EP0069888B1 - Electronically controlled ignition system - Google Patents

Electronically controlled ignition system Download PDF

Info

Publication number
EP0069888B1
EP0069888B1 EP82105517A EP82105517A EP0069888B1 EP 0069888 B1 EP0069888 B1 EP 0069888B1 EP 82105517 A EP82105517 A EP 82105517A EP 82105517 A EP82105517 A EP 82105517A EP 0069888 B1 EP0069888 B1 EP 0069888B1
Authority
EP
European Patent Office
Prior art keywords
pulse
ignition
trigger
primary current
electronically controlled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP82105517A
Other languages
German (de)
French (fr)
Other versions
EP0069888A3 (en
EP0069888A2 (en
Inventor
Willy Minner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Telefunken Electronic GmbH
Original Assignee
Telefunken Electronic GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Telefunken Electronic GmbH filed Critical Telefunken Electronic GmbH
Publication of EP0069888A2 publication Critical patent/EP0069888A2/en
Publication of EP0069888A3 publication Critical patent/EP0069888A3/en
Application granted granted Critical
Publication of EP0069888B1 publication Critical patent/EP0069888B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P3/00Other installations
    • F02P3/02Other installations having inductive energy storage, e.g. arrangements of induction coils
    • F02P3/04Layout of circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P17/00Testing of ignition installations, e.g. in combination with adjusting; Testing of ignition timing in compression-ignition engines

Definitions

  • the invention relates to an electronically controlled ignition system in which the time of use of the primary current (Ip r ) flowing through the primary winding of the ignition coil is regulated in a speed-dependent manner such that this current only reaches the value (Ip rmax ) required for the ignition shortly before the time of ignition and at which is determined immediately before the ignition point, whether the primary current has reached the value required for the ignition by deriving a test pulse (U te ) from the residence time (t e ) of the primary current in the value (Ip rmax ) required for the ignition If the primary current is not available or is not sufficiently large to avoid misfires (ZA), the electronic control is switched off for a defined period of time and the time of use of the primary current is derived directly from the control signal (U IN ) of the ignition pulse generator, and the electronically controlled control state continuously after the end of the switch-off period and automatically is brought about again.
  • ZA misfires
  • a test pulse of the duration t e is obtained from the dwell time of the primary current in its value required for the ignition.
  • a switch is actuated, via which a capacitor, which is charged when there are no t e pulses, is discharged again.
  • This comparison voltage is compared with the capacitor voltage at a comparator, at whose output a signal only occurs if the capacitor voltage is above the comparison voltage during an existing trigger pulse.
  • the trigger pulse with which the comparator is activated is obtained from the negative switch-off edge of the control signal when this control signal of the ignition pulse generator goes from its high level to the low level.
  • An output signal on the comparator for example, converts a monostable multivibrator from its stable state to the quasi-stable state, so that during the period in which this monostable multivibrator remains in its quasi-stable state, the electronic control is switched off and the instant of use of the primary current through the ignition coil is direct is derived from the control signal of the ignition pulse generator.
  • the switch-off period has ended, the electronically controlled control state is continuously and automatically restored in the manner described in the patent application mentioned.
  • the present invention is based on the object of further improving the known circuit and, in particular, of specifying a circuit which contains small capacitors which are capable of integration.
  • This object is achieved in an electronically controlled ignition system of the type described in the introduction in that the test pulse with an integration stage is extended by a time interval and the extended pulse is fed to a first input of a logic circuit (G 1 ) in that a second input of the logic circuit is switched off the switch-off edge of the control signal derived trigger pulse is supplied, and that the logic is selected so that an output pulse which triggers the switch-off of the electronic control only occurs when there is no pulse supplied by the integration stage during the trigger pulse.
  • the voltage comparator used there is thus replaced by a logic circuit compared to the circuit arrangement already proposed, which is supplied with the trigger pulse and an extended test pulse.
  • the integration stage now provided contains a capacitor, but this capacitor is considerably smaller than the capacitor of the circuit previously proposed, which was discharged in each case by the test pulses t e . This makes it possible to fully integrate the capacitors contained in the newly proposed circuit with integrated semiconductor technology in a semiconductor body, so that the otherwise necessary external connection of a capacitor is eliminated.
  • the logic preferably consists of a NOR gate, at the first input of which the extended test pulse is applied as the positive pulse and at the second input of which the negative trigger pulses are present.
  • the length of the test pulse must be longer than the duration of the negative trigger pulse.
  • FIG. 1 shows the circuit for detecting misfires
  • FIGS. 2a to 2f show the mode of operation of the circuit.
  • NOR gate G 1 consists of an integrator stage 1 and a differentiation stage 2.
  • the output signals of both stages are given to an input of a NOR gate G 1 .
  • the output signal of the NOR gate controls a monostable multivibrator MF, via which the electronic control of the ignition system is switched off for a defined period of time when misfires occur.
  • the integrator stage 1 consists of a transistor T 4 at the base electrode of which the test signal U te is applied, which is obtained according to FIG. 2d from the residence time of the primary current in the ignition coil in the value I pr max required for the ignition.
  • the collector branch of the transistor T 4 contains the collector resistor R 5 , to which the series circuit comprising a capacitor C 2 and a diode D 2 is connected in parallel.
  • the base electrode of the output transistor T 5 is connected to the connection point between the capacitor C 2 and the diode D 2 , and the extended test pulse U INTEGR is applied to its collector resistor R 7 .
  • the emitter resistor R e of this output transistor T 5 is connected to the positive pole of the supply voltage source.
  • the output voltage U INTEGR of the integration stage 1 is given to the input E i of the NOR gate G I.
  • the differentiation stage 2 contains 3 transistor stages connected in series, with the transistors T 1 , T 2 and T 3 .
  • the control signal U IN which is tapped at the ignition pulse generator, is given to the base electrode of the input transistor T 1 .
  • the emitter collector path of this transistor T 1 is bridged with the differentiating element from the capacitor C 1 and the diode D 1 .
  • the transistor T 1 has an emitter resistor R 1 .
  • the base electrode of transistor T 2 whose emitter resistor R 2 is connected to the positive pole of the supply voltage, is connected to the connection point between differentiation capacitor C 1 and diode D 1 .
  • the input voltage for the transistor T 3 is tapped at the collector resistor R 3 , the negative trigger pulses U TRIGGER are tapped from the collector thereof and are fed to the input E 2 of the NOR gate G 1 .
  • the collector resistor R 4 of the output transistor T 3 of the differentiation stage 2 is in turn connected to the positive potential of the supply voltage source.
  • Fig. 1 can also be seen that the output terminal of the NOR gate G 1 is connected to the monostable multivibrator MF, at whose output the signal U ou t occurs, with which the electronic control of the ignition system is interrupted for a defined period of time.
  • FIG. 2a shows the control signal U IN which is applied to the control electrode of the transistor T 1 of the differentiating stage 2.
  • the periods P 1 and P 2 of the control signal are identical in the exemplary embodiment shown, while the period P 3 contains an error triggered, for example, by acceleration processes. In this period P 3 , the "low phase" of the control signal was extended at the expense of the "high phase". It is assumed that this error no longer occurs in the period P 4 .
  • 2b shows the trigger signal U TRIGGER , which occurs at output A of the differentiating stage and is applied to input E2 NOR gate G 1 . This trigger signal is obtained from the negative edge of the control signal when the control signal changes from the "high phase” to the "low phase”.
  • a pulse is obtained from each edge of the control signal U IN on the differentiator from the capacitor C 1 and the diode D 1 .
  • the trigger pulses originating from the positive edges of the control signal U IN are suppressed, so that only trigger signals from the negative edges are present at the collector resistor R 3 of the transistor T 2 of the control signal U IN .
  • These trigger pulses are inverted at transistor T 3 , so that trigger pulses according to FIG. 2b are present at output A of the transistor stage with transistor T 3 .
  • the trigger time during which the trigger signal U TRIGGER has its “low value” is designated t x according to FIG. 2b.
  • the course of the primary current in the ignition coil is shown in FIG. 2c.
  • the primary current can increase or have the value Ip r max required for the ignition.
  • the ignition coil is discharged at the time of ignition.
  • the primary current in normal operating mode and using the electronic control reaches its value I pr max required for the ignition by the time t e before the ignition point of the respective period. This value is also reached during the periods P 1 , P 2 and P 4 . 2c shows, however, that in the faulty period P 3 the primary current cannot reach its value I pr max required for the ignition, so that a misfire ZA occurs.
  • a test pulse U te is obtained from the time period in which the primary current remains at its maximum according to FIG. 2c, the pulse width of which is predetermined by the time t e according to FIG. 2d. Since the primary current in the ignition coil did not reach its value I pr max required for ignition in the third period, no test pulse U te occurs in this period either.
  • the test pulse U te is fed to an integrating amplifier or an integrator stage 1 according to FIG. 1, so that the test pulse is lengthened as shown in FIG. 2e with the aid of the capacitor C 2 .
  • the extension period is indicated by ty.
  • This signal U INTEGR is fed to the input E 1 of the NOR gate G 1 .
  • a "high level" only occurs at the output of NOR gate G 1 if both input levels at inputs E 1 and E2 are low. Since the trigger pulses according to FIG.
  • ty will be twice the size of t x .
  • the time of 20 ⁇ sec for t x and the time of 40 ⁇ sec for t y was set by appropriately dimensioning the capacitors C 1 and C 2 .
  • the capacitor C 1 had a value of approximately 30 pF and the capacitor C 2 a value of approximately 60 pF.
  • Capacitors of this size can very easily be integrated into integrated semiconductor circuits, so that no separate, externally connectable capacitors are required. The small values of the capacitances are also due in particular to the diodes D 1 and D 2 inserted into the circuit.
  • the capacitor C 2 is charged only via the base current of the transistor T 5 and not via the resistor R 5 of the parallel RC element, so that the capacitance C 2 can remain very small.
  • the present invention thus contains a significant improvement and simplification of the otherwise very advantageous electronically controlled ignition system according to the earlier German patent application P 3 111 856.9.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Ignition Installations For Internal Combustion Engines (AREA)

Description

Die Erfindung betrifft ein elektronisch geregeltes Zündsystem, bei dem der Einsatzzeitpunkt des durch die Primärwicklung der Zündspule fließenden Primärstroms (Ipr) drehzahlabhängig so geregelt ist, daß dieser Strom erst kurz vor dem Zündzeitpunkt den für die Zündung erforderlichen Wert (Iprmax) erreicht und bei dem unmittelbar vor dem Zündzeitpunkt festgestellt wird, ob der Primärstrom den für die Zündung erforderlichen Wert erreicht hat, indem aus der Verweildauer (te) des Primärstroms im für die Zündung erforderlichen Wert (Iprmax) ein Prüfimpuls (Ute) abgeleitet wird, mit dessen Hilfe bei nicht vorhandenem oder nicht ausreichend großem Primärstrom zur Vermeidung von Zündaussetzern (ZA) die elektronische Regelung für einen definierten Zeitraum abgeschaltet und der Einsatzzeitpunkt des Primärstroms direkt vom Steuersignal (UIN) des Zündimpulsgebers abgeleitet und nach Beendigung des Abschaltzeitraums der elektronisch gesteuerte Regelzustand kontinuierlich und automatisch wieder herbeigeführt wird.The invention relates to an electronically controlled ignition system in which the time of use of the primary current (Ip r ) flowing through the primary winding of the ignition coil is regulated in a speed-dependent manner such that this current only reaches the value (Ip rmax ) required for the ignition shortly before the time of ignition and at which is determined immediately before the ignition point, whether the primary current has reached the value required for the ignition by deriving a test pulse (U te ) from the residence time (t e ) of the primary current in the value (Ip rmax ) required for the ignition If the primary current is not available or is not sufficiently large to avoid misfires (ZA), the electronic control is switched off for a defined period of time and the time of use of the primary current is derived directly from the control signal (U IN ) of the ignition pulse generator, and the electronically controlled control state continuously after the end of the switch-off period and automatically is brought about again.

Ein derartiges elektronisch geregeltes Zündsystem wird in der prioritäts älteren, nicht vorveröffentlichten deutschen Patentanmeldung P 3 111 856. beschrieben.Such an electronically controlled ignition system is described in the older, not prepublished German patent application P 3 111 856.

Bei dem bereits vorgeschlagenen geregelten Zündsystem wird aus der Verweildauer des Primärstroms in seinem für die Zündung erforderlichen Wert ein Prüfimpuls der Zeitdauer te gewonnen. Mit diesem Prüfimpuls wird ein Schalter betätigt, über den ein Kondensator, der bei nicht vorhandenen te-Impulsen aufgeladen wird, wieder entladen wird. Daraus ergibt sich, daß die Spannung am Kondensator beim Auftreten von Prüfimpulsen unter den Wert einer Vergleichsspannung fällt, die fest vorgegeben und beispielsweise halb so groß ist wie die maximal mögliche Spannung am Kondensator bei folgendem Prüfimpuls. Diese Vergleichsspannung wird mit der Kondensatorspannung an einem Komparator verglichen, an dessen Ausgang nur dann ein Signal auftritt, wenn während eines vorhandenen Triggerimpulses die Kondensatorspannung über der Vergleichsspannung liegt. Dies ist nur dann möglich, wenn dem jeweiligen Triggerimpuls kein Prüfimpuls unmittelbar voranging und somit für eine ausreichende Entladung des Kondensators nicht besorgt wurde. Ein fehlender Prüfimpuls ist jedoch gleichbedeutend mit einem Zündaussetzer, da in diesem Fall der Primärstrom durch die Zündspule nicht den für die Zündung erforderlichen Wert erreicht hat. Den Triggerimpuls, mit dem der Komparator aktiviert wird, gewinnt man aus der negativen Abschaltflanke des Steuersignals, wenn dieses Steuersignal des Zündimpulsgebers von seinem High-Pegel zum Low-Pegel geht. Durch ein Ausgangssignal am Komparator wird beispielsweise eine monostabile Kippstufe von ihrem stabilen Zustand in den quasistabilen Zustand übergeführt, so daß während der Zeitdauer, in der diese monostabile Kippstufe in ihrem quasistabilen Zustand verbleibt, die elektronische Regelung abgeschaltet und der Einsatzzeitpunkt des Primärstroms durch die Zündspule direkt vom Steuersignal des Zündimpulsgebers abgeleitet wird. Ist der Abschaltzeitraum zu Ende, so wird der elektronisch gesteuerte Regelzustand in der genannten Patentanmeldung beschriebenen Weise kontinuierlich und automatisch wieder herbeigeführt.In the case of the regulated ignition system already proposed, a test pulse of the duration t e is obtained from the dwell time of the primary current in its value required for the ignition. With this test pulse, a switch is actuated, via which a capacitor, which is charged when there are no t e pulses, is discharged again. The result of this is that the voltage across the capacitor falls below the value of a reference voltage when test pulses occur, which is fixed and, for example, half the size of the maximum possible voltage across the capacitor during the following test pulse. This comparison voltage is compared with the capacitor voltage at a comparator, at whose output a signal only occurs if the capacitor voltage is above the comparison voltage during an existing trigger pulse. This is only possible if no test pulse immediately preceded the respective trigger pulse and thus the capacitor was not sufficiently discharged. However, a missing test pulse is synonymous with a misfire, since in this case the primary current through the ignition coil has not reached the value required for the ignition. The trigger pulse with which the comparator is activated is obtained from the negative switch-off edge of the control signal when this control signal of the ignition pulse generator goes from its high level to the low level. An output signal on the comparator, for example, converts a monostable multivibrator from its stable state to the quasi-stable state, so that during the period in which this monostable multivibrator remains in its quasi-stable state, the electronic control is switched off and the instant of use of the primary current through the ignition coil is direct is derived from the control signal of the ignition pulse generator. When the switch-off period has ended, the electronically controlled control state is continuously and automatically restored in the manner described in the patent application mentioned.

Der vorliegenden Erfindung liegt die Aufgabe zugrunde, die bekannte Schaltung weiter zu verbessern und insbesondere eine Schaltung anzugeben, die kleine und integrationsfähige Kondensatoren enthält. Diese Aufgabe wird bei einem elektronisch geregelten Zündsystem der eingangs beschriebenen Art erfindungsgemäß dadurch gelöst, daß der Prüfimpuls mit einer Integrationsstufe um ein Zeitintervall verlängert und der verlängerte Impuls einem ersten Eingang einer Logikschaltung (G1) zugeführt wird, daß einem zweiten Eingang der Logikschaltung ein aus der Abschaltflanke des Steuersignals abgeleiteter Triggerimpuls zugeführt wird, und daß die Logik so gewählt ist, daß an ihr nur dann ein die Abschaltung der elektronischen Regelung auslösender Ausgangsimpuls auftritt, wenn während des Triggerimpulses kein von der Integrationsstufe gelieferter Impuls vorhanden ist.The present invention is based on the object of further improving the known circuit and, in particular, of specifying a circuit which contains small capacitors which are capable of integration. This object is achieved in an electronically controlled ignition system of the type described in the introduction in that the test pulse with an integration stage is extended by a time interval and the extended pulse is fed to a first input of a logic circuit (G 1 ) in that a second input of the logic circuit is switched off the switch-off edge of the control signal derived trigger pulse is supplied, and that the logic is selected so that an output pulse which triggers the switch-off of the electronic control only occurs when there is no pulse supplied by the integration stage during the trigger pulse.

Bei dem erfindungsgemäßen elektronisch geregelten Zündsystem wird somit gegenüber der bereits vorgeschlagenen Schaltungsanordnung der dort verwendete Spannungskomparator durch eine Logikschaltung ersetzt, der zum einen der Triggerimpuls und zum anderen ein verlängerter Prüfimpuls zugeführt wird. Die nunmehr vorgesehene Integrationsstufe enthält einen Kondensator, doch ist dieser Kondensator wesentlich kleiner, als der Kondensator der früher vorgeschlagenen Schaltung, der jeweils durch die Prüfimpulse te entladen wurde. Dadurch ist es möglich, die in der neu vorgeschlagenen Schaltung enthaltenen Kondensatoren voll in integrierter Schaltungstechnik mit in einen Halbleiterkörper zu integrieren, so daß die ansonsten notwendige externe Zuschaltung eines Kondensators entfällt.In the case of the electronically controlled ignition system according to the invention, the voltage comparator used there is thus replaced by a logic circuit compared to the circuit arrangement already proposed, which is supplied with the trigger pulse and an extended test pulse. The integration stage now provided contains a capacitor, but this capacitor is considerably smaller than the capacitor of the circuit previously proposed, which was discharged in each case by the test pulses t e . This makes it possible to fully integrate the capacitors contained in the newly proposed circuit with integrated semiconductor technology in a semiconductor body, so that the otherwise necessary external connection of a capacitor is eliminated.

Bei der neuen Schaltung innerhalb des elektronisch geregelten Zündsystems besteht die Logik vorzugsweise aus einem NOR-Gatter, an dessen erstem Eingang als positiver Impuls der verlängerte Prüfimpuls und an dessen zweitem Eingang die negativen Triggerimpulse anliegen. Die Verlängerungsdauer des Prüfimpulses muß größer sein als die Dauer des negativen Triggerimpulses.In the new circuit within the electronically controlled ignition system, the logic preferably consists of a NOR gate, at the first input of which the extended test pulse is applied as the positive pulse and at the second input of which the negative trigger pulses are present. The length of the test pulse must be longer than the duration of the negative trigger pulse.

Die Erfindung und ihre vorteilhafte Ausgestaltung soll anhand eines Ausführungsbeispieles noch näher erläutert werden. Die Fig. 1 zeigt die Schaltung zur Erkennung von Zündaussetzern, während sich aus den Diagrammen der Fig. 2a bis 2f die Wirkungsweise der Schaltung ergibt.The invention and its advantageous embodiment will be explained in more detail using an exemplary embodiment. FIG. 1 shows the circuit for detecting misfires, while the diagrams of FIGS. 2a to 2f show the mode of operation of the circuit.

Die Schaltung gemäß der Fig. 1 besteht aus einer Integratorstufe 1 und einer Differenzierstufe 2. Die Ausgangssignale beider Stufen werden auf jeweils einen Eingang eines NOR-Gatters G1 gegeben. Das Ausgangssignal des NOR-Gatters steuert eine monostabile Kippstufe MF, über die die elektronische Regelung des Zündsystems beim Auftreten von Zündaussetzern für einen definierten Zeitraum abgeschaltet wird.1 consists of an integrator stage 1 and a differentiation stage 2. The output signals of both stages are given to an input of a NOR gate G 1 . The output signal of the NOR gate controls a monostable multivibrator MF, via which the electronic control of the ignition system is switched off for a defined period of time when misfires occur.

Die Integratorstufe 1 besteht aus einem Transistor T4 an dessen Basiselektrode das Prüfsignal Ute anliegt, das gemäß der Fig. 2d aus der Verweildauer des Primärstroms in der Zündspule in dem für die Zündung erforderlichen Wert Ipr max gewonnen wird. Im Kollektorzweig des Transistors T4 ist der Kollektorwiderstand R5 enthalten, dem die Reihenschaltung aus einem Kondensator C2 und einer Diode D2 parallel geschaltet ist. An den Verbindungspunkt zwischen Kondensator C2 und Diode D2 ist die Basiselektrode des Ausgangstransistors T5 angeschlossen, an dessen Kollektorwiderstand R7 der verlängerte Prüfimpuls UINTEGR anliegt. Der Emitterwiderstand Re dieses Ausgangstransistors T5 ist mit dem positiven Pol der Versorgungsspannungsquelle verbunden. Die Ausgangsspannung UINTEGR der Integrationsstufe 1 wird auf den Eingang Ei des NOR-Gatters GI gegeben.The integrator stage 1 consists of a transistor T 4 at the base electrode of which the test signal U te is applied, which is obtained according to FIG. 2d from the residence time of the primary current in the ignition coil in the value I pr max required for the ignition. The collector branch of the transistor T 4 contains the collector resistor R 5 , to which the series circuit comprising a capacitor C 2 and a diode D 2 is connected in parallel. The base electrode of the output transistor T 5 is connected to the connection point between the capacitor C 2 and the diode D 2 , and the extended test pulse U INTEGR is applied to its collector resistor R 7 . The emitter resistor R e of this output transistor T 5 is connected to the positive pole of the supply voltage source. The output voltage U INTEGR of the integration stage 1 is given to the input E i of the NOR gate G I.

Die Differenzierstufe 2 enthält 3 einander nachgeschaltete Transistorstufen, mit den Transistoren T1, T2 und T3. Auf die Basiselektrode des Eingangstransistors T1 wird das Steuersignal UIN, das am Zündimpulsgeber abgegriffen wird, gegeben. Die Emitterkollektorstrecke dieses Transistors T1 ist mit dem Differenzierglied aus dem Kondensator C1 und der Diode D1 überbrückt. Außerdem weist der Transistor T1 einen Emitterwiderstand R1 auf. An die Verbindungsstelle zwischen Differenzierkondensator C1 und Diode D1 ist die Basiselektrode des Transistors T2 angeschlossen, dessen Emitterwiderstand R2 mit dem positiven Pol der Versorgungsspannung verbunden ist. Am Kollektorwiderstand R3 wird die Eingangsspannung für den Transistor T3 abgegriffen, an dessen Kollektor die negativen Trigger- impulse UTRIGGER abgegriffen und dem Eingang E2 des NOR-Gatters G1 zugeführt werden. Der Kollektorwiderstand R4 des Ausgangstransistors T3 der Differenzierstufe 2 ist wiederum mit dem positiven Potential der Versorgungsspannungsquelle verbunden. Der Fig. 1 ist ferner zu entnehmen, daß der Ausgangsanschluß des NOR-Gatters G1 mit der monostabilen Kippstufe MF verbunden ist, an deren Ausgang das Signal Uout auftritt, mit dem die elektronische Regelung des Zündsystems für eine definierte Zeitspanne unterbrochen wird.The differentiation stage 2 contains 3 transistor stages connected in series, with the transistors T 1 , T 2 and T 3 . The control signal U IN , which is tapped at the ignition pulse generator, is given to the base electrode of the input transistor T 1 . The emitter collector path of this transistor T 1 is bridged with the differentiating element from the capacitor C 1 and the diode D 1 . In addition, the transistor T 1 has an emitter resistor R 1 . The base electrode of transistor T 2 , whose emitter resistor R 2 is connected to the positive pole of the supply voltage, is connected to the connection point between differentiation capacitor C 1 and diode D 1 . The input voltage for the transistor T 3 is tapped at the collector resistor R 3 , the negative trigger pulses U TRIGGER are tapped from the collector thereof and are fed to the input E 2 of the NOR gate G 1 . The collector resistor R 4 of the output transistor T 3 of the differentiation stage 2 is in turn connected to the positive potential of the supply voltage source. Fig. 1 can also be seen that the output terminal of the NOR gate G 1 is connected to the monostable multivibrator MF, at whose output the signal U ou t occurs, with which the electronic control of the ignition system is interrupted for a defined period of time.

In der Fig. 2a ist das Steuersignal UIN dargestellt, das auf die Steuerelektrode des Transistors T1 der Differenzierstufe 2 gegeben wird. Die Perioden P1 und P2 des Steuersignals sind bei dem dargestellten Ausführungsbeispiel identisch, während in der Periode P3 ein beispielsweise durch Beschleunigungsvorgänge ausgelöster Fehler enthalten ist. In dieser Periode P3 wurde die »Low-Phase« des Steuersignals zu Lasten der »High-Phase« verlängert. Es wird angenommen, daß in der Periode P4 dieser Fehler nicht mehr auftritt. In der Fig. 2b ist das Triggersignal UTRIGGER dargestellt, das am Ausgang A der Differenzierstufe auftritt und auf den Eingang E2 NOR-Gatter G1 gegeben wird. Dieses Triggersignal wird aus der negativen Flanke des Steuersignals gewonnen, wenn das Steuersignal von der »High-Phase« in die »Low-Phase« übergeht. Zunächst wird durch jede Flanke des Steuersignals UIN am Differenzierglied aus dem Kondensator C1 und die Diode D1 ein Impuls gewonnen. An der zweiten Stufe der Differenzierschaltung 2 mit dem Transistor T2 werden die von den positiven Flanken des Steuersignals UIN herrührenden Trigger-Impulse unterdrückt, so daß am Kollektorwiderstand R3 des Transistors T2 nur noch Trigger-Signale anliegen, die von den negativen Flanken des Steuersignals UIN, herrühren. Diese Trigger-Impulse werden am Transistor T3 invertiert, so daß am Ausgang A der Transistorstufe mit dem Transistor T3 Triggerimpulse gemäß Fig. 2b anliegen. Die Triggerzeit, während der das Triggersignal UTRIGGER seinen »Low-Wert« aufweist, ist gemäß Fig. 2b mit tx bezeichnet.FIG. 2a shows the control signal U IN which is applied to the control electrode of the transistor T 1 of the differentiating stage 2. The periods P 1 and P 2 of the control signal are identical in the exemplary embodiment shown, while the period P 3 contains an error triggered, for example, by acceleration processes. In this period P 3 , the "low phase" of the control signal was extended at the expense of the "high phase". It is assumed that this error no longer occurs in the period P 4 . 2b shows the trigger signal U TRIGGER , which occurs at output A of the differentiating stage and is applied to input E2 NOR gate G 1 . This trigger signal is obtained from the negative edge of the control signal when the control signal changes from the "high phase" to the "low phase". First, a pulse is obtained from each edge of the control signal U IN on the differentiator from the capacitor C 1 and the diode D 1 . At the second stage of the differentiating circuit 2 with the transistor T 2 , the trigger pulses originating from the positive edges of the control signal U IN are suppressed, so that only trigger signals from the negative edges are present at the collector resistor R 3 of the transistor T 2 of the control signal U IN . These trigger pulses are inverted at transistor T 3 , so that trigger pulses according to FIG. 2b are present at output A of the transistor stage with transistor T 3 . The trigger time during which the trigger signal U TRIGGER has its “low value” is designated t x according to FIG. 2b.

In der Fig. 2c ist der Verlauf des Primärstroms in der Zündspule dargestellt. Bis zum Zündzeitpunkt kann der Primästrom anwachsen beziehungsweise den für die Zündung erforderlichen Wert Ipr max aufweisen. Mit dem Zündzeitpunkt erfolgt die jeweilige Entladung der Zündspule. Wie man der Fig. 2c entnimmt, erreicht der Primärstrom bei normaler Betriebsweise und unter Einsatz der elektronischen Regelung seinen für die Zündung erforderlichen Wert Ipr max um die Zeit te vor dem Zündzeitpunkt der jeweiligen Periode. Dieser Wert wird auch während der Perioden P1, P2 und P4 erreicht. Aus der Fig. 2c ergibt sich jedoch, daß bei der fehlerhaften Periode P3 der Primärstrom nicht seinen für die Zündung erforderlichen Wert Ipr max erreichen kann, so daß ein Zündaussetzer ZA auftritt.The course of the primary current in the ignition coil is shown in FIG. 2c. Up to the point of ignition, the primary current can increase or have the value Ip r max required for the ignition. The ignition coil is discharged at the time of ignition. As can be seen from FIG. 2c, the primary current in normal operating mode and using the electronic control reaches its value I pr max required for the ignition by the time t e before the ignition point of the respective period. This value is also reached during the periods P 1 , P 2 and P 4 . 2c shows, however, that in the faulty period P 3 the primary current cannot reach its value I pr max required for the ignition, so that a misfire ZA occurs.

Aus der Zeitspanne, in der der Primärstrom in seinem Maximum gemäß Fig. 2c verharrt, wird ein Prüfimpuls Ute gewonnen, dessen Impulsbreite gemäß der Fig. 2d durch die Zeit te vorgegeben ist. Da in der dritten Periode der Primärstrom in der Zündspule seinen für die Zündung erforderlichen Wert Ipr max nicht erreichte, tritt in dieser Periode auch kein Prüfimpuls Ute auf.A test pulse U te is obtained from the time period in which the primary current remains at its maximum according to FIG. 2c, the pulse width of which is predetermined by the time t e according to FIG. 2d. Since the primary current in the ignition coil did not reach its value I pr max required for ignition in the third period, no test pulse U te occurs in this period either.

Der Prüfimpuls Ute wird einem integrierenden Verstärker beziehungsweise einer Integratorstufe 1 gemäß der Fig. 1 zugeführt, so daß mit Hilfe des Kondensators C2 eine in der Fig. 2e dargestellte Verlängerung des Prüfimpulses erfolgt. Die Verlängerungsdauer ist mit ty bezeichnet. Am Ausgang der Integratorstufe 1 liegt somit eine Spannung gemäß der Fig. 2e an, deren Impulse die Impulsweite te + ty aufweisen. Dieses Signal UINTEGR wird dem Eingang E1 des NOR-Gatters G1 zugeführt. Am Ausgang des NOR-Gatters G1 tritt definitionsgemäß nur dann ein »High-Pegel« auf, wenn beide Eingangspegel an den Eingängen E1 und E2 Low sind. Da die Triggerimpulse gemäß der Fig. 2b negative Impulse sind, die stets in der Triggerzeit tx den Low-Pegel erreichen, kann am Ausgang des NOR-Gatters G1 nur dann ein High-Pegel auftreten, wenn während der Triggerzeit tx innerhalb einer Periode des Steuersignals UIN kein verlängerter Prüfimpuls UINTEGR auftritt. Dies ist bei Zündaussetzern ZA der Fall, so daß, wie in Fig. 2f dargestellt, am Ende der dritten Periode P3 vom NOR-Gatter G1 ein Ausgangssignal UMF abgegeben wird, durch das die Kippstufe MF geschaltet wird. Zur sicheren Funktionsweise der Schaltung muß gewährleistet sein, daß die Verlängerungsdauer ty der Prüfimpulse größer als die Dauer tx der Triggersignale. Beispielsweise wird ty doppelt so groß sein wie tx. Bei einem Ausführungsbeispiel wurde für tx die Zeit von 20 µsec und für ty die Zeit von 40 µsec durch entsprechende Dimensionierung der Kondensatoren C1 und C2 eingestellt. Der Kondensator C1 wies dabei einen Wert von ca. 30 pF und der Kondensator C2 einen Wert von ca. 60 pF auf. Kondensatoren dieser Größe können sehr leicht in integrierte Halbleiterschaltkreise mitintegriert werden, so daß keine gesonderten, extern zuzuschaltenden Kondensatoren benötigt werden. Die kleinen Werte der Kapazitäten sind auch insbesondere durch die in die Schaltung eingefügten Dioden D1 und D2 bedingt. So wird bei der Integrationsstufe 1 der Kondensator C2 nur über den Basisstrom des Transistors T5 und nicht über den Widerstand R5 des Parallel-RC-Gliedes aufgeladen, so daß die Kapzität C2 sehr klein bleiben kann. Die vorliegende Erfindung enthält somit eine bedeutsame Verbesserung und Vereinfachung des ansonsten sehr vorteilhaften elektronisch geregelten Zündsystems gemäß der früheren deutschen Patentanmeldung P 3 111 856.9.The test pulse U te is fed to an integrating amplifier or an integrator stage 1 according to FIG. 1, so that the test pulse is lengthened as shown in FIG. 2e with the aid of the capacitor C 2 . The extension period is indicated by ty. At the output of the integrator stage 1 there is therefore a voltage according to FIG. 2e, the pulses of which have the pulse width t e + ty. This signal U INTEGR is fed to the input E 1 of the NOR gate G 1 . By definition, a "high level" only occurs at the output of NOR gate G 1 if both input levels at inputs E 1 and E2 are low. Since the trigger pulses according to FIG. 2b are negative pulses that are always in the If the trigger time t x reaches the low level, a high level can only occur at the output of the NOR gate G 1 if no extended test pulse U INTEGR occurs during the trigger time t x within a period of the control signal U IN . This is the case with misfires ZA, so that, as shown in FIG. 2f, an output signal U MF is emitted by the NOR gate G 1 at the end of the third period P 3 , by means of which the flip-flop MF is switched. In order for the circuit to function reliably, it must be ensured that the extension time ty of the test pulses is greater than the duration t x of the trigger signals. For example, ty will be twice the size of t x . In one exemplary embodiment, the time of 20 μsec for t x and the time of 40 μsec for t y was set by appropriately dimensioning the capacitors C 1 and C 2 . The capacitor C 1 had a value of approximately 30 pF and the capacitor C 2 a value of approximately 60 pF. Capacitors of this size can very easily be integrated into integrated semiconductor circuits, so that no separate, externally connectable capacitors are required. The small values of the capacitances are also due in particular to the diodes D 1 and D 2 inserted into the circuit. Thus, in the integration stage 1, the capacitor C 2 is charged only via the base current of the transistor T 5 and not via the resistor R 5 of the parallel RC element, so that the capacitance C 2 can remain very small. The present invention thus contains a significant improvement and simplification of the otherwise very advantageous electronically controlled ignition system according to the earlier German patent application P 3 111 856.9.

Claims (4)

1. Electronically controlled ignition system, wherein the starting time of the primary current (Ipr) flowing through the primary winding of the ignition coil is controlled in dependence upon speed in such a way that this current only reaches the value (Ipr max) required for the ignition shortly before the point of ignition, and wherein it is ascertained immediately before the point of ignition whether the primary current has reached the value required for the ignition by deriving from the dwell time (te) of the primary current in the value (Ipr max) required for the ignition a test pulse (Ute) with whose aid, in the absence of primary current or in the case of insufficiently large primary current, in order to avoid misfires (ZA), the electronic control is switched off for a defined time, and the starting point of the primary current is directly derived from the control signal (UIN) of the ignition pulse generator, and after termination of the switch-off time, the electronically controlled control state is initiated again continuously and automatically, characterized in that the test pulse (Ute) is prolonged with an integration stage (1) by a time interval (ty), and the prolonged pulse (UINTEGR) is fed to a first input (E1) of a logic circuit (G1), in that a trigger pulse (UTRIGGER) derived from the switch-off edge of the control signal (UN) is fed to a second input (E2) of the logic circuit (G1), and in that the logic (G1) is selected such that an output pulse (UMF) triggering the switching-off of the electronic control only occurs at it if during the trigger pulse no pulse delivered by the integration stage is present.
2. Electronically controlled ignition system according to claim 1, characterized in that the logic (Gi) is a NOR gate, with the prolonged test pulse (UINTEGR) present as positive pulse at its first input (E1), and the negative trigger pulses at its second input (E2), and in that the prolongation time of the test pulse is longer than the duration of the negative trigger pulse.
3. Electronically controlled ignition system according to claims 1 or 2, characterized in that the trigger pulses (UTRIGGER) are gained by differentiation of the control signal (UIN) delivered by the ignition pulse generator and - by means of a diode (D1) - subsequent suppression of the pulses created by the positiv switch-on edges, and in that the capacitors (C1, C2) contained in the differentiating stage and in the integration stage are integrated into the integrated semiconductor circuit.
4. Electronically controlled ignition system according to one of the preceding claims, characterized in that the integration stage contains two transistors (T4, Ts), in that a parallel RC member is arranged in the collector branch of the transistor (T4), in that the base electrode of the other transistor (Ts) is connected to the collector electrode of the transistor (T4) via a diode (D2) in such a way that charging of the capacitor (C2) of the RC member via the resistor (Rs) of the RC member is prevented, and the capacitor may only be charged via the base current of the other transistor (Ts).
EP82105517A 1981-07-10 1982-06-23 Electronically controlled ignition system Expired EP0069888B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3127230A DE3127230C2 (en) 1981-07-10 1981-07-10 Electronically controlled ignition system for internal combustion engines
DE3127230 1981-07-15

Publications (3)

Publication Number Publication Date
EP0069888A2 EP0069888A2 (en) 1983-01-19
EP0069888A3 EP0069888A3 (en) 1983-06-22
EP0069888B1 true EP0069888B1 (en) 1985-09-11

Family

ID=6136563

Family Applications (1)

Application Number Title Priority Date Filing Date
EP82105517A Expired EP0069888B1 (en) 1981-07-10 1982-06-23 Electronically controlled ignition system

Country Status (4)

Country Link
US (1) US4452220A (en)
EP (1) EP0069888B1 (en)
JP (1) JPS5825571A (en)
DE (1) DE3127230C2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3868066D1 (en) * 1988-04-02 1992-03-05 Bosch Gmbh Robert COMBUSTION OBSERVATION IN A IGNITION ENGINE.
DE4016307C2 (en) * 1990-05-21 2000-03-02 Bosch Gmbh Robert Ignition circuit monitoring on an internal combustion engine
US20090127342A1 (en) * 2007-11-20 2009-05-21 Symbol Technologies, Inc. Imaging Bar Code Reader with Illumination Control System

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1063257A (en) * 1964-12-02 1967-03-30 Lucas Industries Ltd Spark ignition systems
US3601103A (en) * 1969-10-13 1971-08-24 Ladell Ray Swiden Engine-condition-responsive cutoff apparatus
US3738340A (en) * 1972-01-10 1973-06-12 Ikon Eng Inc Internal combustion engine limiter
US3884203A (en) * 1973-04-23 1975-05-20 Arnie L Cliffgard Engine RPM control system
US3892219A (en) * 1973-09-27 1975-07-01 Gen Motors Corp Internal combustion engine ignition system
US3938490A (en) * 1974-07-15 1976-02-17 Fairchild Camera And Instrument Corporation Internal combustion engine ignition system for generating a constant ignition coil control signal
US4082075A (en) * 1976-02-27 1978-04-04 Motorola, Inc. Input quarter cycle timing circuit
DE2703431C2 (en) * 1977-01-28 1986-09-18 Robert Bosch Gmbh, 7000 Stuttgart Ignition system for internal combustion engines
DE2821085A1 (en) * 1978-05-13 1979-11-15 Bosch Gmbh Robert Ignition system for IC engine - has Zener diodes in circuit parallel to transistor, preventing overvoltages on both sides of ignition coil
JPS54158536A (en) * 1978-06-02 1979-12-14 Hitachi Ltd Current control circuit for ignition device
DE3027113C2 (en) * 1980-07-17 1984-05-17 Siemens AG, 1000 Berlin und 8000 München Circuit arrangement for telecommunications switching systems, in particular telephone switching systems with subscriber stations that are temporarily unavailable
DE3111856C2 (en) * 1981-03-26 1992-10-08 Telefunken electronic GmbH, 7100 Heilbronn Electronically controlled ignition system for an internal combustion engine

Also Published As

Publication number Publication date
EP0069888A3 (en) 1983-06-22
DE3127230A1 (en) 1983-01-27
JPS5825571A (en) 1983-02-15
JPH028146B2 (en) 1990-02-22
EP0069888A2 (en) 1983-01-19
DE3127230C2 (en) 1985-11-07
US4452220A (en) 1984-06-05

Similar Documents

Publication Publication Date Title
DE3434607A1 (en) METHOD AND DEVICE FOR OPERATING A SWITCH-OFF HYRISTOR
DE2700677A1 (en) IGNITION SYSTEM, IN PARTICULAR FOR COMBUSTION MACHINERY
DE2310448A1 (en) METHOD AND DEVICE FOR PROTECTING AN ELECTRONIC SWITCH
DE3111757A1 (en) CONTROL CIRCUIT FOR A FULL CONTROL GATE THYRISTOR
DE3005713C2 (en) Method and frequency discriminator circuit for determining whether the frequency of an input pulse signal is in a specific frequency range
DE2829828C2 (en) Ignition system intended for an internal combustion engine
DE2942134A1 (en) EVALUATION FOR AN INDUCTIVE ENCODER
DE1638020A1 (en) Control circuit for static converters
DE2816886C2 (en) Pulse time addition circuit, especially for the fuel injection system of an internal combustion engine
DE2630261A1 (en) IGNITION DEVICE WITH SPEED LIMITATION FOR COMBUSTION MACHINES
EP0069888B1 (en) Electronically controlled ignition system
DE4106690A1 (en) Load control system using insulated-gate bipolar transistor circuit - with overload and short-circuit protection of controlled load
DE2759155A1 (en) CIRCUIT ARRANGEMENT FOR DETERMINING THE SPARK DURATION FOR REGULATORY OR SWITCHING CONTROLS
DE1249337B (en)
DE2814768A1 (en) SPEED CONTROL DEVICE FOR A DC MOTOR
DE3034176C2 (en) Input stage of an ignition control circuit
DE2424896A1 (en) Transistorised high tension ignition system - keeps spark constant and independent of engine speed
DE3207590C2 (en) Circuit arrangement for deriving a vertical synchronizing signal from an incoming signal
DE68918234T2 (en) Ignition system with inductive discharge in internal combustion engines.
DE2919152A1 (en) CIRCUIT ARRANGEMENT FOR MONITORING THE SPEED OF A MACHINE
DE19532677A1 (en) Monitoring circuit for power supply
DE3130307A1 (en) Electrical monitoring device for an electronic control device
DE2418546C2 (en) Clamping circuit
DE2306992C3 (en) Circuit arrangement for processing binary signals by means of an integrating circuit and a hysteresis-prone discriminator connected to it «
EP0718973B1 (en) Transition detector

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): FR GB IT

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Designated state(s): FR GB IT

17P Request for examination filed

Effective date: 19830616

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: TELEFUNKEN ELECTRONIC GMBH

ITF It: translation for a ep patent filed
GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): FR GB IT

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: 746

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19910521

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19910606

Year of fee payment: 10

ITTA It: last paid annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19920623

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19920623

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19930226

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST