EP0068937B1 - Procédé de formation d'une cible fictive dans un appareil pour l'entraînement au pointage de cibles - Google Patents

Procédé de formation d'une cible fictive dans un appareil pour l'entraînement au pointage de cibles Download PDF

Info

Publication number
EP0068937B1
EP0068937B1 EP82401012A EP82401012A EP0068937B1 EP 0068937 B1 EP0068937 B1 EP 0068937B1 EP 82401012 A EP82401012 A EP 82401012A EP 82401012 A EP82401012 A EP 82401012A EP 0068937 B1 EP0068937 B1 EP 0068937B1
Authority
EP
European Patent Office
Prior art keywords
target
signals
image
accordance
luminous point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP82401012A
Other languages
German (de)
English (en)
Other versions
EP0068937A1 (fr
Inventor
René Briard
Christian Saunier
Guy Canova
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Giravions Dorand Dite Ste
Original Assignee
Giravions Dorand Dite Ste
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Giravions Dorand Dite Ste filed Critical Giravions Dorand Dite Ste
Publication of EP0068937A1 publication Critical patent/EP0068937A1/fr
Application granted granted Critical
Publication of EP0068937B1 publication Critical patent/EP0068937B1/fr
Expired legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41GWEAPON SIGHTS; AIMING
    • F41G3/00Aiming or laying means
    • F41G3/26Teaching or practice apparatus for gun-aiming or gun-laying
    • F41G3/2616Teaching or practice apparatus for gun-aiming or gun-laying using a light emitting device
    • F41G3/2694Teaching or practice apparatus for gun-aiming or gun-laying using a light emitting device for simulating a target

Definitions

  • the present invention relates to target pointing training apparatus, and more particularly to simulation apparatus for shooting training.
  • These shooting simulators are used to provide training and instruction to shooters by allowing them, indoors or on real ground, to train to control the aiming of a weapon at a target without actually consuming
  • the projectile is a fictitious projectile, of which a calculator makes it possible to compare the position with that of a target to assess the quality of the pointing operated by the shooter on the target and to determine in particular if the shooting is correct to lead the simulated projectile to a impact on the target.
  • the target can itself be either real or fictitious.
  • the projectile we know how to simulate missile shots in this way as well as shots of simple projectiles with ballistic trajectory.
  • the trajectory of the fictitious projectile is predetermined according to the ballistic data, while in the first, it is modified by orders which are internal to the missile or from the weapon system and which are reconstituted in the computer of the simulator.
  • Shooting simulators also conventionally include means for making visible to the eyes of the shooter, superimposed on the shooting range observed by an aiming device integrated into the weapon, bright images representing the tracer of a missile. , symbolizing a target, or visualizing the results of a shot, by the effects of an impact in particular. But the means that have been proposed to date for this are still very imperfect; they are generally only simple and fixed light effects, the image of which is projected into the field of the sighting device.
  • the invention aims to improve the performance of known equipment in the simulation of shots, and to allow in particular to perform shooting exercises on fictitious but realistic targets, both in their form and in evolution, over time, even during a shot.
  • Such a principle of simulation dispenses with the use of real targets for pointing training, in shooting simulation or in any other application of similar pointing exercises.
  • the invention provides a method of forming a fictitious target in an aiming machine with aiming axis
  • orientable such as the optical sighting device of a shooting simulator, orientable at least at the start of a fictitious shot, method consisting essentially in producing target signals defining images of a fictitious target according to its shape and its evolution, at least in distance from the device and / or in angular position relative to the line of sight, to constitute the target images thus defined by a light point which is moved on a screen, under control of the target signals, and to project images thus formed into the observation field of the apparatus, characterized in that in said target signals each target image is defined by at least one linear segment and in that '' as a function of said target signals, the point is moved along a linear path comprising at least said segment, with a continuous light intensity along this segment, the speed of movement being sufficient to ensure the persistence of its pe reception during all the time necessary for the constitution of an image, in a series of successive images of said target.
  • the screen may in particular be that of a cathode ray tube, but more generally, any other system for viewing geometric figures on a screen the control of which is effected by electronic methods may be suitable.
  • the linear path can follow any curve, and it can be traversed continuously by a luminous point whose luminous intensity is continuous while it describes the complete path of the target with each image.
  • the linear path comprise extinction segments, where the light point is extinguished, so that these segments are not apparent in the image, for example when moving to the next image or between two segments from different parts of the target.
  • the preferred mode of displacement of the light point that has been defined according to such a linear path is achieved in particular by the use of a cathode ray tube of the "flying spot" type, as opposed to scanning tubes where the light point scans the whole screen in rectangular coordinates, with extinction outside the areas covered by the image.
  • a special case of the linear plot is that of a trace consisting of one or more rectilinear segments. It is particularly advantageous in the implementation of the invention, because in the target signals, any straight segment can be defined with great simplicity, in a system of two rectangular coordinates, by the length of the segment and its angle of slope . Where appropriate, the signals may contain intensity information, to control variations in light intensity, and in particular to control the extinction of the light point on its path from one to the other of two segments to be visualized as constituent segments of the target image. It is obvious that the juxtaposition of elementary segments makes it possible to produce any curves. It is also obvious that the term target must be understood in a broad sense, covering both the representation of several targets, which can be developed independently of each other.
  • the invention also relates to a training device for aiming at targets by applying, advantageously constituted by an optical sighting device, mounted for example on a pointing weapon.
  • fictitious projectile firing in a firing simulator comprising means for forming a fictitious target in the field of observation of the sighting device and means for comparing the respective positions of the fictitious projectile and the fictitious target to assess the results of the shooting.
  • the pointing training apparatus comprising means for forming a fictitious target in the field of observation of the apparatus
  • said training means comprise a screen for viewing light images, means for generating target signals for producing target signals defining successive images of a non-point target as a function of its shape and its evolution, at least at a distance from the apparatus and / or in angular position relative to the line of sight, means for controlling the movement of a light point on the screen by said signals to constitute on the screen each of the images thus defined, and projection means of the image thus formed in the field of observation of the device.
  • the firing simulator according to the invention is designed to enable the results of fictitious projectile shots to be assessed on targets which are themselves fictitious. It therefore comprises, in a manner which is moreover in itself conventional, a shotgun which the operator adjusts in orientation so that the shot reaches the target, and means of comparison between the respective positions of the fictitious and target projectile to assess the results of the firing, and to determine in particular whether the trajectory of the projectile leads to an impact on the target.
  • This comparison is carried out in practice using a calculator which processes position information which includes the angular deviations in elevation and in bearing with respect to a reference axis, and the distance with respect to the weapon.
  • the projectile In the case where the projectile is supposed to follow a ballistic trajectory, its angular position is determined at the moment when its distance from the weapon is equal to that of the target, according to the pointing made at the time of the shooting and the prerecorded ballistic data , whatever may be the movements of the weapon while the projectile follows its trajectory.
  • the computer elaborates the information on the position of the projectile taking into account the reactions specific to the missile or the displacement of the weapon with which the telescopic sight is associated. .
  • the shooting simulator comprises, in its optical devices, a sighting device 1, which may in particular be a sighting scope mounted integral with the shooting weapon or an optical sighting system integrated into the weapon .
  • a sighting device 1 which may in particular be a sighting scope mounted integral with the shooting weapon or an optical sighting system integrated into the weapon .
  • the shooter sees landscape 2 (figure 2), whose rays 3 (figure 1) reach him through two semi-transparent blades 4 and 5.
  • the brightness is successively attenuated by 20% and 50% in the particular example considered.
  • the sighting device 1 does not have no reticle to mark the line of sight, one can use a crosshair generator 6 which makes it possible to return the image of a cross of sight formed through a lens 7, by reflection on the semi-transparent plate 4, in the field of observation of the sighting device 1, superimposed on the observed landscape.
  • the reticle always remains centered on the optical axis of the sighting device.
  • the simulator comprises a cathode ray tube 9 associated with a lens 10 which allows, by reflection on the blade semitransparent 5, to send back to the sighting device an image formed on the screen 11 of the tube.
  • the latter is of the "flying spot" type, that is to say that the desired target image is formed on the screen by moving the light point in a linear path, and not by scanning.
  • FIG. 1 shows an optional apparatus of the simulator which consists of a television camera 12, associated with a lens 13 and arranged opposite the tube 9, on the other side of the semi-transparent blade 5, of so as to receive in superposition the image of the real landscape and that of the reticle by reflection on the blade 5, and the target image by transmission through this blade.
  • the two blades 4 and 5 are inclined at 45 degrees on the optical axis of the sighting device and that the reticle generator 6, the tube 9 and the camera 12 are oriented at 90 degrees from this axis.
  • the camera 12 thus makes it possible to film a witness to the shooting exercises carried out by means of the simulator.
  • the shooting simulator is designed so as to be able to make the fictitious target evolve in relation to the landscape, and possibly to be able to make the simulated trace of the projectile evolve in the field of observation and represent impact effects, in positions which are linked to the landscape or the target but which must be independent of the movements of the sighting device.
  • the detection device is constituted in any manner known per se, for example by a gyroscope or a gyrometer, or by two accelerometers ensuring compensation in elevation and in azimuth or by two angular position detectors (respectively in elevation and if the weapon has a fixed platform linked to the ground.
  • the device may further include a weapon tilt detector causing an angular rotation around the line of sight so as to respect the vertical.
  • the target images are formed on the screen 11 of the cathode ray tube 9 (FIG. 3).
  • the movement of the light point on the screen is ensured at a predetermined constant speed sufficient for the time necessary for the constitution of each target image to be less than the persistence time of the retinal images, and moreover we succeed the target images on the screen at a sufficiently fast rate, compared to the afterglow of the screen, to ensure the luminous persistence on the screen from one image to the next .
  • the target images are thus formed on the screen at a rate of one image per 20 milliseconds.
  • target signals which are produced by a microprocessor computer 15.
  • the signals are produced in this computer from information introduced in 20 and defining the shape of the target and its evolution and from the information on the movements of the sighting device provided by the detection device 14.
  • the trace of the luminous point on the screen is constituted by a series of successive linear segments and, on this trace, the fictitious target is drawn by a number of these rectilinear segments along which the point moves while maintaining a continuous light intensity .
  • FIG. 2 thus represents a set of segments constituting a target image having the profile of an airplane.
  • the target signals produced by the computer 15 include information translating the length of the segment by the time of movement of the light point to describe this segment and the angular slope of the segment by the derivatives with respect to time of two rectangular coordinates x and y defining the position of the light point.
  • these signals more precisely include the speed of movement of the light point along the x axis, ie x ';, its speed of movement along the y axis, ie y' ;, and the duration of the generation of the segment i be ⁇ t.
  • the signals of these three groups are transmitted to an interface 16 which supplies the control signals to the cathode ray tube 9.
  • These signals 1 control the intensities of current passing through the windings 17 and 18 which deflect the electron beam in the tube 9, respectively along the x-axis and along the y-axis. They are obtained in the interface 16, for each segment i, respectively by integration of x'i and by integration of y'i during the time Ati.
  • a line 19 retransmits from the interface to the computer a signal indicating the end of the time Ati allocated for the constitution of a segment i and the computer can then transmit the values x'i, y'i and Ati corresponding to the next segment.
  • the computer 15 While the interface 16 controls the movement of the light point on each segment as a function of the target signals, the computer 15 produces the signals corresponding to the following target image according to the position of the aircraft in space (orientation, roll, spike, speed, trajectory assigned to it) and taking into account possible movements of the weapon.
  • the solution which has just been described has the advantage that the computer only has to produce three values at a given instant for each segment, which gives it most of the time, while the segments are written on the tube. , to calculate the future position of the target.
  • the initial x and y coordinates of the plot are assumed to arbitrarily coincide with the reference axis.
  • any curve can be defined by juxtaposition of small elementary segments.
  • An effect of distance from the target can be made by a homothetic variation in the dimensions of the segments.
  • All of the electronic equipment used above to simulate a fictitious target in the field of observation of the aiming device can also be used, simultaneously and in the same way, to make the trace of the projectile appear there, the reticle, the effects of impact on the target or on the ground.
  • this simulation by electronic equipment adapts as well to the figuration of one or more projectiles, whether ballistic projectiles or missiles, as to the figuration of one or more targets, which can be varied, in shape, dimensions and displacement, independently of each other.
  • the simulator described can be adapted to indoor training as well as real-size training in nature.
  • This intervention is carried out by commanding an extinction of the light point on certain parts of its path.
  • the grid 21 of the cathode ray tube and a line 22 connecting the computer 15 to this grid have been shown in dashes in FIG. 3 to control the emission of the cathode beam and its extinction.
  • the determination of the fractions of the path on which there must be extinction involves a comparison which is carried out in the computer 15 between the information relating to the target and pre-recorded data defining the terrain and its obstacles.
  • the pre-recorded information is entered at 23 in the computer.
  • the recording is generally carried out by the instructor, before the shooting. It is thus possible to record terrain data from a topographical survey which can be carried out according to any known method making it possible to characterize each point of the terrain, in the terrain data, by its distance from the weapon and its angular position by relative to the line of sight, generally by the site and the deposit.
  • a topographical survey which can be carried out according to any known method making it possible to characterize each point of the terrain, in the terrain data, by its distance from the weapon and its angular position by relative to the line of sight, generally by the site and the deposit.
  • US Pat. No. 4,068,393 describes the storage of terrain data by a method using a simplified representation of the terrain.
  • the recording of this terrain data can be done at any time, possibly well before the shooting period, with storage on magnetic media.
  • the instructor initializes the simulator by a precise optical aiming on a reference mark specially chosen on the ground.
  • Another method which will be described more fully below consists in directly detecting, by means of the apparatus, the obstacles visible on the real ground.
  • a mask is defined by its distance from the weapon and by its external contour in angular position relative to the line of sight. This is illustrated with reference to FIG. 4 in which the images presented to the shooter have been represented and comprising on the one hand a fictitious target depicting a tank 24 and on the other hand real ground comprising inter alia an obstacle 25 , constituted for example by a tree, from which a mask is defined.
  • Each mask is considered to be any contour surface located at a given distance, determined visually by the instructor or by telemetry.
  • a mobile index generated in the aiming optics of the system controllable light point generated by the "flying spot" tube for example
  • the computer permanently stores the coordinates of the light point.
  • the value of the distance from the mask (dm) is added to it.
  • the computer processes the recorded values and draws up a table in which to each ordinate value Ym (k) are associated abscissa values Xm (k, 1) characteristic of the appearance of the mask.
  • the gate control blocks the electron beam.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • General Engineering & Computer Science (AREA)
  • Aiming, Guidance, Guns With A Light Source, Armor, Camouflage, And Targets (AREA)

Description

  • La présente invention concerne les appareils d'entraînement au pointage de cibles, et plus particulièrement les appareils de simulation pour l'entraînement au tir. Ces simulateurs de tir sont utilisés pour assurer la formation et l'instruction des tireurs en leur permettant, en salle ou sur un terrain réel, de s'entraîner à commander le pointage d'une arme sur une cible sans pour autant faire réellement consommation de
  • projectiles. Le projectile est un projectile fictif, dont un calculateur permet de comparer la position avec celle d'une cible pour apprécier la qualité du pointage opéré par le tireur sur la cible et déterminer en particulier si le tir est correct pour conduire le projectile simulé à un impact sur la cible. La cible peut être elle-même soit réelle, soit fictive. Quant au projectile, on sait aussi bien simuler de cette manière des tirs de missiles que des tirs de simples projectiles à trajectoire balistique. Dans le second cas, la trajectoire du projectile fictif est prédéterminée en fonction des données balistiques, tandis que dans le premier, elle est modifiée par des ordres qui sont internes au missile ou issus du système d'arme et qui sont reconstitués dans le calculateur du simulateur.
  • Les simulateurs de tir comportent aussi, de manière classique, des moyens pour faire apparaître aux yeux du tireur, en superposition avec le champ de tir observé par un appareil de visée intégré à l'arme, des images lumineuses figurant le traceur d'un missile, symbolisant une cible, ou visualisant les résultats d'un tir, par les effets d'un impact notamment. Mais les moyens que l'on a proposés à ce jour pour cela restent encore très imparfaits; il ne s'agit en général que d'effets lumineux simples et figés dont on projette l'image dans le champ de l'appareil de visée.
  • En particulier, on a décrit dans le document brevet FR-A- 2 084 277, un procédé de formation d'une cible fictive dans un appareil d'entraînement au pointage à axe de visée orientable, consistant à produire des signaux de cible définissant des images d'une cible fictive non ponctuelle en fonction de sa forme et de son évolution, à constituer les images de cible ainsi définies par un point lumineux déplacé sur un écran sous la commande desdits signaux de cible, et à projeter les images ainsi constituées dans le champ d'observation de l'appareil.
  • Dans le document précité, on se contente en fait de figurer la cible par un symbole d'objectif de forme circulaire ou elliptique, dont on représente les déplacements, ainsi qu'éventuellement des variations de grosseur. Toutefois, on sait aussi, dans d'autres types d'appareils, symboliser la cible sous une forme stylisée plus complexe, comme on l'a décrit notamment dans le document DE-A- 26 58 501. Mais dans ce cas comme dans la forme à gradins considérée dans le document GB-A- 2 030 685, la forme de la cible reste figée au cours de ses déplacements.
  • L'invention vise à améliorer les performances des matériels connus dans la simulation de tirs, et à permettre en particulier de réaliser les exercices de tirs sur des cibles fictives, mais réalistes, aussi bien dans leur forme que dans évolution, dans le temps, même au cours d'un tir. Un tel principe de simulation dispense de l'utilisation de cibles réelles pour l'entraînement au pointage, dans la simulation de tirs ou dans toute autre application d'exercices de pointage analogues.
  • Dans ce but, l'invention propose un procédé de formation d'une cible fictive dans un appareil d'entraînement au pointage à axe de visée
  • orientable, tel que l'appareil de visée optique d'un simulateur de tir, orientable au moins au départ d'un tir fictif, procédé consistant essentiellement à produire des signaux de cible définissant des images d'une cible fictive en fonction de sa forme et de son évolution, au moins en distance de l'appareil et/ou en position angulaire par rapport à l'axe de visée, à constituer les images de cible ainsi définies par un point lumineux que l'on déplace sur un écran, sous la commande des signaux de cible, et à projeter des images ainsi constituées dans le champ d'observation de l'appareil, caractérisé en ce que dans lesdits signaux de cible on définit chaque image de cible par au moins un segment linéaire et en ce qu'en fonction desdits signaux de cible, on commande le déplacement du point le long d'un tracé linéaire comprenant au moins ledit segment, avec une intensité lumineuse continue le long de ce segment, la vitesse de déplacement étant suffisante pour assurer la persistance de sa perception pendant tout le temps nécessaire à la constitution d'une image, dans une série d'images successives de ladite cible.
  • L'écran peut être notamment celui d'un tube cathodique, mais d'une manière plus générale, tout autre système de visualisation de figures géométriques sur un écran dont la commande se fait par des procédés électroniques peut convenir.
  • Le tracé linéaire peut suivre n'importe quelles courbes, et il peut être parcouru en continu par un point lumineux dont l'intensité lumineuse est continue pendant qu'il décrit le tracé complet de la cible à chaque image. On entend là que l'intensité lumineuse, pour continue qu'elle soit, n'est pas nécessairement constante. On peut au contraire, en la faisant varier, obtenir des effets de forme au sein de chaque image, ou des effets d'éloignement d'une image à l'autre. Par ailleurs, on peut aussi faire comporter au tracé linéaire des segments d'extinction, où le point lumineux est éteint, de sorte que ces segments ne soient pas apparents dans l'image, par exemple lors du passage à l'image suivante ou entre deux segments figurant des parties différentes de la cible. Le mode préférentiel de déplacement du point lumineux que l'on a défini selon un tel tracé linéaire se réalise en particulier par l'utilisation d'un tube cathodique du type "flying spot", par opposition aux tubes à balayage où le point lumineux balaye tout l'écran en coordonnées rectangulaires, avec extinction en dehors des zones couvertes par l'image.
  • Un cas particulier du tracé linéaire est celui d'un tracé constitué par un ou plusieurs segments rectilignes. Il est particulièrement avantageux dans la mise en oeuvre de l'invention, car dans les signaux de cible, tout segment rectiligne peut être défini avec une grande simplicité, dans un système de deux coordonnées rectangulaires, par la longueur du segment et son angle de pente. Le cas échéant, les signaux peuvent contenir une information d'intensité, pour commander des variations d'intensité lumineuse, et en particulier pour commander l'extinction du point lumineux sur son trajet de l'un à l'autre de deux segments devant être visualisés comme segments constitutifs de l'image de cible. Il est évident que la juxtaposition de segments élémentaires permet de réaliser des courbes quelconques. Il est évident aussi que le terme de cible doit être compris dans un sens large, couvrant aussi bien la représentation de plusieurs cibles, que l'on peut faire évoluer indépendamment les unes des autres.
  • La bonne résolution obtenue avec cette technique permet une représentation précise et fidèle de la forme d'une cible, très ressemblante à une cible réelle. Et de plus, la rapidité que l'on peut atteindre dans le déplacement du point lumineux et dans la cadence de production des images permet de figurer l'évolution d'une cible même très mobile pendant le temps réel d'observation, dans la simulation d'un tir par exemple. De tels résultats seraient difficiles à obtenir, dans la pratique de la simultation de tirs, si l'on cherchait par exemple à projeter dans le champ d'observation de l'appareil de visée la reproduction photographique d'une cible réelle au lieu de la cible fictive qui, selon l'invention, est entièrement synthétisée électroniquement.
  • En liaison avec le procédé qui a été défini ci-dessus, l'invention a aussi pour objet un appareil d'entraînement au pointage de cibles en faisant application, constitué avantageusement par un appareil de visée optique, monté par exemple sur une arme de pointage d'un tir de projectile fictif, dans un simulateur de tir comportant des moyens de formation d'une cible fictive dans le champ d'observation de l'appareil de visée et des moyens de comparaison entre les positions respectives du projectile fictif et de la cible fictive pour apprécier les résultats du tir. Selon l'invention l'appareil d'entraînement au pointage, à axe de visée orientable, comportant des moyens de formation d'une cible fictive dans le champ d'observation de l'appareil, est caractérisé en ce que lesdits moyens de formation comportent un écran de visualisation d'images lumineuses, des moyens générateurs de signaux de cible pour produire des signaux de cible définissant des images successives d'une cible non ponctuelle en fonction de sa forme et de son évolution, au moins en distance de l'appareil et/ou en position angulaire par rapport à l'axe de visée, des moyens pour commander le déplacement d'un point lumineux sur l'écran par lesdits signaux pour constituer sur l'écran chacune des images ainsi définies, et des moyens de projection de l'image ainsi constituée dans le champ d'observation de l'appareil.
  • L'invention sera maintenant plus complètement décrite en se référant à un mode de réalisation particulier d'un appareil d'entraînement au pointage faisant application du procédé selon l'invention pour la formation d'une cible fictive dans un simulateur de tir. Ce mode de réalisation particulier n'est cependant nullement limitatif de l'invention. Il est décrit en se référant aux figures 1 à 5 des dessins ci-annexés, dans lesquels:
    • la figure 1 représente schématiquement la partie optique du simulateur de tir;
    • la figure 2 montre un exemple des images qui peuvent être présentées à la vue du tireur;
    • la figure 3 représente schématiquement les dispositifs électroniques utilisés pour la formation de la cible fictive;
    • la figure 4 montre un autre exemple d'image présentée à la vue du tireur; et
    • la figure 5 illustre la correction d'une cible fictive par un masque.
  • Le simulateur de tir selon l'invention est conçu pour permettre d'apprécier les résultats de tirs de projectiles fictifs, sur des cibles qui sont elles- mêmes fictives. Il comporte donc, d'une manière qui est d'ailleurs en elle-même classique, une arme de pointage du tir que l'opérateur règle en orientation pour que le tir atteigne la cible, et des moyens de comparaison entre les positions respectives du projectile fictif et de la cible pour apprécier les résultats du tir, et déterminer en particulier si la trajectoire du projectile conduit à un impact sur la cible. Cette comparaison est opérée en pratique à l'aide d'un calculateur qui traite des informations de position qui comprennent les écarts angulaires en site et en gisement par rapport à un axe de référence, et la distance par rapport à l'arme. Dans le cas où le projectile est supposé suivre une trajectoire balistique, sa position angulaire est déterminée au moment où sa distance de l'arme est égale à celle de la cible, d'après le pointage effectué au moment du tir et des données balistiques préenregistrées, quels que puissent être ensuite les déplacements de l'arme pendant que le projectile suit sa trajectoire. Mais l'on peut aussi simuler des tirs de projectiles supposés être des missiles, auquel cas le calculateur élabore les informations de position de projectile en tenant compte des réactions propres du missile ou du déplacement de l'arme à laquelle est associée la lunette de visée.
  • Conformément à la figure 1, le simulateur de tir comporte, dans ses dispositifs optiques, un appareil de visée 1, qui peut être notamment une lunette de visée montée solidaire de l'arme de tir ou un système optique de visée intégré à l'arme. Dans le champ d'observation de cette lunette, le tireur voit le paysage 2 (figure 2), dont les rayons 3 (figure 1) lui parviennent à travers deux lames semi-transparentes 4 et 5. A la traversée de ces lames, la luminosité est atténuée successivement de 20 % et de 50 % dans l'exemple particulier considéré. Si l'appareil de visée 1 ne comporte pas de réticule pour marquer l'axe de visée, on peut utiliser un générateur de réticule 6 qui permet de renvoyer l'image d'une croix de visée formée à travers une lentille 7, par réflexion sur la lame semi-transparente 4, dans le champ d'observation de l'appareil de visée 1, en superposition avec le paysage observé. Le réticule reste toujours centre sur l'axe optique de l'appareil de visée.
  • Pour faire apparaître dans le même champ d'observation de l'appareil de visée 1 une cible fictive telle que la cible 8 de la figure 2, le simulateur comporte un tube cathodique 9 associé à une lentille 10 qui permet, par réflexion sur la lame semitransparente 5, de renvoyer vers l'appareil de visée une image formée sur l'écran 11 du tube. Ce dernier est du type "flying spot", c'est-à-dire que l'image de cible souhaitée est formée sur l'écran par déplacement du point lumineux selon un tracé linéaire, et non pas par balayage.
  • On a en outre représenté sur la figure 1 un appareillage optionnel du simulateur qui consiste en une caméra de télévision 12, associée à une lentille 13 et disposée en regard du tube 9, de l'autre côté de la lame semi-transparente 5, de manière à recevoir en superposition l'image du paysage réel et celle du réticule par réflexion sur la lame 5, et l'image de cible par transmission à travers cette lame. On voit sur la figure que les deux lames 4 et 5 sont inclinées à 45 degrés sur l'axe optique de l'appareil de visée et que le générateur de réticule 6, le tube 9 et la caméra 12 sont orientés à 90 degrés de cet axe. La caméra 12 permet de la sorte de filmer un témoin des exercices de tir réalisés au moyen du simulateur.
  • On notera en outre que pour des exercices en salle, on pourrait constituer l'image d'un paysage dans le champ d'observation de l'appareil de visée, par projection à partir de reproductions photographiques par exemple.
  • Le simulateur de tir est conçu de manière à pouvoir faire évoluer la cible fictive par rapport au paysage, et éventuellement à pouvoir faire évoluer de même la trace simulée du projectile dans le champ d'observation et figurer des effets d'impact, dans des positions qui sont liées au paysage ou à la cible mais qui doivent être indépendantes des mouvements de l'appareil de visée. L'axe de référence choisi pour toutes ces simulations étant confondu avec l'axe de visée, le simulateur comporte un dispositif de détection des mouvements de l'arme, figuré en 14, ce qui permet par la suite de retrancher ces mouvements de la position des effets simulés, projectile et cible, vus à travers l'appareil de visée. Le dispositif de détection est constitué d'une manière quelconque en elle-même connue, par exemple par un gyroscope ou un gyromètre, ou par deux accéléromètres assurant la compensation en site et en gisement ou par deux détecteurs angulaires de position (respectivement en site et en gisement) si l'arme dispose d'une plateforme fixe liée au sol. Le dispositif peut comporter en outre un détecteur de dévers de l'arme entraînant une rotation angulaire autour de l'axe de visée de manière à respecter la verticale.
  • On décrira maintenant plus précisément comment sont constituées les images de cible sur l'écran 11 du tube cathodique 9 (figure 3). On fera tout d'abord remarquer que d'une manière générale le déplacement du point lumineux sur l'écran est assuré à une vitesse constante prédéterminée suffisante pour que le temps nécessaire à la constitution de chaque image de cible soit inférieur au temps de persistance des images rétiniennes, et de plus on fait se succéder les images de cible sur l'écran à un rythme suffisamment rapide, par rapport à la rémanence de l'écran, pour assurer la persistance lumineuse sur l'écran d'une image à la suivante. Dans un exemple particulier, on constitue ainsi les images de cible sur l'écran à un rythme d'une image par 20 millisecondes.
  • Ces différentes images sont définies par des signaux de cible qui sont produits par un calculateur à microprocesseur 15. Les signaux sont élaborés dans ce calculateur à partir d'informations introduites en 20 et définissant la forme de la cible et son évolution et à partir des informations sur les mouvements de l'appareil de visée fournis par le dispositif de détection 14.
  • Le tracé du point lumineux sur l'écran est constitué par une série de segments linéaires successifs et, sur ce tracé, la cible fictive est dessinée par un certain nombre de ces segments rectilignes le long desquels le point se déplace en conservant une intensité lumineuse continue. On a représenté ainsi sur la figure 2 un ensemble de segments constituant une image de cible ayant le profil d'un avion.
  • Pour chaque segment i de chaque image, les signaux de cible produits par le calculateur 15 comportent des informations traduisant la longueur du segment par le temps de déplacement du point lumineux pour décrire ce segment et la pente angulaire du segment par les dérivés par rapport au temps de deux coordonnées rectangulaires x et y définissant la position du point lumineux. Ainsi, ces signaux comprennent plus exactement la vitesse de déplacement du point lumineux selon l'axe des x, soit x';, sa vitesse de déplacement selon l'axe des y, soit y';, et la durée de la génération du segment i soitΔt .
  • Les signaux de ces trois groupes sont transmis à une interface 16 qui fournit les signaux de commande au tube cathodique 9. Ces signaux commandent 1 les intensités de courant traversant les enroulements 17 et 18 qui dévient le faisceau d'électrons dans le tube 9, respectivement selon l'axe des x et selon l'axe des y. Ils sont obtenus dans l'interface 16, pour chaque segment i, respectivement par intégration de x'i et par intégration de y'i pendant le temps Ati. Une ligne 19 retransmet de l'interface au calculateur un signal indiquant la fin du temps Ati alloué pour la constitution d'un segment i et le calculateur peut alors transmettre les valeurs x'i, y'i et Ati correspondant au segment suivant. Pendant que l'interface 16 commande le déplacement du point lumineux sur chaque segment en fonction des signaux de cible, le calculateur 15 produit les signaux correspondant à l'image de cible suivante d'après la position de l'avion dans l'espace (orientation, roulis, pique, vitesse, trajectoire qui lui a été assignée) et en tenant compte des déplacements éventuels de l'arme.
  • La solution qui vient d'être décrite a pour avantage que le calculateur n'a à produire que trois valeurs à un instant donné pour chaque segment, ce qui lui laisse la majeure partie du temps, pendant que les segments s'inscrivent sur le tube, pour faire le calcul de la position future de la cible. Les coordonnées initiales en x et y du tracé sont supposées, de manière arbitraire, coïncider avec l'axe de référence.
  • La technique peut en fait être appliquée pour un profil de cible de n'importe quelle forme, toute courbe pouvant être définie par juxtaposition de petits segments élémentaires. Un effet d'éloignement de la cible peut être rendu par une variation homothétique des dimensions des segments. On peut aussi éventuellement obtenir un effet analogue en faisant varier l'intensité lumineuse du point lumineux d'une image à l'autre. Une variation d'intensité au cours d'unmême tracé permet de réaliser un effet de relief.
  • L'ensemble de l'appareillage électronique utilisé ci-dessus pour simuler une cible fictive dans le champ d'observation de l'appareil de visée peut aussi être utilisé, simultanément et de la même manière, pour y faire figurer la trace du projectile, le réticule de visée, les effets d'impact sur la cible ou sur le sol. De plus, cette simulation par l'appareillage électronique s'adapte aussi bien à la figuration d'un ou plusieurs projectiles, qu'il s'agisse de projectiles balistiques ou de missiles, comme à la figuration d'une ou plusieurs cibles, qui peuvent être variés, en forme, dimensions et déplacement, indépendamment les uns des autres. On aura compris aussi que le simulateur décrit peut être adapté à un entraînement en salle aussi bien qu'à un entraînement en vraie grandeur dans la nature.
  • Dans la variante de réalisation illustrée par les figures 4 et 5, on a en outre prévu de pouvoir intervenir sur les signaux de cible et la représentation des images successives de la cible fictive en fonction du terrain observé par le champ de visée et des obstacles que rencontrerait une cible réelle correspondant à cette cible fictive. Cette intervention s'effectue par commande d'une extinction du point lumineux sur certaines parties de son trajet. C'est pourquoi l'on a représenté en tirets sur la figure 3 la grille 21 du tube cathodique ainsi qu'une ligne 22 reliant le calculateur 15 à cette grille pour commander l'émission de faisceau cathodique et son extinction. La détermination des fractions du trajet sur lesquelles il doit y avoir extinction implique une comparaison qui s'effectue dans le calculateur 15 entre les informations relatives à la cible et des données pré-enregistrées définissant le terrain et ses obstacles. Les informations pré-enregistrées sont introduites en 23 dans le calculateur.
  • L'enregistrement s'effectue en général par l'instructeur, avant le tir. On peut ainsi enregistrer des données de terrain d'après un relevé topographique qui peut être effectué selon toute méthode connue permettant de caractériser chaque point du terrain, dans les données de terrain, par sa distance par rapport à l'arme et sa position angulaire par rapport à l'axe de visée, généralement par le site et le gisement. On a décrit par exemple dans le brevet US 4 068 393 la mémorisation de données de terrain par un procédé utilisant une représentation simplifiée du terrain.
  • L'enregistrement de ces données de terrain peut être réalisé à tout moment, éventuellement bien avant la période de tir, avec mémorisation sur support magnétique. Pour permettre lors de la séance d'entraînement de superposer le terrain enregistré avec le terrain réel observé par le tireur, l'instructeur initialise le simulateur par une visée optique précise sur un repère de référence spécialement choisi sur le terrain.
  • Un autre procédé qui sera décrit plus complètement ci-après consiste à relever directement au moyen de l'appareil, les obstacles visibles sur le terrain réel. Pour chaque obstacle derrière lequel la cible est susceptible de se cacher, on définit un masque, par sa distance de l'arme et par son contour extérieur en position angulaire par rapport à l'axe de visée. Ceci est illustré en faisant référence à la figure 4 sur laquelle on a représenté les images présentées à la vue du tireur et comprenant d'une part une cible fictive figurant un char 24 et d'autre part un terrain réel comportant entre autre un obstacle 25, constitué par exemple par un arbre, à partir duquel est défini un masque.
  • Chaque masque est considéré comme une surface de contour quelconque située à une distance donnée, déterminée à vue par l'instructeur ou par télémétrie. Pour définir le contour, on utilise un index mobile généré dans l'optique de visée du système (point-lumineux pilotable généré par le tube "flying spot" par exemple) au moyen duquel est décrit le contour extérieur du masque observé dans le champ de visée. Le calculateur mémorise en permanence les coordonnées du point lumineux. Lorsque le contour est entièrement décrit, on lui adjoint la valeur de la distance du masque (dm). Le calculateur traite les valeurs enregistrées et élabore une table dans laquelle à chaque valeur d'ordonnée Ym(k) sont associées des valeurs d'abscisse Xm(k, 1) caractéristiques de l'apparence du masque.
  • Les masques sont enregistrés les uns après les autres au cours d'une même manipulation, l'axe de visée de la lunette du simulateur à travers laquelle ils sont visibles étant fixe et pointé sur un repère précis connu (existant sur le terrain, ou rapporté tel qu'un piquet) situé à une distance quelconque. Mais on ne relève là que les obstacles relativement proches, et non ceux qui
  • Figure imgb0001
    de phosphore. Lors de la génération d'un segment non visible, la commande de grille bloque le faisceau d'électrons.
  • On remarquera que la technique décrite pour masquer tout ou partie des cibles est tout à fait applicable au masquage des projectiles missiles et impacts.

Claims (14)

1. Procédé de formation d'une cible fictive dans un appareil d'entraînement au pointage à axe de visée orientable, consistant à produire des signaux de cible définissant des images successives d'une cible fictive non ponctuelle en fonction de sa forme et de son évolution, au moins en distance de l'appareil et/ou en position angulaire par rapport à l'axe de visée, à constituer les images de cible ainsi définies par un point lumineux déplacé sur un écran (11) sous la commande desdits signaux de cible, et à projeter les images ainsi constituées dans le champ d'observation de l'appareil, caractérisé en ce que dans lesdits signaux de cible, on définit chaque image de cible par au moins un segment linéaire et en ce qu'en fonction desdits signaux de cible, on commande le déplacement du point lumineux le long d'un tracé linéaire comprenant au moins ledit segment, avec une intensité lumineuse continue le long de ce segment, la vitesse de déplacement du point lumineux étant suffisante pour assurer la persistance de sa perception pendant tout le temps nécessaire à la constitution d'une image, dans une série d'images successives de ladite cible.
2. Procédé selon la revendication 1, caractérisé en ce que dans lesdits signaux de cible on définit chaque image de cible par une pluralité de segments linéaires.
3. Procédé selon la revendication 1 ou 2, caractérisé en ce que ledit tracé est formé au moins en partie de segments rectilignes.
4. Procédé selon la revendication 3, caractérisé en ce que les signaux de cible comportent pour tout segment rectiligne dudit tracé, des informations traduisant la longueur du segment par le temps de déplacement du point lumineux à une vitesse prédéterminée pour décrire le segment, et la pente angulaire du segment par les dérivées par rapport au temps de deux coordonnées rectangulaires définissant la position du point lumineux.
5. Procédé selon la revendication 4, caractérisé en ce qu'à partir desdits signaux de cible, on élabore des signaux de commande du déplacement du point lumineux à ladite vitesse prédéterminée, selon lesdites coordonnées rectangulaires, par intégration des deux dérivées correspondantes pendant ledit temps.
6. Procédé selon l'une quelconque des revendications 1 à 5, caractérisé en ce que chaque image est constituée par déplacement du point lumineux à une vitesse suffisante pour que le temps nécessaire à chaque image soit inférieur au temps de persistance des images rétiniennes et en ce que les images se succèdent à un rythme suffisamment rapide, par rapport à la rémanence de l'écran, pour assurer la persistance lumineuse sur l'écran d'une image à la suivante.
7. Procédé selon l'une quelconque des revendications 1 à 6, caractérisé en ce qu'il consiste en outre à enregistrer des signaux de masque d'après des obstacles définis sur un terrain par au moins leur distance et leur contour en position angulaire par rapport à l'axe de visée, à comparer les signaux de cible avec ces signaux de masque, et pour chacune des images de cible à commander l'extinction du point lumineux sur les parties du tracé où la distance donnée dans les signaux de cible est supérieure à celle du masque pour une position angulaire située à l'intérieur du contour de ce dernier.
8. Appareil d'entraînement au pointage de cibles, à axe de vision orientable, comportant des moyens de formation de l'image d'une cible fictive dans le champ d'observation de l'appareil, lesdits moyens de formation comportant un écran de visualisation d'images lumineuses, des moyens générateurs de signaux de cible pour produire des signaux de cible définissant des images d'une cible fictive non ponctuelle en fonction de sa forme et de son évolution, au moins en distance de l'appareil et/ou en position angulaire par rapport à l'axe de visée, des moyens pour commander le déplacement d'un point lumineux sur l'écran par lesdits signaux pour constituer sur l'écran chacune des images ainsi définies, et des moyens de projection des images ainsi constituées dans le champ d'observation de l'appareil, caractérisé en ce que lesdits moyens générateurs de signaux de cible sont constitués par un calculateur élaborant des images successives de ladite cible sous forme d'un tracé comprenant au moins un segment linéaire pour chacune et en ce que le déplacement du point lumineux est commandé avec une vitesse de déplacement suffisante pour assurer la persistance de sa perception pendant tout le temps nécessaire à la constitution d'une image.
9. Appareil selon la revendication 8, caractérisé en ce que, lesdites images étant constituées à partir de segments rectilignes, lesdits signaux de cible comprennent, pour chaque segment, trois valeurs correspondant respectivement aux dérivées par rapport au temps, de deux coordonnées rectangulaires définissant la position du point lumineux et au temps de déplacement du point lumineux à une vitesse prédéterminée pour décrire le segment.
10. Appareil selon la revendication 9, caractérisé en ce que lesdits moyens pour commander le déplacement du point lumineux sur l'écran comportent une interface traitant les signaux élaborés par le calculateur pour élaborer des signaux de commande de déplacement du point lumineux à ladite vitesse prédéterminée, selon les dites coordonnées rectangulaires, par intégration des deux dérivées correspondantes pendant ledit temps.
11. Appareil selon l'une quelconque des revendications 8 et 10, caractérisé en ce qu'il est monté sur une arme de pointage d'un tir de projectile fictif, dans un simulateur de tir comportant des moyens de comparaison entre les positions respectives du projectile fictif et de la cible fictive pour apprécier les résultats du tir.
12. Appareil selon l'une quelconque des revendications 8 à 10, caractérisé en ce que ledit écran est celui d'un tube cathodique dont le faisceau électronique est dévié sous la commande desdits signaux de cible.
13. Appareil selon l'une quelconque des revendications 8 à 12, caractérisé en ce qu'il comporte en outre des moyens de comparaison entre lesdits signaux de cible et des signaux de masque pré-enregistrés donnant la distance et la position angulaire d'obstacles relevés sur le terrain et des moyens pour commander en fonction de ladite comparaison, l'extinction du point lumineux lorsque la distance définie par les signaux de cible est supérieure à celle définie par les signaux de masque pour une position angulaire située à l'intérieur du contour de masque.
14. Appareil selon la revendication 8, 9 ou 13, caractérisé en ce qu'il comporte des moyens pour modifier les signaux de cible d'une image à la suivante, sous la commande de données de terrain préenregistrées.
EP82401012A 1981-06-12 1982-06-04 Procédé de formation d'une cible fictive dans un appareil pour l'entraînement au pointage de cibles Expired EP0068937B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8111574A FR2507764B1 (fr) 1981-06-12 1981-06-12 Procede de formation d'une cible fictive dans un appareil pour l'entrainement au pointage de cibles
FR8111574 1981-06-12

Publications (2)

Publication Number Publication Date
EP0068937A1 EP0068937A1 (fr) 1983-01-05
EP0068937B1 true EP0068937B1 (fr) 1986-08-13

Family

ID=9259437

Family Applications (1)

Application Number Title Priority Date Filing Date
EP82401012A Expired EP0068937B1 (fr) 1981-06-12 1982-06-04 Procédé de formation d'une cible fictive dans un appareil pour l'entraînement au pointage de cibles

Country Status (6)

Country Link
US (1) US4521196A (fr)
EP (1) EP0068937B1 (fr)
AU (1) AU565458B2 (fr)
CA (1) CA1194998A (fr)
DE (1) DE3272560D1 (fr)
FR (1) FR2507764B1 (fr)

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3338069A1 (de) * 1983-10-20 1985-05-09 Wegmann & Co GmbH, 3500 Kassel Einrichtung zur durchfuehrung von telespielen, insbesondere zur ausbildung an optischen zielgeraeten
FR2567275B1 (fr) * 1984-07-09 1986-07-25 Giravions Dorand Procede et dispositif de reperage spatial d'un objet et application en simulation de tir
FR2583867B1 (fr) * 1985-06-21 1992-06-12 Thomson Csf Procede de simulation de cibles, mobiles et masquables, dans un paysage, pour l'entrainement au tir, a l'arret et dispositif de mise en oeuvre.
FR2583866B1 (fr) * 1985-06-21 1989-04-28 Thomson Csf Procede de simulation de cibles, mobiles et masquables dans un paysage, pour l'entrainement au tir, en roulant et dispositif de mise en oeuvre.
DE3782511D1 (de) * 1986-02-25 1992-12-17 Siemens Ag Flugzielsimulationseinrichtung.
US4828500A (en) * 1987-03-30 1989-05-09 Accelerated Sports Cybernetics Development Partnership Apparatus and method for motion teaching
US5586887A (en) * 1994-11-23 1996-12-24 Aai Corporation Howitzer strap-on kit for crew performance evaluation and training method
US5912700A (en) * 1996-01-10 1999-06-15 Fox Sports Productions, Inc. System for enhancing the television presentation of an object at a sporting event
US6535681B2 (en) * 2001-06-19 2003-03-18 Lucent Technologies Inc. Fiber-optic cable routing and bend limiting device and system
US5917553A (en) * 1996-10-22 1999-06-29 Fox Sports Productions Inc. Method and apparatus for enhancing the broadcast of a live event
US5953077A (en) * 1997-01-17 1999-09-14 Fox Sports Productions, Inc. System for displaying an object that is not visible to a camera
US6252632B1 (en) 1997-01-17 2001-06-26 Fox Sports Productions, Inc. System for enhancing a video presentation
US5828495A (en) * 1997-07-31 1998-10-27 Eastman Kodak Company Lenticular image displays with extended depth
US6133946A (en) * 1998-01-06 2000-10-17 Sportvision, Inc. System for determining the position of an object
US6266100B1 (en) 1998-09-04 2001-07-24 Sportvision, Inc. System for enhancing a video presentation of a live event
US6229550B1 (en) 1998-09-04 2001-05-08 Sportvision, Inc. Blending a graphic
US6466275B1 (en) 1999-04-16 2002-10-15 Sportvision, Inc. Enhancing a video of an event at a remote location using data acquired at the event
FR2794230B1 (fr) * 1999-05-27 2002-06-14 Matra Bae Dynamics France Systeme d'entrainement au tir sur cible simulee
US7075556B1 (en) 1999-10-21 2006-07-11 Sportvision, Inc. Telestrator system
US6909438B1 (en) 2000-02-04 2005-06-21 Sportvision, Inc. Video compositor
US20100227297A1 (en) * 2005-09-20 2010-09-09 Raydon Corporation Multi-media object identification system with comparative magnification response and self-evolving scoring
WO2008056359A2 (fr) * 2006-11-09 2008-05-15 Israel Aerospace Industries Ltd. Appareil de station opérateur d'instructeur pour centre d'entraînement aux missions et procédé utile associé
US9215383B2 (en) 2011-08-05 2015-12-15 Sportsvision, Inc. System for enhancing video from a mobile camera
RU2627019C2 (ru) * 2015-12-11 2017-08-02 Акционерное общество Центральное конструкторское бюро аппаратостроения Способы определения точки наведения оружия на изображении фоно-целевой обстановки в стрелковых тренажерах и устройство для их осуществления
WO2021158159A1 (fr) * 2020-02-03 2021-08-12 BAE Systems Hägglunds Aktiebolag Apprentissage de suivi de cible intégré
CN113124707A (zh) * 2021-05-06 2021-07-16 西安索唯光电技术有限公司 一种红外目标模拟装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1012031A (en) * 1962-08-30 1965-12-08 English Electric Aviat Ltd Improvements in or relating to display apparatus
GB1066282A (en) * 1964-05-15 1967-04-26 British Aircraft Corp Ltd Improvements in or relating to flight display apparatus
US3711826A (en) * 1969-05-23 1973-01-16 Farrand Optical Co Inc Instrument landing apparatus for aircraft
SE340061B (fr) * 1970-03-06 1971-11-01 Bofors Ab
CH553957A (de) * 1971-06-11 1974-09-13 Messerschmitt Boelkow Blohm Einrichtung zur ausbildung von lenkschuetzen.
US3725563A (en) * 1971-12-23 1973-04-03 Singer Co Method of perspective transformation in scanned raster visual display
US4068393A (en) * 1972-06-27 1978-01-17 Vsevolod Tararine Projectile firing training method and device
GB1503646A (en) * 1974-03-29 1978-03-15 Smiths Industries Ltd Display systems
US4115863A (en) * 1976-12-07 1978-09-19 Sperry Rand Corporation Digital stroke display with vector, circle and character generation capability
DE2658501C3 (de) * 1976-12-23 1980-12-11 Honeywell Gmbh, 6000 Frankfurt Verfahren zur Simulation eines beweglichen Zieles
DE2746534C2 (de) * 1977-10-17 1982-07-29 Honeywell Gmbh, 6000 Frankfurt Verfahren zur Simulation eines beweglichen Zieles
GB2030685B (en) * 1978-09-15 1982-12-22 Marconi Co Ltd Artillery fire control training equipment
US4246605A (en) * 1979-10-12 1981-01-20 Farrand Optical Co., Inc. Optical simulation apparatus

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
REVUE INTERNATIONALE DE DEFENSE, vol. 11, no. 2, 1978, Interavia, Genève, CH. R.M. OGORKIEWICZ: "Simulateurs pour l'instruction des équipages de char", pages 237-241 *

Also Published As

Publication number Publication date
US4521196A (en) 1985-06-04
FR2507764A1 (fr) 1982-12-17
DE3272560D1 (en) 1986-09-18
EP0068937A1 (fr) 1983-01-05
AU565458B2 (en) 1987-09-17
CA1194998A (fr) 1985-10-08
FR2507764B1 (fr) 1986-05-02
AU8481382A (en) 1982-12-16

Similar Documents

Publication Publication Date Title
EP0068937B1 (fr) Procédé de formation d'une cible fictive dans un appareil pour l'entraînement au pointage de cibles
EP0961913B1 (fr) Simulateur de tir de missiles avec immersion du tireur dans un espace virtuel
EP0100719B1 (fr) Dispositif de simulation de tir pour l'entraînement à la manoeuvre d'armes épaulables ou analogues
EP0146466B1 (fr) Dispositif d'entraînement au tir en salle
JP4001918B2 (ja) 通常射撃もしくは模擬射撃のための着弾位置マーカー
JPH11510245A (ja) 通常射撃もしくは模擬射撃のための着弾位置マーカー
EP3397919B1 (fr) Procédé et dispositif de simulation de tourelle
FR2731542A1 (fr) Appareil et procede de simulation
EP0093761A1 (fr) Simulateurs de commande de tir de missiles guides.
FR2593595A1 (fr) Systeme d'entrainement d'artillerie
EP0112742A1 (fr) Simulateur d'entraînement au tir au canon de petit calibre sur cibles simulées
EP1913326A1 (fr) Dispositif d'entrainement au tir a partir d'une arme
EP2011090A1 (fr) Procede de traitement d'images d'un simulateur
FR2554949A1 (fr) Dispositif de presentation d'images de cibles
FR2529660A2 (fr) Procede de formation d'une cible fictive, modifiee suivant le terrain, dans un appareil pour l'entrainement au pointage de cibles
GB1429236A (en) Method of gunnery training and firing training apparatus for use therewith
FR2968113A1 (fr) Procede de simulation de tirs au-dela de la vue directe et simulateur de tirs apte a mettre en oeuvre le procede
EP3928126A1 (fr) Dispositif et procédé d'analyse de tir
WO2020144418A1 (fr) Titre de l'invention : fusil permettant une simulation précise d'une séquence de tir avec calcul du point d'impact du ou des projectiles
EP4030409A1 (fr) Simulateur et procédé de simulation à précision renforcée, en particulier un simulateur de système d'arme, et système d'arme pourvu d'un tel simulateur
FR2794230A1 (fr) Systeme d'entrainement au tir sur cible simulee
EP0375561B1 (fr) Générateur d'images pour un simulateur de tir
FR2559890A1 (fr) Procede et dispositif d'entrainement au tir, notamment au tir en rayonnement infrarouge
FR2878615A1 (fr) Systeme de simulation de tir ou de lancement de projectile a l'aide d'un objet ou lanceur specifique
FR2577097A1 (fr) Systeme numerique d'incrustation et de masquage de cibles mobiles dans une image de paysage

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): BE CH DE GB IT LI LU NL SE

17P Request for examination filed

Effective date: 19830217

ITF It: translation for a ep patent filed

Owner name: DR. ING. A. RACHELI & C.

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE CH DE GB IT LI LU NL SE

REF Corresponds to:

Ref document number: 3272560

Country of ref document: DE

Date of ref document: 19860918

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19910528

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19910531

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 19910605

Year of fee payment: 10

Ref country code: BE

Payment date: 19910605

Year of fee payment: 10

ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19910630

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19910701

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19910731

Year of fee payment: 10

EPTA Lu: last paid annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19920604

Ref country code: GB

Effective date: 19920604

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19920605

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19920630

Ref country code: CH

Effective date: 19920630

Ref country code: BE

Effective date: 19920630

BERE Be: lapsed

Owner name: GIRAVIONS DORAND

Effective date: 19920630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19930101

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19920604

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19930302

EUG Se: european patent has lapsed

Ref document number: 82401012.8

Effective date: 19930109