EP0070853A1 - Installation for the continuous testing of optical fibres - Google Patents

Installation for the continuous testing of optical fibres

Info

Publication number
EP0070853A1
EP0070853A1 EP19820900389 EP82900389A EP0070853A1 EP 0070853 A1 EP0070853 A1 EP 0070853A1 EP 19820900389 EP19820900389 EP 19820900389 EP 82900389 A EP82900389 A EP 82900389A EP 0070853 A1 EP0070853 A1 EP 0070853A1
Authority
EP
European Patent Office
Prior art keywords
fiber
detector
light
light source
installation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP19820900389
Other languages
German (de)
French (fr)
Inventor
Wilhelm Georg Hermann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koninklijke Philips NV
Original Assignee
Philips Gloeilampenfabrieken NV
Koninklijke Philips Electronics NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Philips Gloeilampenfabrieken NV, Koninklijke Philips Electronics NV filed Critical Philips Gloeilampenfabrieken NV
Publication of EP0070853A1 publication Critical patent/EP0070853A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/30Testing of optical devices, constituted by fibre optics or optical waveguides
    • G01M11/35Testing of optical devices, constituted by fibre optics or optical waveguides in which light is transversely coupled into or out of the fibre or waveguide, e.g. using integrating spheres
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4298Coupling light guides with opto-electronic elements coupling with non-coherent light sources and/or radiation detectors, e.g. lamps, incandescent bulbs, scintillation chambers

Definitions

  • the invention relates to a device for the continuous examination of optical fibers, in which light is coupled into the fiber from a light source and subsequently emerging scattered light is detected by means of a detector.
  • Such devices are known, e.g. from the
  • a similar direction is also known from DE-AS 24 51 654.
  • a piece of the fiber to be examined is arranged there in a stationary manner and light is fed into the fiber.
  • a movable measuring device now allows. To locate stray light spots on the fiber. However, a continuous measurement is not possible.
  • the invention is therefore based on the object of improving a device of the type mentioned at the outset according to DE-AS 2744 219 in such a way that it is possible to examine for defects at the very beginning of the production process in order to be able to influence the process as early as possible.
  • FIG. 1 shows the basic structure of the device
  • FIG. 2 shows a first embodiment of the detector
  • FIG. 3 shows a second embodiment of the detector
  • FIG. 4 shows a third embodiment of the detector.
  • a fore 1 of the later ep. Fiber is heated to about 2100 ° C in a drawing furnace 2 and drawn into a fiber 3. In drawing furnace 2, light is coupled into the fiber and passed on in the fiber. Are on the surface or inside the fiber
  • the fiber After pulling the fiber, there is a log that provides information about where the faults are and how big they are. c.
  • the fiber can be marked in color at the points at which faults were found, so that these points are quickly accessible for subsequent examination (cause of the fault).
  • the drawing parameters for example the protective gas stream in the furnace, can be optimized so that a fiber with minimal disturbances is obtained.
  • the store locations can also be found without color coding, since the positions are also included in the log.
  • lens optics are used.
  • the fiber 3 is introduced into a housing 14 through an inlet opening 13.
  • a first lens 15 images a piece of the fiber onto a pinhole 16. This is imaged on a photocell 18 by a second lens 17.
  • the light emerging from a defect 19 is converted into an electrical signal at the output 20.
  • the fiber 3 leaves the housing 14 through an opening 21.
  • FIG. 3 shows another embodiment of a detector, an Ulbricht sphere being used so that all directions of the scattered light can be detected.
  • the fiber 3 enters an Ulbricht sphere 23, an ⁇ oto cell 18 converting stray light into an electrical signal.
  • Shields 24 reduce interfering light from the environment.
  • FIG. 4 shows a further detection possibility in which an internally mirrored rotational ellipsoid 26 is used in order to image scattered light from a scattering point 27 of the fiber 3 onto the photocell 18 and to convert it into an electrical signal.
  • the protective tubes 28 serve to suppress stray light.
  • a major advantage of the proposed device is that it allows the information obtained directly when the fiber is drawn to be used for process optimization. You do not have to wait until a fiber with defects is produced, but you can ensure good, error-free quality during production by appropriate process control. Another advantage is that no additional costly examination step is necessary is to get this quality information so that the entire production can be controlled and optimized. The fiber is measured without a coating and is not mechanically loaded.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Surface Treatment Of Glass Fibres Or Filaments (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)

Abstract

Dans une installation pour l'examen en continu de fibres optiques, une source de lumiere est couplee a une fibre etiree dans un four d'etirage et une lumiere de fuite est detectee par un detecteur. Le four d'etirage et la source de lumiere constituent une unite integree et le detecteur est agence en prise directe sur cette unite.In an installation for the continuous examination of optical fibers, a light source is coupled to a drawn fiber in a drawing furnace and a leak light is detected by a detector. The drawing furnace and the light source constitute an integrated unit and the detector is arranged in direct contact with this unit.

Description

"Vorrichtung zur kontinuierlichen Untersuchung von Lichtleitfasrern" "Device for the continuous examination of optical fibers"
Die Erfindung bezieht sich auf eine Vorrichtung zur kontinuierlichen UntersuchungvonLichtleitfasern, wobei aus einer Lichtquelle Licht in die Faser eingekoppelt wird und wobei anschliessend austretendes Streulicht mittels eines Detektors erfasst wird. Derartige Vorrichtungen sind bekannt, so z.B. aus derThe invention relates to a device for the continuous examination of optical fibers, in which light is coupled into the fiber from a light source and subsequently emerging scattered light is detected by means of a detector. Such devices are known, e.g. from the
DE-AS 2744 219. Mit dieser bekannten Vorrichtung wird die bereits fertige, d.h. also auch schon mit einemLacküberzug versehene Faser auf Fehler untersucht.DE-AS 2744 219. With this known device the already finished, i.e. that is, fiber already coated with a varnish is examined for defects.
Eine ähnliche Vonrichtung ist auch aus der DE-AS 24 51 654 bekannt. Darin wird ein Stück der zu untersuchenden Faser ortsfest angeordnet und Licht wird in die Faser eingespeist. Eine bewegliche Messeinrichtung erlaubt nun. Streulichtstellen der Faser zu orten. Eine kontinuierliche Messung ist damit jedoch nicht möglich.A similar direction is also known from DE-AS 24 51 654. A piece of the fiber to be examined is arranged there in a stationary manner and light is fed into the fiber. A movable measuring device now allows. To locate stray light spots on the fiber. However, a continuous measurement is not possible.
Bei der Herstellung von Lichtleitfasern entstehen bei ungünstiger Wahl der Ziehparameter Defekte in der Oberfläche der Faser. Diese Defekte sind der bevorzugte Ausgangspunkt für Brüche der Faser unter schon geringen Zugbelastungen, wie sie bei der Verarbeitung und Benutzung auftreten können. Auch wenn die bestehende Zugbelastung nicht sofort zum Bruch führt, sind diese Stellen der Faseroberflache durch zugspannungsunterstützte Korrosion in der Altsrτingsbestandigkeit stark gemindert. Diese Oberflächendefekte sind möglichst zu venmeiden bzw. in der fertigen Faser zu finden. Durch Zerreisstests grosser Längen und Mengen von Fasern werden Festigkeitsstatistiken (Weibullveirteilungen) erstellt, um das Ziehverfahren zu optimieren. Dies ist ein aufwendiges und langwieriges Verfahren. In der Produktion werden die trotzdem vorhandenen Defekte in einem kontinuierlichen Zugbeansp-cuchungstest (Screentest, Prcoftest), dem die gesamte Faserproduktion unterworfen wird, auf eine bestimmte minimale Festigkeit hin geprüft. Danach hat man zwar die Information, dass diejenigen Fasern, die den Test bestanden haben, eine bestimmte Zugbear-spruchung ausgehalten. haben, jedoch hat man keinerlei Aussage darüber, wie die Festigkeit jenseits des Screentestwertes aussieht. Diesen Verfahren gegenüber bieten die eingangs genannten Vorrichtungen, die zerstörungsfreie Untersuchmgen erlauben, offensichtliche Vorteile. Hierbei werden Risse oder Ungleichmässigkeiten auf der Faseroberfläche mittels einer Streulichtmethode untersucht, nach welcher von dem Licht, das von einer Lichtquelle in die Lichtleitfaser zunächst eingestrahlt wird, das aus der Lichtleitfaser austretende Streulicht mittels einer Messeinrichtung gemessen wird.In the production of optical fibers, defects in the surface of the fiber arise if the drawing parameters are chosen unfavorably. These defects are the preferred starting point for fiber breaks under even low tensile loads, as can occur during processing and use. Even if the existing tensile load does not immediately lead to breakage, these areas of the fiber surface are greatly reduced in the old ring resistance due to tension-supported corrosion. These surface defects should be avoided as far as possible or found in the finished fiber. Strength tests (Weibull distributions) are created through tensile tests of large lengths and quantities of fibers in order to optimize the drawing process. This is a complex and lengthy process. In production, the defects that are still present are checked for a certain minimum strength in a continuous tensile stress test (screen test, prcoft test), to which the entire fiber production is subjected. After that, you have the information that the fibers that have passed the test can withstand a certain tensile stress. have, however, no statement about how the strength looks beyond the screen test value. The devices mentioned at the beginning, which allow non-destructive testing, offer these methods obvious advantages. In this case, cracks or irregularities on the fiber surface are examined by means of a scattered light method, according to which the light that is first radiated into the optical fiber from a light source is used to measure the scattered light emerging from the optical fiber by means of a measuring device.
Der Erfindung liegt somit die Aufgabe zugrunde, eine Vorrichtung der eingangs genannten Art nach der DE-AS 2744 219 dahingehend zu verbessern, dass eine Untersuchung auf Fehlerstellen bereits am Anfang des HersteHungsprozesses möglich ist, um den Prozess möglichst frühzeitig beeinflussen zu können.The invention is therefore based on the object of improving a device of the type mentioned at the outset according to DE-AS 2744 219 in such a way that it is possible to examine for defects at the very beginning of the production process in order to be able to influence the process as early as possible.
Die Losung dieser Aufgabe besteht darin, dass Ziehofen und Lichtquelle zu einer Einheit zusammengefasst sind und der Detektor unmittelbar anschliessend angeordnet ist.The solution to this problem is that drawing furnace and light source are combined into one unit and the detector is arranged immediately afterwards.
Dadurch ergibt sich der Vorteil, dass die Lichtleitfaser unmittelbar nach ihrer Herstellung auf Fehlerstellen untersucht werden kann. Anhand der Zeichnung wird ein Ausführungsbeispiel der Erfindung naher beschrieben. Darin zeigen:This has the advantage that the optical fiber can be examined for defects immediately after its manufacture. An embodiment of the invention is described in more detail with reference to the drawing. In it show:
Fig. 1 den prinzipiellen Aufbau der Vorrichtung, Fig. 2 eine erste Ausfuhrungsform des Detektors, Fig. 3 eine zweite Ausfuhrungsform des Detektors, und Fig. 4 eine dritte Ausführungsform des Detektors. Eine Vorfarm 1 der späterep. Faser wird in einem Ziehofen 2 auf etwa 2100ºC aufgeheizt und zu einer Faser 3 ausgezogen. Im ziehofen 2 wird Licht in die Faser eingekoppelt und in der Faser weitergeleitet. Befinden sich an der Oberfläche oder im Innern der Faser1 shows the basic structure of the device, FIG. 2 shows a first embodiment of the detector, FIG. 3 shows a second embodiment of the detector, and FIG. 4 shows a third embodiment of the detector. A fore 1 of the later ep. Fiber is heated to about 2100 ° C in a drawing furnace 2 and drawn into a fiber 3. In drawing furnace 2, light is coupled into the fiber and passed on in the fiber. Are on the surface or inside the fiber
Störungen, so streuen sie das Licht aus der Faser heraus. Dieses Streulicht wird in einem geeigneten Detektor 4 in ein elektrisches Signal umgewandelt und an eine Registrier- und Streuerelektronik 5 weitergeleitet. Danach wird die Faser 3 in einem Behälter 6 mit einem Lacküberzug versehen, der in einen Ofen 7 getrocknet und gehärtet wird. ImAnschluss daran hat die Strεuerelektronik 5 die Möglichkeit, mit Hilfe eines Faserrnarkiergerätes 8 z.B. eine Farrmarkierung auf der Faser 3 anzubringen. Danach gelangt die Faser auf eine Zieh- und Aufwickeltrotmmel 9, die von einem Wickelimotor mit Positionsgeber 10 angetrieben wird. Mit der Registrier- undStreuerelektronik lassen sich eine Reihe von Aufgaben realisieren, a. Während der Produktion einer Faser lassen sich die Streuamplitude und der Ort von Störungen registrieren. b. Nach dem Ziehen der Faser liegt ein Protokoll vor, das Auskunft darüber gibt, wo sich Störungen befinden und wie gross sie sind. c. Die Faser kann an den Stellen, an denen Störungen gefunden wurden, farblich markiert werden, so dass diese Stellen schnell für eine nachträgliche Untersuchung zugänglich sind (Störungsursache). d. Schon während des Ziehvorganges können die Ziehparameter, z.B. die Schutzgasstrαre im Ofen, so optimiert werden, dass man eine Faser mit minimalen Störungen erhält. e. Auch ohne farbliche Markierung sind die Storstellen zurückfindbar, da die Positionen auch im Protokoll enthalten sind.Faults, so they scatter the light out of the fiber. This scattered light is converted into an electrical signal in a suitable detector 4 and passed on to registration and scattering electronics 5. The fiber 3 is then provided with a lacquer coating in a container 6, which is dried and cured in an oven 7. Subsequently, the control electronics 5 have the option of using a fiber marking device 8, for example, to apply a fiber marking to the fiber 3. The fiber then arrives at a drawing and winding drum 9, which is driven by a winding motor with position transmitter 10. With the registration and spreader electronics, a number of tasks can be realized, a. During the production of a fiber, the scattering amplitude and the location of faults register. b. After pulling the fiber, there is a log that provides information about where the faults are and how big they are. c. The fiber can be marked in color at the points at which faults were found, so that these points are quickly accessible for subsequent examination (cause of the fault). d. Even during the drawing process, the drawing parameters, for example the protective gas stream in the furnace, can be optimized so that a fiber with minimal disturbances is obtained. e. The store locations can also be found without color coding, since the positions are also included in the log.
Einige Ausführungsforrnen des Detektors sind in den Figuren 2 bis 4 dargestellt.Some embodiments of the detector are shown in FIGS. 2 to 4.
Nach Fig. 2 wird eine Linsenoptik benutzt. Hierbei wird die Faser 3 durch eine Eingangsöffnung 13 in ein Gehäuse 14 eingeführt. Eine erste Linse 15 bildet ein Stück der Faser auf eine Lochblende 16 ab. Diese wird durch eine zweite Linse 17 auf eine Fotozelle 18 abgebildet. Das an einem Defekt 19 austretende Licht wird dabei in ein elektrisches Signal am Ausgang 20 gewandelt. Die Faser 3 verlässt das Gehäuse 14 durch eine Öffnung 21.2, lens optics are used. In this case, the fiber 3 is introduced into a housing 14 through an inlet opening 13. A first lens 15 images a piece of the fiber onto a pinhole 16. This is imaged on a photocell 18 by a second lens 17. The light emerging from a defect 19 is converted into an electrical signal at the output 20. The fiber 3 leaves the housing 14 through an opening 21.
In Fig. 3 ist eine andere Ausfuhrung eines Detektors dargestellt, wobei eine Ulbrichtsche Kugel zur Anwendung gelangt, so dass alle Richtungen des Streulichtes detektiert werden können. Die Faser 3 tritt in eine Ulbrichtsche Kugel 23 ein, wobei eine ϊotozelle 18 Streulicht in ein elektrisches Signal umwandelt. Abschirmungen 24 reduzieren störendes Licht aus der Umgebung.3 shows another embodiment of a detector, an Ulbricht sphere being used so that all directions of the scattered light can be detected. The fiber 3 enters an Ulbricht sphere 23, an ϊoto cell 18 converting stray light into an electrical signal. Shields 24 reduce interfering light from the environment.
In Fig. 4 ist eine weitere Detektionsmöglichkeit dargestellt, in der ein innenverspiegeltes Rotationsellipsoid 26 benutzt wird, um Streulicht einer Streustelle 27 der Faser 3 auf die Fotozelle 18 abzubilden und in ein elektrisches Signal zu wandeln. Auch hier dienen die Schutzröhrchen 28 zur Störlichtunterdrückung.4 shows a further detection possibility in which an internally mirrored rotational ellipsoid 26 is used in order to image scattered light from a scattering point 27 of the fiber 3 onto the photocell 18 and to convert it into an electrical signal. Here, too, the protective tubes 28 serve to suppress stray light.
Ein wesentlicher Vorteil der vorgeschlagenen Vorrichtung besteht darin, dass sie erlaubt, die direkt beim Ziehen der Faser gewonnenen Informationen zur Prozeessoptimierung zu nutzen. Man muss nicht erst warten, bis eine Faser mit Fehlern hergestellt ist, sondern man kann während der Herstellung für eine gute, fehlerfreie Qualität durch entsprechende Prozessführung sorgen. Ein weiterer Vorteil liegt darin, dass kein zusätzlicher kostenaufwendiger Untersuchungsschritt notwendig ist, um diese Qualitätsinformation zu erhalten, so dass die gesamte Produktion kontrolliert und optimiert werden kann. Die Faser wird ohne Überzug gemessen und mechanisch nicht belastet. A major advantage of the proposed device is that it allows the information obtained directly when the fiber is drawn to be used for process optimization. You do not have to wait until a fiber with defects is produced, but you can ensure good, error-free quality during production by appropriate process control. Another advantage is that no additional costly examination step is necessary is to get this quality information so that the entire production can be controlled and optimized. The fiber is measured without a coating and is not mechanically loaded.

Claims

PATENTANSPRUCΗE: PATENT REPRESENTATIVES:
1. Vorrichtung zur kontinuierlichen Untersuchung von Lichtleitfasern, wobei aus einer Lichtquelle Licht in die in einem Ziehofen ausgezogene Faser eingekoppelt wird und wobei anschliessend austretendes Streulicht mittels eines Detektors erfasst wird, dadurch gekennzeichnet, dass Ziehofen und Lichtquelle zu einer Einheit zusaπinengefasst sind und der Detektor unmittelbar anschliessend angeordnet ist.1. Device for the continuous examination of optical fibers, wherein light is coupled from a light source into the fiber drawn out in a drawing furnace and subsequently emerging scattered light is detected by means of a detector, characterized in that drawing furnace and light source are combined into one unit and the detector directly is then arranged.
2. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass der Detektor aus einem in einan Gehäuse angeordnetem Linsensystem und einer Fotozelle besteht. 2. Device according to claim 1, characterized in that the detector consists of a lens system arranged in a housing and a photocell.
3. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass der Detektor aus einer Ulhrichtschen Kugel besteht, die mit einer Fotozelle versehen ist.3. Device according to claim 1, characterized in that the detector consists of an Ulhricht ball, which is provided with a photocell.
4. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass der Detektor aus einem innenverspiegelten Rotationsellipsoid besteht, in dam eine Fotozelle angeordnet ist.4. The device according to claim 1, characterized in that the detector consists of an internally mirrored rotational ellipsoid, in which a photocell is arranged.
5. Vorrichtung nach einem der Ansprüche 2 bis 4, dadurch gekennzeichnet, dass Mittel zur Störlichtunterdrückung vorgesehen sind. 5. Device according to one of claims 2 to 4, characterized in that means for suppressing stray light are provided.
EP19820900389 1981-02-06 1982-02-03 Installation for the continuous testing of optical fibres Withdrawn EP0070853A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19813104076 DE3104076A1 (en) 1981-02-06 1981-02-06 "DEVICE FOR THE CONTINUOUS EXAMINATION OF LIGHT-CONDUCTING FIBERS"
DE3104076 1981-02-06

Publications (1)

Publication Number Publication Date
EP0070853A1 true EP0070853A1 (en) 1983-02-09

Family

ID=6124172

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19820900389 Withdrawn EP0070853A1 (en) 1981-02-06 1982-02-03 Installation for the continuous testing of optical fibres

Country Status (4)

Country Link
EP (1) EP0070853A1 (en)
JP (1) JPS58500038A (en)
DE (1) DE3104076A1 (en)
WO (1) WO1982002770A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61204535A (en) * 1984-12-24 1986-09-10 Sumitomo Electric Ind Ltd Inspecting device for optical fiber
DE4022465A1 (en) * 1990-07-14 1992-01-23 Dornier Medizintechnik LASER ENERGY MEASUREMENT AND CONTROL
BR9809858A (en) * 1997-05-22 2000-06-27 Corning Inc Processes and apparatus for detecting surface defects in an optical fiber.
KR100516653B1 (en) * 2002-07-29 2005-09-22 삼성전자주식회사 Scattering monitor in optical fiber drawing system

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1346674A (en) * 1963-02-05 1963-12-20 Corning Glass Works Device and method for measuring radiant energy
DE2451654C3 (en) * 1974-10-30 1984-08-09 Siemens AG, 1000 Berlin und 8000 München Device for measuring imperfections and / or lengths of glass fibers
US4081258A (en) * 1976-05-12 1978-03-28 International Telephone And Telegraph Corporation Method for using on line optic fiber loss monitor
GB1557154A (en) * 1976-05-12 1979-12-05 Int Standard Electric Corp Optical attenuation measurement
JPS5447672A (en) * 1977-09-21 1979-04-14 Nippon Telegr & Teleph Corp <Ntt> Measuring method of transmission loss in optical transmission lines
DE2744219C3 (en) * 1977-09-30 1980-08-28 Siemens Ag, 1000 Berlin Und 8000 Muenchen Device for the non-destructive examination of optical fibers
JPS5569033A (en) * 1978-11-20 1980-05-24 Furukawa Electric Co Ltd:The Measuring method of transmission loss of optical fiber

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO8202770A1 *

Also Published As

Publication number Publication date
WO1982002770A1 (en) 1982-08-19
DE3104076C2 (en) 1989-02-16
DE3104076A1 (en) 1982-10-21
JPS58500038A (en) 1983-01-06

Similar Documents

Publication Publication Date Title
DE2658239C3 (en) Device for the detection of defects in a pattern or a template
EP0069355A2 (en) Objects testing method
DE2940154A1 (en) METHOD AND DEVICE FOR TESTING THE ROUGHNESS OF A SURFACE
DE3119688A1 (en) DEVICE FOR CHECKING AN OBJECT FOR IRREGULARITIES
DE2707538A1 (en) PROCEDURE FOR AUTOMATIC ERROR CHECKING OF TEXTILE AREAS
EP0578975A1 (en) Method and apparatus for predicting effect of yarn defects on the appearance of textiles or fabrics
DE2720951B2 (en) Method for monitoring geometrical properties of an essentially transparent coating on an optical fiber
DE69008220T2 (en) Light guide coating control.
EP0070853A1 (en) Installation for the continuous testing of optical fibres
DE69107552T2 (en) Device for measuring and monitoring the eccentricity of the colored coating of optical fibers.
DE10013012A1 (en) X-ray fluorescence analysis device with X-ray generation unit for irradiating sample; determines luminance change in extracted image and if it is larger than reference value than X-ray passes sample in process action
CH679428A5 (en)
DE19818069A1 (en) System to register optical characteristics of yarn
DE3735399A1 (en) MEASURING ARRANGEMENT FOR TESTING A MULTIPLE OF LIGHTWAVE GUIDES
DE102019128546A1 (en) Transmission device for examining samples in wells of a microtiter plate and method for examining samples in wells of a microtiter plate by means of transmission
DE3312948A1 (en) DEVICE FOR QUICKLY MEASURING THE SHINE OF ANY SURFACE
DE3003133A1 (en) DEVICE FOR EXAMINING DEFECTS ON PATTERNS
EP3390713B1 (en) Method and apparatus for establishing the weight per unit area of a fibrous web
DE3800360C2 (en) Procedure for checking the inside of a floppy disk case
DE3536374A1 (en) Transmitted-light method for measuring housings and components
DE3111351C2 (en)
DE2744219C3 (en) Device for the non-destructive examination of optical fibers
WO1999054532A1 (en) Method and device for determining the optical features of threads
CH662653A5 (en) DEVICE FOR CROSS-MEASUREMENT OF A MONOCHROMATIC, COHERENT RADIATION, TRANSMITTED OR SEMI-TRANSPARENT THREAD-SHAPED PRODUCT.
DE19735246C2 (en) Method for determining a volume

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): FR GB

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 19830417

RIN1 Information on inventor provided before grant (corrected)

Inventor name: HERMANN, WILHELM GEORG