EP0067079A1 - Procédé et installation de gazéification souterraine de charbon - Google Patents

Procédé et installation de gazéification souterraine de charbon Download PDF

Info

Publication number
EP0067079A1
EP0067079A1 EP82400780A EP82400780A EP0067079A1 EP 0067079 A1 EP0067079 A1 EP 0067079A1 EP 82400780 A EP82400780 A EP 82400780A EP 82400780 A EP82400780 A EP 82400780A EP 0067079 A1 EP0067079 A1 EP 0067079A1
Authority
EP
European Patent Office
Prior art keywords
coal
jet
underground gasification
nozzle
gasification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP82400780A
Other languages
German (de)
English (en)
Other versions
EP0067079B1 (fr
Inventor
Maurice Grenier
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Air Liquide SA
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Original Assignee
Air Liquide SA
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Air Liquide SA, LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude filed Critical Air Liquide SA
Priority to AT82400780T priority Critical patent/ATE14035T1/de
Publication of EP0067079A1 publication Critical patent/EP0067079A1/fr
Application granted granted Critical
Publication of EP0067079B1 publication Critical patent/EP0067079B1/fr
Expired legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B7/00Special methods or apparatus for drilling
    • E21B7/14Drilling by use of heat, e.g. flame drilling
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B36/00Heating, cooling or insulating arrangements for boreholes or wells, e.g. for use in permafrost zones
    • E21B36/02Heating, cooling or insulating arrangements for boreholes or wells, e.g. for use in permafrost zones using burners
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/16Enhanced recovery methods for obtaining hydrocarbons
    • E21B43/24Enhanced recovery methods for obtaining hydrocarbons using heat, e.g. steam injection
    • E21B43/243Combustion in situ
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S48/00Gas: heating and illuminating
    • Y10S48/06Underground gasification of coal

Definitions

  • the invention relates to a method of underground gasification of coal, according to which a gasifying agent is led through a borehole, which is sprayed in situ towards a coal seam, where a combustible gas is extracted. resulting from an incomplete combustion of said coal, which is led to the surface in a current flowing against the current and: around the jet of gasifying agent and which is led to the surface through said borehole.
  • a gasifying agent is led through a borehole, which is sprayed in situ towards a coal seam, where a combustible gas is extracted. resulting from an incomplete combustion of said coal, which is led to the surface in a current flowing against the current and: around the jet of gasifying agent and which is led to the surface through said borehole.
  • the present invention aims to simplify the means used to ensure the in situ gasification of coal, in particular localized at very great depth, by considerably simplifying the means used and by ensuring precise control of the phenomenon of incomplete combustion.
  • the jet of gasifying agent is a gas jet and an annular sheet of an insulating fluid is emitted between said jet of gasifying agent and said stream of combustible gas flowing in co-current of said jet of gasifying agent.
  • the fluid of the annular ply is water, if necessary, in the form of water vapor.
  • the fluid of the annular ply is water, if necessary, in the form of water vapor.
  • the invention also relates to an installation for the implementation of this method.
  • a nozzle 1 at the end of a pipe 2 placed in a borehole 3 extending from the surface 4 to a coal seam 5 occurs in an area median of the coal seam 5.
  • This nozzle 1 consists of a preferably supersonic nozzle 10 of diverging convergent shape and of a co-axial pipe 11 which is also connected to the pipe 2 which is in the form of a double tube, one central connected to the central nozzle pipe 10, the other co-axial connected to the co-axial pipes.
  • nozzle 11 the axial nozzle line 10 is supplied with pressurized oxygen, while the annular ducts 11 are supplied with pressurized water vapor.
  • the nozzle operates as follows: through its orifice 20, a concentrated jet of oxygen 21 and directional elongated and has a supersonic velocity dart 22, the Extremists - Mite comes into impact with the coal, while the water vapor flows around the jet 21 in an annular curtain 30 which extends at least over a large part of the extension of the directive jet 21.
  • the oxygen at the point of impact, causes incomplete combustion of coal.
  • An annular stream of combustible gas 23 at high temperature rises according to the arrows FF ′ around the oxygen jet-water vapor curtain assembly. During its journey, the gas cools on contact with the carbon layer and water vapor: the resulting chemical reactions greatly increase its calorific value.
  • This combustible gas is taken up at the bottom of the borehole by a second annular pipe 6 formed by an envelope 7 surrounding the double tubular pipe 2 at a distance.
  • water vapor constitutes not only an active element in incomplete combustion, but also plays a decisive role in avoiding contact between the combustible gas and oxygen sting; without this curtain of water vapor, or other means of separation, the combustible gas would oxidize during this course at the oxygen level, which, of course, would make impossible the partial gasification sought.
  • the directive jet of oxygen 21 can have a very great extension in the axial direction, since the distance between the dart 22 and the nozzle 1 can be several tens of meters.
  • optical control device 51 makes it possible, by laterally oriented combustion operations, to verify that one is still in a middle position of the coal seam, because this control device 5f makes it possible to detect immediately any drop in temperature when the sting 22 of the directive jet of oxygen 21 meets the rock.

Landscapes

  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • Physics & Mathematics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Air Supply (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

L'invention concerne la gazéification du charbon. On produit in situ un jet d'oxygène (21) à dard (22) entrant en impact avec le charbon avec une enveloppe (30) de vapeur d'eau. Le gaz combustible est extrait en un courant (F') s'écoulant à contre-courant du jet d'oxygène et est ramené à la surface au travers du même forage qui a servi à l'arrivée d'oxygène. Application à la gazéification souterraine et in situ du charbon.

Description

  • L'invention concerne un procédé de gazéification souterraine de charbon, selon lequel on conduit au travers d'un forage un agent gazéificateur, que l'on projette in situ en direction d' une veine de charbon, où l'on extrait un gaz combustible résultant d'une combustion incomplète dudit charbon, que l'on conduit à la surface en un courant s'écoulant à contre-courant et: autour du jet d'agent gazéificateur et qui est conduit à la surface au travers dudit forage. On sait qu'on assure ainsi la formation de gaz combustible comprenant généralement au moins du monoxyde de carbone, et des quantités très variables de méthane. L'intérêt de ce procédé est de n'utiliser qu'un seul forage pour les produits admis et le combustible soutiré, mais le problème posé est celui d'éviter toute réaction complémentaire de combustion entre l'agent gazéificateur et le gaz combustible résultant de la combustion incomplète et, à cet effet, 'on a été amené soit à faire avancer en permanence la tête délivrant l'agent gazéificateur jusqu'à parvenir à proximité immédiate du front de charbon où s'effectue la combustion, ce qui présente des inconvénients de commande et de choc thermique, soit à diluer l'agent gazéificateur dans des capsules de protection projetées circulant par gravité vers le front de combustion.
  • La présente invention a pour but de simplifier les moyens mis en oeuvre pour assurer la gazéification in situ du charbon, notamment localisée à très grande profondeur, en simplifiant considérablement les moyens mis en oeuvre et en assurant un contrôle précis du phénomène de combustion incomplète.
  • Selon l'invention, le jet d'agent gazéificateur est un jet gazeux et l'on émet une nappe annulaire d'un fluide d'isolement entre ledit jet d'agent gazéificateur et ledit courant de gaz combustible s'écoulant à co-courant dudit jet d'agent gazéificateur.
  • De préférence le fluide de la nappe annulaire est de l'eau, le cas échéant, sous forme de vapeur d'eau. De la sorte, grâce à l'isolement du jet gazéificateur, on peut assurer une distance importante entre la tête délivrant l'agent gazéificateur et le front de combustion, tout en évitant toute réaction complémentaire de combustion complète. De plus, on peut, par des moyens de mesures appropriés, contrôler parfaitement la zone de combustion incomplète et donc obtenir un gaz de qualité constante.
  • L'invention a également pour objet une installation pour la mise en oeuvre de ce procédé.
  • L'invention sera maintenant décrite à titre d'exemple en référence aux dessins annexés dans lesquels :
    • - la figure 1 est une vue schématique à l'endroit de la zone de combustion incomplète ;
    • - la figure 2 est une vue schématique du forage ;
    • - la figure 3 est une vue schématique à échelle agrandie de l'extrémité du conduit aboutissant à la buse d'injection ;
    • - la figure 4 est une vue schématique du mode opératoire ;
    • - la figure 5 est une vue schématique d'une variante de buse ;
    • - la figure 6 est une vue en coupe axiale de la figure 5.
  • En se référant aux figures 1 et 2, on voit qu'une buse 1 à l'extrémité d'une conduite 2 placée dans un forage 3 s'étendant depuis la surface 4 jusqu'à une veine de charbon 5 se présente dans une zone médiane de la veine de charbon 5. Cette buse 1 est constituée d'une tuyère de préférence supersonique 10 de forme convergente divergente et d'une conduite co-axiale 11 qui est raccordée d'ailleurs à la tubulure 2 qui se présente sous la forme d'une double tubulure, l'une centrale raccordée à la conduite centrale de buse 10, l'autre co-axiale raccordée aux conduits co-axiaux de. buse 11, la conduite axiale de buse 10 est alimentée en oxygène sous pression, tandis que les conduits annulaires 11 sont alimentés en vapeur d'eau sous pression.
  • La buse opère de la façon suivante : par son orifice calibré 20, un jet-d'oxygène concentré et directif 21 de forme allongée et à vitesse supersonique présente un dard 22 dont l'extré- mité entre en impact avec le charbon, tandis que la vapeur d'eau s'écoule autour du jet 21 en un rideau annulaire 30 qui s'étend au moins sur une large partie de l'extension du jet directif 21. L'oxygène, à l'endroit de l'impact, provoque la combustion incomplète du charbon. Un courant annulaire de gaz combustible 23 à haute température remonte selon les flèches FF' autour de l'ensemble jet d'oxygène- rideau de vapeur d'eau. Au cours de son trajet, le gaz se refroidit au contact de la couche de charbon et de la vapeur d'eau : les réactions chimiques qui en résultent augmentent fortement son pouvoir calorifique. Ce gaz combustible est- pris en charge'"au pied du forage par une seconde conduite annulaire 6 formée d'une enveloppe 7 entourant à distance la conduite tubulaire double 2. On note que la vapeur d'eau constitue non seulement un élément actif dans la combustion incomplète, mais également assure un rôle décisif pour éviter le contact entre le gaz combustible et de dard d'oxygène ; sans ce rideau de vapeur d'eau, ou autre moyen de séparation, le gaz combustilbe s'oxyderait lors de ce parcours au niveau de l'oxygène, ce qui, bien entendu, rendrait impossible la gazéification partielle recherchée. Cela est d'autant plus vrai que le jet directif d'oxygène 21 peut. avoir une très grande extension dans le sens axial, puisque la distance entre le dard 22 et la buse 1 peut être de plusieurs dizaines de mètres.
  • En pratique, comme indiqué à.la.figure 3, la buse composite d'oxygène et de vapeur d'eau est placée en bout d'une tubulure double 2 qui présente deux sections successives 40 et 41 ayant chacune un coude à angle droit 42 et 43, ces deux sections 40 et 41 étant raccordées par deux joints tournants 44 et 45. En pratique, on opère de la façon suivante :
    • On procède au forage comme indiqué à la figure 2 jusqu'à parvenir à la veine de charbon 5 et à ce moment, on introduit les tubulures 2 et 6 en équipant la tubulure 2 du dispositif à joints tournants représenté à la figure 3. Dans cette position, les sections coudées 40 et 41 sont mises en alignement et l'on procède à la première étape de combustion partielle qui consiste à partir du niveau du sol, à accroître la longueur de la tubulure 2 pour se déplacer le long d'une zone médiane de la veine 5, la buse de tête 11 provoquant par combustion incomplète une galerie de mine 50, qui est une sorte de forage "à l'oxygène" dans le plan de la veine de charbon et ce forage peut atteindre plusieurs centaines de mètres. Cette opération s'effetuant par adjonction de tubulures au niveau du sol et correction permanente de la direction d'avancée par contrôle de la zone de combustion grâce à un thermomètre optique 51 (figure 1) solidaire de la buse 11 et qui permet de vérifier si l'impact du jet d'oxygène se produit bien sur la couche de charbon. Une fois la galerie de mines 50 formée, on procède à des opérations de combustion latérale (figure 4) le long de cette galerie en réorientant les parties de conduites 40 et 41 de façon à diriger la buse 11 dans l'extension transversale la plus importante de la veine de charbon 51 et l'on procède ensuite à des combustions incomplètes dans des plans transversaux perpendiculaires à la galerie de mine 50, assurant ainsi soit des cavités de combustion 52, 53, 54 et 52', 53', 54' décalées les unes des autres ou, le cas échéant, une large cavité qui s'étend de part et d'autre de la galerie de mine 50.
  • Cette opération de combustion incomplète qui s'effectue à l'intérieur de la masse de charbon, qui n'a subi aucune préparation aléatoire telle une fracturation peut donc être conduite avec les plus grandes chances de succès, étant donné que cette masse de charbon présente alors une uniformité massique qui rend la combustion incomplète reproductible d'un endroit à l'autre. On note en outre, que l'appareil de contrôle optique 51 permet par des opérations de combustion orientées latéralement, de vérifier que l'on se situe toujours dans une position médiane de la veine de charbon, car cet appareil de contrôle 5f permet de détecter immédiatement toute baisse de température lorsque le dard 22 du jet directif d'oxygène 21 rencontre la roche.
  • On note que l'invention peut être mise en oeuvre sous différentes formes dont certaines sont énumérées à titre d'exemples :
    • - On a vu qu'un des rôles de la vapeur d'eau était d'isoler le jet d'oxygène des gaz résultant de la combustion incomplète. Ce rôle peut aussi être assuré par un gaz neutre, comme le gaz carbonique.
    • - Au lieu d'opérer par une injection continue d'oxygène avec une enveloppe gazeuse d'isolement, on peut également opérer par des successions d'injections d'oxygène , puis d'hydrogène et dans ce cas il n'est plus nécessaire d'assurer une protection gazeuse du jet d'hydrogène actif.
    • - On peut également mettre en oeuvre une injection plus complexe comprenant un jet central d'oxygène, enveloppé d'un jet annulaire intermédiaire de vapeur d'eau, ou de gaz carbonique, et d'un jet annulaire périphérique d'hydrogène ou de vapeur d'eau (notamment si le jet intermédiaire est autre que de la vapeur d'eau), comme représenté aux figures 5 et 6, où l'on voit un débouché de buse supersonique 61 pour l'oxygène, une couronne annulaire de débouché 62 pour de la vapeur d'eau, ou de l'eau, circulant à grande vitesse, et une fente annulaire 63 pour de la vapeur d'eau en écoulement laminaire.

Claims (13)

1. Procédé de gazéification souterraine de charbon, selon lequel on conduit au travers d'un forage un agent gazéificateur, que l'on projette in situ en direction d'une veine de charbon, où l'on extrait un gaz combustible résultant d'une combustion incomplète dudit charbon, que l'on conduit à la surface en un courant s'écoulant à contre-courant et autour du jet d'agent gazéificateur et qui est conduit à la surface au travers dudit forage, caractérisé en ce que le jet d'agent gazéificateur est un jet gazeux et en ce qu'on émet une nappe annulaire d'un fluide d'isolement entre ledit jet d'agent gazéificateur et ledit courant de gaz combustible s'écoulant à co-courant dudit jet d'agent gazéificateur.
2. Procédé de gazéification souterraine de charbon, selon la revendication 1, caractérisé en ce que le fluide de la nappe annulaire est de l'eau, le cas échéant sous forme de vapeur d'eau.
3. Procédé de gazéification souterraine de charbon selon la revendication 1, caractérisé en ce que le fluide de la nappe annulaire est un gaz neutre, par exemple du gaz carbonique.
4. Procédé de gazéification souterraine de charbon selon la revendication 1, caractérisé en ce que l'agent gazéificateur est de l'oxygène, éventuellement périodiquement remplacé par de l'hydrogène.
5. Procédé de gazéification souterraine de charbon selon la revendication 1, ou 2 ou 3, caractérisé en ce qu'on injecte un second gaz, tel vapeur d'eau, gaz carbonique ou hydrogène, à la périphérie extérieure de ladite nappe annulaire de fluide d'isolement.
6. Procédé de gazéification souterraine du charbon selon l'une quelconque des revendications 1 à 5, caractérisé en ce qu'on effectue d'abord une telle opération'initiale de gazéification en ligne pour former une galerie de mine à extension médiane dans la veine de charbon, et en ce qu'on effectue ensuite successivement une pluralité d'opérations de gazéification latérales s'étageant le long et de part et d'autre de ladite galerie de mine.
7. Procédé de gazéification selon l'une quelconque des revendications 1 à 5, caractérisé en ce que la nappe de vapeur d'eau résulte de la vaporisation d'eau injectée en tête de forage, s'échauffant par échange thermique avec le gaz combustible remontant à la surface.
8. Installation pour la gazéification souterraine du charbon, pour la mise en oeuvre du procédé selon l'une quelconque des revendications 1 à 7, comprenant une première tubulure s'étendant au travers d'un forage 'jusqu'au niveau d'une veine de charbon, à l'extrémité de cette tubulure une buse déplaçable adaptée à former un jet directif de fluide gazéificateur, caractérisée par une seconde tubulure dans ledit forage s'étendant jusqu'à la buse de formation du jet directif de fluide gazéificateur.
9. Installation pour la gazéification souterraine du charbon selon la revendication 8, où la buse est équipée des moyens de coulissement axial, caractérisée en ce que la buse est agencée en bout d'un double joint tournant.
10. Installation selon la revendication 8, caractérisée en ce que la seconde tubulure est disposée coaxialement à la première tubulure.
11. Installation pour la gazéification souterraine du charbon selon la revendication .10, caractérisée en ce que la buse d'injection du gaz axial est du type à convergent-divergent axial.
12. Installation pour la gazéification souterraine du charbon selon la revendication 11, caractérisée en ce que la buse présente un conduit annulaire en communication avec la seconde tubulure.
13. Installation pour la gazéification souterraine du charbon selon la revendication 11, caractérisée en ce que la buse présente un second conduit annulaire extérieurement audit conduit annulaire, en communication avec une troisième tubulure de forage.
EP82400780A 1981-06-05 1982-04-29 Procédé et installation de gazéification souterraine de charbon Expired EP0067079B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT82400780T ATE14035T1 (de) 1981-06-05 1982-04-29 Verfahren und anlage zur kohlenvergasung untertage.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8111149A FR2507204B1 (fr) 1981-06-05 1981-06-05 Procede et installation de gazeification souterraine de charbon
FR8111149 1981-06-05

Publications (2)

Publication Number Publication Date
EP0067079A1 true EP0067079A1 (fr) 1982-12-15
EP0067079B1 EP0067079B1 (fr) 1985-06-26

Family

ID=9259227

Family Applications (1)

Application Number Title Priority Date Filing Date
EP82400780A Expired EP0067079B1 (fr) 1981-06-05 1982-04-29 Procédé et installation de gazéification souterraine de charbon

Country Status (12)

Country Link
US (1) US4479540A (fr)
EP (1) EP0067079B1 (fr)
JP (1) JPS57212295A (fr)
AT (1) ATE14035T1 (fr)
AU (1) AU546520B2 (fr)
CA (1) CA1212898A (fr)
DE (1) DE3264409D1 (fr)
ES (1) ES8307885A1 (fr)
FR (1) FR2507204B1 (fr)
IN (1) IN158484B (fr)
NZ (1) NZ200837A (fr)
ZA (1) ZA823560B (fr)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4776638A (en) * 1987-07-13 1988-10-11 University Of Kentucky Research Foundation Method and apparatus for conversion of coal in situ
CN1055332C (zh) * 1995-03-15 2000-08-09 柴兆喜 拉管注气点后退式煤层气化方法
US20100276139A1 (en) * 2007-03-29 2010-11-04 Texyn Hydrocarbon, Llc System and method for generation of synthesis gas from subterranean coal deposits via thermal decomposition of water by an electric torch
CN101988382B (zh) * 2010-08-31 2014-07-16 新奥科技发展有限公司 调节气化剂在井下的流动方向的可活动设备及方法
US20120103604A1 (en) * 2010-10-29 2012-05-03 General Electric Company Subsurface heating device
US20130312950A1 (en) * 2011-02-18 2013-11-28 Linc Energy Ltd. Igniting an underground coal seam in an underground coal gasification process, ucg
WO2014089603A1 (fr) * 2012-12-14 2014-06-19 Linc Energy Ltd Appareil permettant d'allumer une veine de charbon souterraine
WO2014186823A1 (fr) * 2013-05-23 2014-11-27 Linc Energy Ltd Appareil d'injection d'oxydant et d'eau
CN103541714B (zh) * 2013-10-30 2016-06-15 新奥气化采煤有限公司 喷头及煤炭地下气化方法
CN104533377A (zh) * 2014-11-06 2015-04-22 新奥气化采煤有限公司 一种喷嘴及气化方法
CN104564008B (zh) * 2014-12-18 2018-05-01 新奥科技发展有限公司 煤炭地下气化装置及其气化方法
CN104612652B (zh) * 2015-01-28 2019-04-23 新奥科技发展有限公司 喷嘴
CN104632179B (zh) * 2015-01-28 2019-04-23 新奥科技发展有限公司 喷嘴
CN104632181B (zh) * 2015-02-03 2018-01-16 新奥科技发展有限公司 喷嘴
CN104632182B (zh) * 2015-02-03 2018-08-24 新奥科技发展有限公司 一种喷嘴
CN104632180A (zh) * 2015-02-03 2015-05-20 新奥气化采煤有限公司 喷嘴
CN105113991B (zh) * 2015-09-22 2017-04-19 中国矿业大学(北京) 一种蒸汽射流钻头
CN105756653B (zh) * 2015-11-11 2021-08-03 新奥科技发展有限公司 喷嘴及具有该喷嘴的注气装置
CN106761653B (zh) * 2017-01-12 2023-03-14 中为(上海)能源技术有限公司 用于煤炭地下气化工艺的喷头设备及其操作方法
CN112496017B (zh) * 2020-11-12 2022-06-14 江苏大地益源环境修复有限公司 一种基于蒸汽强化的原位热传导脱附系统及其工艺
CN114704236B (zh) * 2021-12-28 2024-05-17 中国石油天然气集团有限公司 煤炭地下气化用点火燃烧器及点火方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2902270A (en) * 1953-07-17 1959-09-01 Svenska Skifferolje Ab Method of and means in heating of subsurface fuel-containing deposits "in situ"
US3093197A (en) * 1958-12-09 1963-06-11 Union Carbide Corp Method and apparatus for thermally working minerals and mineral-like materials
FR2313439A1 (fr) * 1975-06-02 1976-12-31 Inst Nat Ind Extractive Procede et appareillage pour le refroidissement des gaz de gazeification souterraine des gisements de combustibles solides
US4010801A (en) * 1974-09-30 1977-03-08 R. C. Terry Method of and apparatus for in situ gasification of coal and the capture of resultant generated heat
US4067390A (en) * 1976-07-06 1978-01-10 Technology Application Services Corporation Apparatus and method for the recovery of fuel products from subterranean deposits of carbonaceous matter using a plasma arc
US4078613A (en) * 1975-08-07 1978-03-14 World Energy Systems Downhole recovery system
US4136737A (en) * 1976-03-22 1979-01-30 Texaco Inc. Method for automatically initiating in situ combustion for enhanced thermal recovery of hydrocarbons from a well
FR2461871A1 (fr) * 1976-12-20 1981-02-06 Sabol Karl Procede et dispositif pour pratiquer des forages lateraux dans des gisements houillers ou de schiste bitumeux

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2680486A (en) * 1949-01-04 1954-06-08 Phillips Petroleum Co Method and apparatus for well operations employing hydrogen peroxide
US3572839A (en) * 1968-08-28 1971-03-30 Toa Kowan Kogyo Kk Process for excavation of hard underwater beds
US3563606A (en) * 1969-03-24 1971-02-16 St Joe Minerals Corp Method for in-situ utilization of fuels by combustion
DE2709437C2 (de) * 1977-03-04 1982-09-09 Messerschmitt-Bölkow-Blohm GmbH, 8000 München Verfahren zum Herstellen von Bohrungen in Kohleflözen
US4185692A (en) * 1978-07-14 1980-01-29 In Situ Technology, Inc. Underground linkage of wells for production of coal in situ
US4356866A (en) * 1980-12-31 1982-11-02 Mobil Oil Corporation Process of underground coal gasification

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2902270A (en) * 1953-07-17 1959-09-01 Svenska Skifferolje Ab Method of and means in heating of subsurface fuel-containing deposits "in situ"
US3093197A (en) * 1958-12-09 1963-06-11 Union Carbide Corp Method and apparatus for thermally working minerals and mineral-like materials
US4010801A (en) * 1974-09-30 1977-03-08 R. C. Terry Method of and apparatus for in situ gasification of coal and the capture of resultant generated heat
FR2313439A1 (fr) * 1975-06-02 1976-12-31 Inst Nat Ind Extractive Procede et appareillage pour le refroidissement des gaz de gazeification souterraine des gisements de combustibles solides
US4078613A (en) * 1975-08-07 1978-03-14 World Energy Systems Downhole recovery system
US4136737A (en) * 1976-03-22 1979-01-30 Texaco Inc. Method for automatically initiating in situ combustion for enhanced thermal recovery of hydrocarbons from a well
US4067390A (en) * 1976-07-06 1978-01-10 Technology Application Services Corporation Apparatus and method for the recovery of fuel products from subterranean deposits of carbonaceous matter using a plasma arc
FR2461871A1 (fr) * 1976-12-20 1981-02-06 Sabol Karl Procede et dispositif pour pratiquer des forages lateraux dans des gisements houillers ou de schiste bitumeux

Also Published As

Publication number Publication date
NZ200837A (en) 1986-02-21
US4479540A (en) 1984-10-30
CA1212898A (fr) 1986-10-21
ES512848A0 (es) 1983-08-01
EP0067079B1 (fr) 1985-06-26
IN158484B (fr) 1986-11-22
FR2507204B1 (fr) 1985-07-05
DE3264409D1 (en) 1985-08-01
ZA823560B (en) 1983-03-30
ATE14035T1 (de) 1985-07-15
FR2507204A1 (fr) 1982-12-10
AU8386582A (en) 1982-12-09
AU546520B2 (en) 1985-09-05
JPS57212295A (en) 1982-12-27
ES8307885A1 (es) 1983-08-01

Similar Documents

Publication Publication Date Title
EP0067079B1 (fr) Procédé et installation de gazéification souterraine de charbon
US11066916B2 (en) Nozzle and injection device for use in underground coal gasification process and method for operating injection device
FR2476738A1 (fr) Procede et appareil pour sectionner des conduits, notamment en metal
CN106150472B (zh) 用于煤炭地下气化工艺的接合管注入系统及操作方法
US10711587B2 (en) Oxidizing agent injection equipment for underground coal gasification process and application thereof
EP0296032A1 (fr) Système à brûleur notamment à grande vitesse de sortie des gaz brûlés
FR2709812A1 (fr) Procédé de combustion.
FR2918415A1 (fr) Moteur a detonations pulsees fonctionnant avec un melange carburant-air
WO2007118971A1 (fr) Bruleur polyvalent a flamme creuse pour hydrocarbures
US11021943B2 (en) Ignition device for underground coal gasification process, and applications thereof
CN106121618A (zh) 用于煤炭地下气化过程的氧化剂注入设备及其应用
EP2041493B1 (fr) Procédé de chauffage d'une charge
CA2549511A1 (fr) Procede de combustion etagee mettant en oeuvre un gaz pauvre en oxygene
WO2014043747A1 (fr) Dispositif et procédé d'injection d'oxygène
CN205990905U (zh) 用于煤炭地下气化工艺的接合管注入系统
EP2649370B1 (fr) Combustion a jets divergents de combustible
FR2826710A1 (fr) Dispositif radiant a bruleur de gaz et recirculation, adapte en vue d'une production reduite d'oxydes d'azote
EP0694676A1 (fr) Installation pour puits pétrolier
EP0178198A2 (fr) Brûleur à mélange préalable intégré et à flamme pilote intégrée
EP0131499A1 (fr) Procédé d'oxydation de couches sédimentaires souterraines contenant des matières hydrocarbonées
CN108729916A (zh) 一种地下气化炉煤层点火装置及后退重复点火气化方法
AU2015100327A4 (en) Oxygen injection device and method
FR2586207A1 (fr) Dispositif pour l'application de revetements par detonation
LU84917A1 (fr) Procede et dispositif pour influencer la marche d'un four a cuve
FR2797738A1 (fr) Procede d'injection d'un gaz supersonique dans un four a arc electrique et four a arc pour la mise en oeuvre de ce procede

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19820503

AK Designated contracting states

Designated state(s): AT BE DE FR GB IT LU NL SE

ITF It: translation for a ep patent filed
GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): AT BE DE FR GB IT LU NL SE

REF Corresponds to:

Ref document number: 14035

Country of ref document: AT

Date of ref document: 19850715

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3264409

Country of ref document: DE

Date of ref document: 19850801

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19860430

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19890308

Year of fee payment: 8

Ref country code: AT

Payment date: 19890308

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19890315

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19890328

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19890331

Year of fee payment: 8

Ref country code: DE

Payment date: 19890331

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 19890403

Year of fee payment: 8

ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19890430

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19900429

Ref country code: AT

Effective date: 19900429

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19900430

Ref country code: BE

Effective date: 19900430

BERE Be: lapsed

Owner name: L' AIR LIQUIDE S.A. POUR L'ETUDE ET L'EXPLOITATION

Effective date: 19900430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19901101

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19901228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19910101

GBPC Gb: european patent ceased through non-payment of renewal fee
REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

EUG Se: european patent has lapsed

Ref document number: 82400780.1

Effective date: 19910115