du puits d'injection (A, A" A2) et on poursuit l'injection d'oxygène pour faire avancer le front de flamme à travers une autre partie de la zone de traitement.
9. Procédé suivant la revendication 1 dans lequel on introduit de l'eau en alternance avec l'air au fur et à mesure que le front de flamme avance à travers une première partie de la zone de traitement, caractérisé en ce qu'on injecte de l'eau dans le puits d'injection (A, A1, A2) en alternance avec l'introduction d'oxygène par le conduit d'oxygène (C).
10. Procédé suivant la revendication 1, caractérisé en ce qu'on introduit l'oxygène par son conduit (C) distinct et séparé afin d'améliorer le cheminement du front de flamme dans son avancement.
11. Procédé selon la revendication 1, caractérisé en ce qu'on introduit l'oxygène par son conduit (C) distinct et séparé à un niveau inférieur à celui auquel l'eau est injectée dans le puits d'injection (A, Ai, A2).
12. Procédé suivant la revendication 1 caractérisé en ce qu'on injecte l'oxygène par plusieurs conduits (C) distincts et séparés, à des niveaux respectivement différents, en-dessous du niveau auquel l'eau est injectée dans le puits d'injection (A, A1, A2).
13. Procédé suivant la revendication 1 caractérisé en ce que l'on introduit l'oxygène par des passages étranglés de façon à augmenter sa vitesse d'introduction dans la zone de traitement.
14. Installation d'application du procédé selon l'une quelconque des revendications précédentes, notamment pour la récupération de pétrole in situ à partir de formations sédimentaires souterraines contenant un gisement de pétrole, cette installation comprenant des puits de production (B) disposés de façon à former une disposition d'implantation de puits, et des puits d'injection (A, Ai, A2) partant de la surface, traversant les morts-terrains et arrivant dans le gisement dans une zone d'injection, les puits de production (B) étant équipés de moyens pour extraire des fluides de la formation et se trouvant dans une zone de production disposés à une distance a d'un puits d'injection, ces puits d'injection étant équipés de moyens pour injecter un gaz entretenant la combustion, tel que de l'air ou de l'air et de l'eau ou un gaz enrichi en oxygène, la zone de production étant de ce fait séparée de la zone d'injection par une zone de traitement, caractérisée en ce qu'elle comprend également au moins un conduit d'oxygène (C) distinct et séparé du puits d'injection (A, Ai, A2), partant de la surface, traversant les morts-terrains et arrivant dans la zone de traitement en un point situé à une distance du puits d'injection (A, AI, A2) beaucoup moindre que la distance a, ledit conduit (C) étant équipé de moyens pour introduire de l'oxygène dans la formation.
15. Installation suivant la revendication 14, caractérisée en ce que les moyens pour introduire l'oxygène comprennent un conduit d'oxygène (C) formé d'un puits de forage distinct et séparé des puits d'injection (A, A1' A2), contenant un tube d'oxygène (41) atteignant le fond du puits où il traverse un « packer » (43) pour sortir par le bas et se terminer par un injecteur de sécurité (D), le tube d'oxygène (41) étant raccordé à sa partie extrême supérieure, en dehors du puits, à travers une vanne (47), à un conduit d'alimentation en oxygène (45) partant d'une source d'oxygène sous pression.
16. Installation suivant la revendication 15 caractérisée en ce que l'injecteur de sécurité (D) comprend un organe connecteur cylindrique (51) présentant un alésage intérieur taraudé engrenant avec l'extrémité du tube (41), cet alésage se rétrécissant en une partie tronconique (54) pour arriver à une gorge (55) définissant l'entrée d'un passage cylindrique central (57), l'extrémité inférieure de l'élément (51) possédant un évidement annulaire (58) recevant l'extrémité d'un tuyau (59).
17. Installation suivant la revendication 16 caractérisée en ce que l'injecteur de sécurité (D) comporte également un élément de bout (63) monté à l'extrémité inférieure du tuyau (59), possédant un corps cylindrique pourvu d'un passage central pourvu d'une partie tronconique supérieure (67) se rétrécissant jusqu'à une courte gorge cylindrique (69), puis s'élargissant en une partie tronconique (71), de ce fait accusant la forme d'un élément de buse.
18. Installation selon la revendication 18 caractérisée en ce que l'extrémité de sortie (73) du passage aménagé dans l'élément de buse s'élargit pour permettre la détente 35 de l'oxygène à l'orifice de sortie du conduit d'oxygène (C).
EP82401680A 1981-09-18 1982-09-16 Procédé et installation de récupération du pétrole par combustion in situ Expired EP0075515B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT82401680T ATE16624T1 (de) 1981-09-18 1982-09-16 Verfahren und vorrichtung zur oelgewinnung durch verbrennung an ort und stelle.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CA000386166A CA1206411A (fr) 1981-09-18 1981-09-18 Procede d'extraction du petrole par combustion in situ
CA386166 1981-09-18

Publications (2)

Publication Number Publication Date
EP0075515A1 EP0075515A1 (fr) 1983-03-30
EP0075515B1 true EP0075515B1 (fr) 1985-11-21

Family

ID=4120987

Family Applications (1)

Application Number Title Priority Date Filing Date
EP82401680A Expired EP0075515B1 (fr) 1981-09-18 1982-09-16 Procédé et installation de récupération du pétrole par combustion in situ

Country Status (9)

Country Link
US (1) US4557329A (fr)
EP (1) EP0075515B1 (fr)
AT (1) ATE16624T1 (fr)
BR (1) BR8205528A (fr)
CA (1) CA1206411A (fr)
DE (1) DE3267617D1 (fr)
EG (1) EG16308A (fr)
NO (1) NO162091C (fr)
OA (1) OA07214A (fr)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4691773A (en) * 1984-10-04 1987-09-08 Ward Douglas & Co. Inc. Insitu wet combustion process for recovery of heavy oils
CA1289868C (fr) * 1987-01-13 1991-10-01 Robert Lee Extraction du petrole
US6296453B1 (en) * 1999-08-23 2001-10-02 James Layman Production booster in a flow line choke
US6708763B2 (en) * 2002-03-13 2004-03-23 Weatherford/Lamb, Inc. Method and apparatus for injecting steam into a geological formation
CN1993534B (zh) * 2004-06-07 2011-10-12 阿克恩科技有限公司 油田改进的就地燃烧工艺
US7817757B2 (en) * 2006-05-30 2010-10-19 Fujitsu Limited System and method for independently adjusting multiple offset compensations applied to a signal
US8127842B2 (en) * 2008-08-12 2012-03-06 Linde Aktiengesellschaft Bitumen production method
US8256537B2 (en) * 2009-02-16 2012-09-04 John Adam Blasting lateral holes from existing well bores
CA2709241C (fr) * 2009-07-17 2015-11-10 Conocophillips Company Combustion in situ avec multiples puits producteurs etages
CA2713703C (fr) * 2009-09-24 2013-06-25 Conocophillips Company Configuration de puits en arete pour combustion sur place
CN112196505A (zh) * 2020-09-04 2021-01-08 中国石油工程建设有限公司 一种油藏原位转化制氢系统及其制氢工艺
CN115075790A (zh) * 2021-03-15 2022-09-20 中国石油天然气股份有限公司 火驱油层燃烧状态的判断方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA739768A (en) * 1966-08-02 Pan American Petroleum Corporation Underground combustion method
US3007520A (en) * 1957-10-28 1961-11-07 Phillips Petroleum Co In situ combustion technique
US2999539A (en) * 1957-11-07 1961-09-12 Phillips Petroleum Co In situ combustion process
US2994375A (en) * 1957-12-23 1961-08-01 Phillips Petroleum Co Recovery of hydrocarbons by in situ combustion
US2994376A (en) * 1957-12-27 1961-08-01 Phillips Petroleum Co In situ combustion process
US2994377A (en) * 1958-03-24 1961-08-01 Phillips Petroleum Co In situ combustion in carbonaceous strata
US3150715A (en) * 1959-09-30 1964-09-29 Shell Oil Co Oil recovery by in situ combustion with water injection
US3208519A (en) * 1961-07-17 1965-09-28 Exxon Production Research Co Combined in situ combustion-water injection oil recovery process
US3171479A (en) * 1962-04-30 1965-03-02 Pan American Petroleum Corp Method of forward in situ combustion utilizing air-water injection mixtures
US3272261A (en) * 1963-12-13 1966-09-13 Gulf Research Development Co Process for recovery of oil
FR1473669A (fr) * 1966-03-31 1967-03-17 Deutsche Erdoel Ag Procédé pour l'épuisement intégral des gisements de pétrole
US3438437A (en) * 1966-07-11 1969-04-15 Carl Edward Christofferson Convector type heat exchanger
US3441083A (en) * 1967-11-09 1969-04-29 Tenneco Oil Co Method of recovering hydrocarbon fluids from a subterranean formation
CA1034485A (fr) * 1976-02-02 1978-07-11 Bradford C. White Gazeification des sables bitumineux
DE2615874B2 (de) * 1976-04-10 1978-10-19 Deutsche Texaco Ag, 2000 Hamburg Anwendung eines Verfahrens zum Gewinnen von Erdöl und Bitumen aus unterirdischen Lagerstätten mittels einer Verbrennungfront bei Lagerstätten beliebigen Gehalts an intermediären Kohlenwasserstoffen im Rohöl bzw. Bitumen
US4099567A (en) * 1977-05-27 1978-07-11 In Situ Technology, Inc. Generating medium BTU gas from coal in situ
US4418751A (en) * 1982-03-31 1983-12-06 Atlantic Richfield Company In-situ combustion process

Also Published As

Publication number Publication date
US4557329A (en) 1985-12-10
EP0075515A1 (fr) 1983-03-30
ATE16624T1 (de) 1985-12-15
BR8205528A (pt) 1983-08-30
NO162091B (no) 1989-07-24
EG16308A (en) 1991-06-30
NO823162L (no) 1983-03-21
NO162091C (no) 1989-11-01
CA1206411A (fr) 1986-06-24
DE3267617D1 (en) 1986-01-02
OA07214A (fr) 1984-08-31

Similar Documents

Publication Publication Date Title
EP0075515B1 (fr) Procédé et installation de récupération du pétrole par combustion in situ
CN102348866B (zh) 流体的注入
US8794321B2 (en) Combustion thermal generator and systems and methods for enhanced oil recovery
RU2263774C2 (ru) Способ получения углеводородов из богатой органическими соединениями породы
US4366864A (en) Method for recovery of hydrocarbons from oil-bearing limestone or dolomite
FR2621350A1 (fr) Methode d'exploitation de gisements renfermant de l'hydrogene sulfure
US20100181069A1 (en) Apparatus and method for downhole steam generation and enhanced oil recovery
RU2306410C1 (ru) Способ термической разработки месторождений газовых гидратов
NO312481B1 (no) Fremgangsmåter for utvinning av hydrokarboner fra underjordiske formasjoner
RU2060378C1 (ru) Способ разработки нефтяного пласта
RU2602857C2 (ru) Обсадной хвостовик для подземной газификации угля
FR2492452A1 (fr) Procede pour assister la recuperation de petrole dans une formation petrolifere
JP2014502322A (ja) ハイドレートからメタンガスを回収するinSituの方法
RU2444619C1 (ru) Способ извлечения сжиженного или газифицированного углеводорода из подземного углеводородного коллектора (варианты)
CN108026766A (zh) 用于重油采收的移动注入重力泄油
FR2723980A1 (fr) Procede de traitement d'une formation souterraine par agrandissement de fractures
CN104533368A (zh) 一种火烧油层烟道气在油藏开采中的应用及系统
US9115579B2 (en) Apparatus and method for downhole steam generation and enhanced oil recovery
FR2497267A1 (fr) Procede d'exploitation miniere d'un gisement de petrole avec injection d'un caloporteur, et produit extrait par ledit procede
CN107461189B (zh) 一种煤炭地下气化深孔点火系统及点火方法
CN104594864A (zh) 一种火烧油层开采厚层油藏的方法
RU2403382C1 (ru) Способ разработки месторождения высоковязкой нефти
CN104632177A (zh) 一种无井式煤炭地下气化系统及工艺
EP0229434B1 (fr) Procédé concernant l'amélioration du conditionnement des agents gazéifiants utilisés dans les procédés de gazéification souterraine du charbon
RU2405104C1 (ru) Способ разработки месторождения высоковязкой нефти

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19820920

AK Designated contracting states

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

ITF It: translation for a ep patent filed

Owner name: BARZANO' E ZANARDO MILANO S.P.A.

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

REF Corresponds to:

Ref document number: 16624

Country of ref document: AT

Date of ref document: 19851215

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3267617

Country of ref document: DE

Date of ref document: 19860102

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19860930

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19900814

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19900815

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19900816

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 19900828

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19900930

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19910917

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19910930

Ref country code: CH

Effective date: 19910930

Ref country code: BE

Effective date: 19910930

BERE Be: lapsed

Owner name: CANADIAN LIQUID AIR LTD AIR LIQUIDE CANADA LTEE

Effective date: 19910930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19920401

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19920807

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19920811

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19920814

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19920819

Year of fee payment: 11

ITTA It: last paid annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19930916

Ref country code: AT

Effective date: 19930916

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19930916

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19940531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19940601

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

EUG Se: european patent has lapsed

Ref document number: 82401680.2

Effective date: 19920408