EP0070360A2 - Heizsystem - Google Patents

Heizsystem Download PDF

Info

Publication number
EP0070360A2
EP0070360A2 EP82103774A EP82103774A EP0070360A2 EP 0070360 A2 EP0070360 A2 EP 0070360A2 EP 82103774 A EP82103774 A EP 82103774A EP 82103774 A EP82103774 A EP 82103774A EP 0070360 A2 EP0070360 A2 EP 0070360A2
Authority
EP
European Patent Office
Prior art keywords
pipe
combustion
heating
infra
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP82103774A
Other languages
English (en)
French (fr)
Other versions
EP0070360B1 (de
EP0070360A3 (en
Inventor
Frank Martin Hussey Dr. Taylor
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taylor Estates Ltd Te Londen Groot-Brittannie
Original Assignee
ROBERTS-GORDON CANADA Inc
PHOENIX BURNERS Ltd
Roberts Gordon Appliance Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ROBERTS-GORDON CANADA Inc, PHOENIX BURNERS Ltd, Roberts Gordon Appliance Corp filed Critical ROBERTS-GORDON CANADA Inc
Priority to AT82103774T priority Critical patent/ATE17779T1/de
Publication of EP0070360A2 publication Critical patent/EP0070360A2/de
Publication of EP0070360A3 publication Critical patent/EP0070360A3/en
Application granted granted Critical
Publication of EP0070360B1 publication Critical patent/EP0070360B1/de
Expired legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D5/00Hot-air central heating systems; Exhaust gas central heating systems
    • F24D5/06Hot-air central heating systems; Exhaust gas central heating systems operating without discharge of hot air into the space or area to be heated
    • F24D5/08Hot-air central heating systems; Exhaust gas central heating systems operating without discharge of hot air into the space or area to be heated with hot air led through radiators

Definitions

  • THIS INVENTION relates to a heating system wherein heat is provided by the emission of infra-red radiation.
  • Infra-red radiation heats objects directly with a minimal loss of heat energy to the air between the heating apparatus and an object.
  • the object having absorbed the infra-red radiation, may conduct some of the heat from the surface into the interior of the body of the object and re-radiate the remainder, becoming a secondary source of infra-red radiation.
  • the re- radiated heat energy will then be absorbed by other cooler surfaces or by the surrounding air.
  • infra-red radiation generated by the passage of hot gases through a heating pipe for example by burning an air/gas mixture in the pipe, to heat living quarters and places of work, for example, shops, offices and factories.
  • infra-red radiation could only be used efficiently to provide high temperature, for example as required in bake ovens.
  • Such systems used as a source of heat only the upper range of the infra-red spectrum.
  • Direct heating systems for living and working areas were, at that time, very inefficient, utilizing little, if any, of the infra-red radiation produced to heat objects directly.
  • control means for supplying the correct proportions of air and gas to produce an efficiently combustible mixture
  • connecting the control means to a plurality of combustion devices contained in connecting pipes situated in the space to be heated, and by operating the heating system at a pressure slightly less than one atmosphere
  • infra-red radiation emitted from the walls of the connecting pipes to heat objects directly.
  • insufficient oxygen may be present to effect complete combustion, thus preventing efficient operation of the combustion devices.
  • an infra-red heating system comprising a heating pipe and a plurality of combustion devices distributed along the length of the heating pipe for supplying hot gases to the interior of the pipe to cause the pipe to emit infra-red radiation from its surface
  • each combustion device comprises a burner unit disposed in the heating pipe and control means having an air orifice for supplying to the burner unit the correct amount of air for complete combustion of fuel fed to the burner unit, means being provided to cause a predetermined excess of air to flow through the pipe in use of the system so that each of the serially arranged burner units can operate within the pipe with complete combustion of fuel in an atmosphere which contains the combustion gases of any upstream burner units.
  • an infra red heating system embodying the invention provides the advantage that a combustion device operating in a series of combustion devices in an atmosphere containing combustion products from the other burners may still release the total heat of combustion without flame vitiation.
  • each combustion device in the series provides the same heat output and may be pre-adjusted at a factory to give that output.
  • the gas/air ratio may be preset and maintained during variations in the overall draught and temperature conditions.
  • a control means associated with each combustion device regulates the amount of gas supplied thereto.
  • a single adjusting means is provided to allow the heat capacity of the system to be adjusted or to compensate for changes in the characteristics of the fuel.
  • the adjusting means comprises a damper.
  • reflecting means are associated with one or more parts of a heating pipe to direct the radiant heat energy produced thereby to the space required to be heated.
  • the reflecting means comprise an elongate reflector arranged axially above a part of the heating pipe to direct radiant heat energy downwardly from the pipe part to the space to be heated and an elongate reflecting shield supported axially beneath the pipe part to deflect a portion of the radiant heat energy radiated from the pipe part upwardly into the reflector.
  • Such reflecting means provide the advantage that the heat energy may be directed only to the space required to be heated thus preventing or reducing wastage.
  • one or more parts of a heating pipe may be provided with insulating means to regulate the emission of radiant heat energy therefrom which insulating means usually comprise an insulating tube inserted into a part of a heating pipe so as to contact the inner surface thereof.
  • insulating means usually comprise an insulating tube inserted into a part of a heating pipe so as to contact the inner surface thereof.
  • the invention provides an infra-red heating system, wherein a heating pipe is heated by the passage of hot gases therethrough so that infra-red radiation is emitted from the pipe, and wherein reflecting means are associated with at least part of the pipe to direct the radiant heat energy therefrom to the space to be heated, the reflecting means comprising an elongate reflector arranged above the pipe to direct radiant heat energy from the pipe downwardly to the space to be heated and an elongate reflecting shield supported beneath the pipe to deflect a portion of the radiant heat energy from the pipe upwardly to the reflector.
  • the invention provides an infra-red heating system, wherein a heating pipe is heated by the passage of hot gases therethrough so that infra-red radiation is emitted from the pipe, and wherein one or more parts of the pipe are provided with insulating means to regulate the emission of radiant heat energy therefrom, the insulating means comprising an insulating tube inserted into the pipe so as to contact the inner surface thereof.
  • the vacuum pump A draws the air/gas mixture through the pipes and allows a controlled reduction of pressure to just less than atmosphere.
  • a damper E is provided in each pipe leg upstream of its interconnection F with another leg to regulate the suction effect of the vacuum pump A and make each leg independent of the suction effect in the remainder of the system.
  • Another damper E' situated upstream of the vacuum pump A, allows the suction effect of the vacuum pump to be regulated simultaneously in the whole system.
  • each combustion device C requires 6 ⁇ . or 1.7 m 3 /h of air, whilst each end vent D is constructed to allow 12 Xor 3.4 m 3 /h to enter the apparatus.
  • Figure 2 shows a vertical cross-section through an individual combustion device C.
  • the combustion device C comprises a control box F and burner unit G.
  • the burner unit G includes a pipe having internally screwthreaded ends 17 which engage externally screwthreaded ends 21, 21' of connecting pipes 18, 18' to mount the burner in a pipe leg.
  • other methods of connecting the burner unit pipe in a pipe leg may of course be employed.
  • the regulator 3 is connected to a chamber 22 containing; a zero governor 4 which maintains the gas at atmospheric pressure; a pilot valve 5 to control the amount of gas supplied to a spark chamber 23, by means of a pilot gas tube 12 connected to the pilot valve 5; and a main valve 6 to control the amount of gas entering the burner unit via a channel 11 connected to the output 10A of chamber 22.
  • An air filter 2 removes dust particles etc, from the air to avoid choking the apparatus with extraneous matter. Air passing through the filter 2 either enters the pilot gas tube 12 by means of an air orifice 8 in the gas tube 12, or passes through an orifice 10 designed to let the correct amount of air through a channel 11 to a burner grid 16. A wall 14 of the channel 11 protects a pilot light in the spark chamber 23 from draughts caused by air passing through the channel ll.
  • a curved back wall 15 of the channel 11 shields the burner grid 16 from the flow of combustion gases passing through the connecting pipe 18.
  • a pre-ignition purge timer (not shown) is started when the temperature of the space to be heated drops below a predetermined desired temperature and the timer actuates the vacuum pump to clear the system of any remaining combustion gases or other unwanted matter.
  • the vacuum pump A is designated to reduce the pressure inside the heating system to a pressure of 3 inches of water (5.6 mmHg) below atmospheric pressure.
  • the suction effect produced by the pump A is regulated by the dampers E provided in each pipe leg and by the damper E' provided upstream of pump A.
  • the end vents D allows 12 ⁇ or 3.4 m 3 /h of air to be drawn into the system under the action of the pump A.
  • Gas is drawn into the system through a gas pipe 1 and air is sucked through an air filter 2 into the control box F by the pump A.
  • the regulator 3 ensures that the correct amount of gas passes into the chamber 22 and the pressure of the gas is maintained at one atmosphere by means of the zero governor 4.
  • the air/gas mixture passes by means of an opening 20 into the spark chamber 23.
  • a heat control means (not shown) actuates electrical means (not shown) to induce the contacts 13 of a spark-plug 9 to spark.
  • the air/gas mixture in chamber 23 then ignites.
  • a sensor detects the pilot flame and allows the main valve 6 to open. Gas is then passed through an opening 10A in the chamber 22 into the channel 11 and air is drawn into the channel 11 (by the suction effect produced by the gas flow) through the orifice 10 which is of the correct dimensions to produce the optimum air/gas mixture.
  • the air/gas mixture passes through channel 11, being prevented from extinguishing the pilot flame by means of the wall 14 of channel 11, to the burner grid 16, where combustion occurs upon contact with the pilot flame.
  • the combustion gases are drawn through the pipe 18', by the action of the vacuum pump A, the pipe being thereby heated and radiating energy in the form of infra-red radiation.
  • Combustion gases from any preceding burner units passing the burner grid 16 are deflected by a curved back wall 15 of the channel 11.
  • the wall 15 thus shields the burner flames from the combustion gases preventing contamination of the air/gas mixture which could decrease the combustion efficiency and also preventing the flames being extinguished by the draught caused or by lack of oxygen.
  • the vacuum pump A removes the combustion gases from the system and these waste gases then pass out of the dwelling or work place and are discharged into the atmosphere.
  • Figures 3 and 4 illustrate means associated with a part B' of a pipe B for reflecting the radiant heat energy emitted by that pipe part to the area of the dwelling or work place required to be heated.
  • the reflecting means comprises an elongate reflector 24 of substantially inverted W-shape in cross-section disposed above the pipe part B' such that the longitudinal axis of the reflector is parallel to the axis of the pipe B.
  • the reflector 24 is designed to reflect radiant heat energy radiated upwardly from the pipe part B' down to the area being heated.
  • the reflecting means also comprises an elongate radiant heat shield 25 of inverted V-shape in cross-section suspended by support brackets 26 beneath the pipe part B' such that the longitudinal axis thereof is parallel to the pipe axis.
  • the radiant heat shield 25 serves to reflect a portion of the radiant heat energy reflected downwardly from the pipe part B' onto the reflector 24 to ensure that the radiant heat energy is distributed more evenly over the area being heated.
  • the radiant shield 25 can be used locally to reduce the radiant intensity immediately below the radiant pipe. In the absence of the reflecting means the radiant heat intensity is highest at a point immediately below the radiant pipe B' as a result of the Inverse Square Law. By virtue of its shape and position the radiant shield 25 interrupts the direct radiant heat path and reflects heat back to the top reflector 24 which redistributes the radiant heat away from the centre line of the radiant pipe
  • Both the reflector 24 and the radiant heat shield may be made, for example, of 22 or 24 SWG NATL (TYP) aluminium and are approximately from 4 to 8 feet (1.2 to 2.4 metres) in length depending upon requirements.
  • One or more reflecting means may be provided within the system of Figure 1 depending upon the particular heating requirements for the areas to be heated.
  • Figure 5 illustrates diagrammatically a part B" of a pipe B provided with insulating means to regulate the amount of radiant heat energy emitted from that part of the pipe B.
  • the insulating means comprises an insulating tube 27 of, for example, 0.5 metres in length and made for example of ceramic fibre or a similar material having high heat insulation properties.
  • the insulating tube 27 is made of alumina having a wall thickness of 5 to 10 mm.
  • the insulating tube 27 is inserted into the pipe part B" so as to contact the inner surface thereof.
  • the insulating tube 27 allows the amount of radiant heat energy emitted from the portion of the pipe containing the tube to be reduced by reducing the temperature of the pipe B at that point.
  • Insulating tubes may be provided at various points within the system of Figure 1 to reduce radiant pipe temperatures in localized positions thus controlling radiant heat emission along pipes B of the system and preventing overheating of areas where little heating is required.
  • apertures 28 may be provided in the insulating tube or tubes 27 provided in the system to provide extremely localized areas of higher radiant heat energy where required.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Thermal Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Gas Burners (AREA)
  • General Induction Heating (AREA)
  • Fluidized-Bed Combustion And Resonant Combustion (AREA)
  • Air-Conditioning For Vehicles (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Sorption Type Refrigeration Machines (AREA)
  • Pre-Mixing And Non-Premixing Gas Burner (AREA)
EP82103774A 1981-07-17 1982-05-03 Heizsystem Expired EP0070360B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT82103774T ATE17779T1 (de) 1981-07-17 1982-05-03 Heizsystem.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB8122201 1981-07-17
GB8122201 1981-07-17

Publications (3)

Publication Number Publication Date
EP0070360A2 true EP0070360A2 (de) 1983-01-26
EP0070360A3 EP0070360A3 (en) 1983-03-09
EP0070360B1 EP0070360B1 (de) 1986-01-29

Family

ID=10523341

Family Applications (1)

Application Number Title Priority Date Filing Date
EP82103774A Expired EP0070360B1 (de) 1981-07-17 1982-05-03 Heizsystem

Country Status (6)

Country Link
EP (1) EP0070360B1 (de)
AT (1) ATE17779T1 (de)
DE (1) DE3268761D1 (de)
DK (1) DK156148C (de)
GB (1) GB2102555B (de)
IE (1) IE52796B1 (de)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0169689A2 (de) * 1984-07-23 1986-01-29 Radiant Systems Technology Limited Infrarotheizungsanlage
EP0232990A1 (de) * 1986-01-20 1987-08-19 Colt International Holdings A.G. Heizungsgerät
EP0249087A1 (de) * 1986-06-10 1987-12-16 Haiko Paul Künzel Wärmestrahler zur Grossraumbeheizung
FR2616893A1 (fr) * 1987-06-16 1988-12-23 Triatherm Sarl Installation de chauffage par rayonnement thermique
EP0392591A1 (de) * 1989-04-11 1990-10-17 Hoaf Ray-O-Therm B.V. Infrarotheizungssystem
FR2653536A1 (fr) * 1989-10-25 1991-04-26 Gaz Ind Tube radiant a modules internes.
EP0509155A1 (de) * 1989-09-12 1992-10-21 Nor-Ray-Vac Limited Strahlungsheizanlage
EP0635675A1 (de) * 1993-07-20 1995-01-25 Ambi-Rad Limited Raumheizvorrichtungen
WO1999024757A1 (en) * 1997-11-06 1999-05-20 Ambi-Rad Limited Space heating appliances
WO1999027307A1 (en) 1997-11-26 1999-06-03 Roberts-Gordon Llc Gas fired infrared radiant tube heating system using plural burner assemblies and single gas delivery system
CN110160123A (zh) * 2019-05-17 2019-08-23 青岛北海船舶重工有限责任公司 一种高大厂房生产工艺工位远距强化燃气辐射供热系统

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2165935A (en) * 1984-10-23 1986-04-23 Willey Robinson Ltd Gas-fired heating means
GB2274703B (en) * 1993-01-14 1996-06-26 Ambi Rad Ltd Space heating appliances
DE29506691U1 (de) * 1995-04-20 1996-08-29 Papst-Motoren GmbH & Co KG, 78112 St Georgen Brennergebläse mit Radiallaufrad
DE19820795C2 (de) * 1998-02-26 2001-03-01 Tulowietzki Heinrich Otto Vorrichtung zum Beheizen von Räumen
US20080035746A1 (en) * 2006-08-11 2008-02-14 Eric Willms Radiant heating system and method of control

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH438631A (de) * 1964-09-03 1967-06-30 Leistritz Hans Karl Heizungsanlage
GB1315685A (en) * 1970-11-13 1973-05-02 Lord Ltd David R Heating apparatus
DE2519091A1 (de) * 1974-05-08 1975-11-20 Radiant Tube Systems Ltd Raumheizungseinrichtung
DE3001635A1 (de) * 1979-01-24 1980-07-31 Hoxan Kk Verfahren zum beheizen eines viehstalles
EP0034264A1 (de) * 1980-02-15 1981-08-26 Roberts-Gordon Appliance Corporation Strahlungsheizsystem mit verbessertem Brennerkopf

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH438631A (de) * 1964-09-03 1967-06-30 Leistritz Hans Karl Heizungsanlage
GB1315685A (en) * 1970-11-13 1973-05-02 Lord Ltd David R Heating apparatus
DE2519091A1 (de) * 1974-05-08 1975-11-20 Radiant Tube Systems Ltd Raumheizungseinrichtung
DE3001635A1 (de) * 1979-01-24 1980-07-31 Hoxan Kk Verfahren zum beheizen eines viehstalles
EP0034264A1 (de) * 1980-02-15 1981-08-26 Roberts-Gordon Appliance Corporation Strahlungsheizsystem mit verbessertem Brennerkopf

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2162301A (en) * 1984-07-23 1986-01-29 Radiant Systems Techn Ltd Infra-red heating system
EP0169689A3 (en) * 1984-07-23 1986-07-16 Radiant Systems Technology Limited Infra-red heating system
EP0169689A2 (de) * 1984-07-23 1986-01-29 Radiant Systems Technology Limited Infrarotheizungsanlage
EP0232990A1 (de) * 1986-01-20 1987-08-19 Colt International Holdings A.G. Heizungsgerät
EP0249087A1 (de) * 1986-06-10 1987-12-16 Haiko Paul Künzel Wärmestrahler zur Grossraumbeheizung
FR2616893A1 (fr) * 1987-06-16 1988-12-23 Triatherm Sarl Installation de chauffage par rayonnement thermique
EP0298790A1 (de) * 1987-06-16 1989-01-11 Triatherm Anlage für Heizung durch Wärmestrahlung
EP0392591A1 (de) * 1989-04-11 1990-10-17 Hoaf Ray-O-Therm B.V. Infrarotheizungssystem
EP0509155A1 (de) * 1989-09-12 1992-10-21 Nor-Ray-Vac Limited Strahlungsheizanlage
FR2653536A1 (fr) * 1989-10-25 1991-04-26 Gaz Ind Tube radiant a modules internes.
WO1991006810A1 (fr) * 1989-10-25 1991-05-16 Gaz Industrie Tube radiant a modules internes
EP0635675A1 (de) * 1993-07-20 1995-01-25 Ambi-Rad Limited Raumheizvorrichtungen
GB2280257B (en) * 1993-07-20 1996-09-25 Ambi Rad Ltd Space heating appliances
WO1999024757A1 (en) * 1997-11-06 1999-05-20 Ambi-Rad Limited Space heating appliances
WO1999027307A1 (en) 1997-11-26 1999-06-03 Roberts-Gordon Llc Gas fired infrared radiant tube heating system using plural burner assemblies and single gas delivery system
GB2350180A (en) * 1997-11-26 2000-11-22 Roberts Gordon Llc Gas fired infrared radiant tube heating system using plural burner assemblies and single gas delivery system
GB2350180B (en) * 1997-11-26 2002-01-16 Roberts Gordon Llc Gas fired infrared radiant tube heating system using plural burner assemblies and single gas delivery system
CN110160123A (zh) * 2019-05-17 2019-08-23 青岛北海船舶重工有限责任公司 一种高大厂房生产工艺工位远距强化燃气辐射供热系统

Also Published As

Publication number Publication date
GB2102555B (en) 1985-03-20
GB2102555A (en) 1983-02-02
EP0070360B1 (de) 1986-01-29
EP0070360A3 (en) 1983-03-09
DE3268761D1 (en) 1986-03-13
ATE17779T1 (de) 1986-02-15
IE52796B1 (en) 1988-03-02
IE821054L (en) 1983-01-17
DK156148B (da) 1989-06-26
DK156148C (da) 1989-11-20
DK235682A (da) 1983-01-18

Similar Documents

Publication Publication Date Title
EP0070360B1 (de) Heizsystem
US5000162A (en) Clean burning glowing ember and gas log burner system
US5431557A (en) Low NOX gas combustion systems
US5909533A (en) Electric cooking oven with infrared gas broiler
NL6513693A (de)
US3114363A (en) Broiler oven with radiant gas burner
US5989020A (en) Multiple stage heating apparatus
DE68907577D1 (de) Gasheizgeraet zur warmwasserbereitung und zur raumheizung.
US3359965A (en) Radiant heaters
US3199572A (en) Radiant gas burner
US3251356A (en) Radiant heating device
US5988159A (en) Gas-fired artificial logs and coals-burner assembly
GB2213254A (en) Gas-fired radiant burner
US3225815A (en) Gas burners
US6098614A (en) Flammable fluid fueled heater
US3353583A (en) Infra red ray generating space heater
ES302187A1 (es) Aparato de calefaccion por radiacion y conveccion
US4385623A (en) Flue pipe for fireplace stove
US5282457A (en) High efficiency gas furnace
US20020157659A1 (en) Gas broiler
US5769623A (en) Oil fired burner
US2578520A (en) Method and apparatus for heating by the laminar combustion of gas in the interior of dull radiation tubes
EP0169689A2 (de) Infrarotheizungsanlage
EP0408396B1 (de) Einrichtung zur Steuerung eines Flüssigkeitsstromes
US3672350A (en) Gas water heater

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

RHK1 Main classification (correction)

Ipc: F24D 5/08

AK Designated contracting states

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ROBERTS-GORDON APPLIANCE CORPORATION LIMITED

Owner name: PHOENIX BURNERS LIMITED

17P Request for examination filed

Effective date: 19830829

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): AT BE CH DE FR IT LI LU NL SE

REF Corresponds to:

Ref document number: 17779

Country of ref document: AT

Date of ref document: 19860215

Kind code of ref document: T

ITF It: translation for a ep patent filed

Owner name: JACOBACCI & PERANI S.P.A.

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: ROBERTS-GORDON CANADA INC.

Owner name: PHOENIX BURNERS LIMITED

REF Corresponds to:

Ref document number: 3268761

Country of ref document: DE

Date of ref document: 19860313

ET Fr: translation filed
NLXE Nl: other communications concerning ep-patents (part 3 heading xe)

Free format text: IN PAT.BUL.13/86,PAGES 1582 AND 1596 SHOULD BE MODIFIED INTO:PHOENIX BURNERS LIMITED AND ROBERTS-GORDON CANADA INC.

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

BECN Be: change of holder's name

Effective date: 19860129

26N No opposition filed
REG Reference to a national code

Ref country code: FR

Ref legal event code: CL

REG Reference to a national code

Ref country code: CH

Ref legal event code: PUEA

Free format text: ROBERTS-GORDON CANADA INC.,

NLT1 Nl: modifications of names registered in virtue of documents presented to the patent office pursuant to art. 16 a, paragraph 1

Owner name: TAYLOR ESTATES LIMITED TE LONDEN, GROOT-BRITTANNIE

ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 19910607

Year of fee payment: 10

EPTA Lu: last paid annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19920503

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19940516

Year of fee payment: 13

Ref country code: AT

Payment date: 19940516

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19940531

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19940711

Year of fee payment: 13

EAL Se: european patent in force in sweden

Ref document number: 82103774.4

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Effective date: 19950503

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19950510

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19950511

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19950517

Year of fee payment: 14

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19950531

Ref country code: CH

Effective date: 19950531

Ref country code: BE

Effective date: 19950531

BERE Be: lapsed

Owner name: ROBERTS-GORDON CANADA INC.

Effective date: 19950531

Owner name: PHOENIX BURNERS LTD

Effective date: 19950531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19951201

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 19951201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19960504

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19970131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19970201

EUG Se: european patent has lapsed

Ref document number: 82103774.4

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST