EP0066637B1 - Procédé pour brunir des aliments dans un four à micro-ondes - Google Patents

Procédé pour brunir des aliments dans un four à micro-ondes Download PDF

Info

Publication number
EP0066637B1
EP0066637B1 EP81104380A EP81104380A EP0066637B1 EP 0066637 B1 EP0066637 B1 EP 0066637B1 EP 81104380 A EP81104380 A EP 81104380A EP 81104380 A EP81104380 A EP 81104380A EP 0066637 B1 EP0066637 B1 EP 0066637B1
Authority
EP
European Patent Office
Prior art keywords
food
cooking
power
infrared heater
oven
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP81104380A
Other languages
German (de)
English (en)
Other versions
EP0066637A1 (fr
Inventor
Phyllis Eck
Ronald G. Buck
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northrop Grumman Guidance and Electronics Co Inc
Original Assignee
Litton Systems Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Litton Systems Inc filed Critical Litton Systems Inc
Priority to DE8181104380T priority Critical patent/DE3175458D1/de
Priority to AT81104380T priority patent/ATE22769T1/de
Priority to EP81104380A priority patent/EP0066637B1/fr
Publication of EP0066637A1 publication Critical patent/EP0066637A1/fr
Application granted granted Critical
Publication of EP0066637B1 publication Critical patent/EP0066637B1/fr
Expired legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/6435Aspects relating to the user interface of the microwave heating apparatus
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/647Aspects related to microwave heating combined with other heating techniques
    • H05B6/6482Aspects related to microwave heating combined with other heating techniques combined with radiant heating, e.g. infrared heating

Definitions

  • the present invention relates to a method of cooking and browning food in a microwave oven in accordance with the generic clause of claim 1, and further relates to a microwave oven adapted to cook and brown food in accordance with the generic clause of claim 13.
  • US-A-4227062 discloses a method of cooking and browning food in a microwave oven comprising the steps of applying microwaves to a food raising its temperature, applying power to an infrared heater whose radiation irradiates said food for browning said food, and applying microwaves to further cook said food.
  • the first step of applying microwaves to the food raising its temperature can be regarded as a preliminary warming interval.
  • the functions of this preliminary warming interval is two-fold. First, by ensuring that some microwave cooking occurs first, they prevent an outer crust from forming on the food before microwave cooking even begins. This has been found preferable from a cooking standpoint. Additionally, the preliminary warming interval permits the infrared heater to begin warming up before its first on time interval.
  • the method steps for applying power to the infrared heater of browning said food and applying microwaves to further cook said food are carried out alternately.
  • the respective time ratio of the second method step of applying power to the infrared heater with respect to the third method step of applying microwaves to further cook said food can be varied, so that the percentage of microwave power is increased when the percentage of browning power is decreased, if desired.
  • the cook predetermines the percentage of browning power to microwave power by setting a control knob. Furthermore, he predetermines the overall cooking time by means of a cooking timer knob.
  • a first drawback of this prior art method consists in that it is undesirably complicated to operate this oven as the cook has to read a manual for finding out the respective cooking- browning ratio for each food before cooking it.
  • Another drawback of this known method is that the cook has only the choice between long time browning and short time browning of the surface of the food, as he can only predetermine the period of time of the respective browning intervals, but he cannot vary the respective intensities or power levels of these browning intervals.
  • US-A-3 569 656 discloses a method of cooking and browning food in a microwave oven, the oven having means for applying microwaves to a food, means for thermally heating the interior of the oven and means for programming a control means for controlling the application of microwaves and the application of thermal energy.
  • thermal energy is supplied to the interior of the oven during the total cooking time, wherein the cooking of the food is assisted by the application of microwave energy.
  • this known method only discloses conventional cooking assisted by microwave cooking. The result is a slow, energy- inefficient method of cooking.
  • EP-A-00 23 971 discloses a method for controlling the cooking operation making use of a constant stored in a microcomputer, which constant is determined in advance according to the type of food and defines the type of cooking operation.
  • the constant describes a characteristic cooking time of a respective type of food from the detection of vapor by means of a vapor sensor to the end of the cooking by heating.
  • This reference does not contain any teaching concerning a food- dependent time for applying microwaves before switching over to an infrared radiation.
  • this reference does not include any indication as to the measurement of the temperature of the infrared heater.
  • the present invention is based on the technical task of providing a method in accordance with the prior art portion of claim 1 and an oven in accordance with the prior art portion of claim 13 allowing optimal cooking results, a high energy-efficiency and a simple to use and time-saving operation of the oven.
  • the food to be cooked will be placed in a conventional microwave oven (not shown) having included therein a magnetron 10, a browning heater 12, a high voltage power supply 14 connected to the magnetron 10, a power supply 16, means such as triacs 18, to control the application of power to the aforesaid devices, a power sensing circuit 22 interconnected to high voltage power supply 14 for magnetron 10 and to browning heater 12, a microprocessor (not shown, but represented by control panel 20) having a permanent read only memory (ROM) (not shown) which is interconnected with control panel 20, said power supply 16, and said control means 18.
  • a power sensing circuit 22 is interconnected between the microprocessor and browning heater 12 and high voltage power supply 14.
  • Buttons Auto-Cook 24, Auto-Brown 26, and Rare 28 through Well 30 will then be present only in that embodiment using a power sensing technique to compute total cooking time.
  • a power sensing technique is disclosed in copending application Serial No. 73,077 to Buck filed September 6,1979.
  • control panel 20 will instead have a button labelled such as Vari-Brown (not shown) in lieu of the Auto-Brown button to indicate to the microprocessor the initiation of a browning-cooking recipe rather than a microwave along cooking recipe. Additionally, power sensing circuit 22 will not be connected to high voltage power supply 14.
  • buttons shown on control panel such as Vari-Cook, Defrost II, etc. are included to provide the cook the option of cooking by older microwave oven methods.
  • the numerical buttons 34 will be used in either of the present invention's preferred embodiments to enter such information as food code, food mass or cooking time into the microprocessor.
  • the start button 36 initiates cooking as in the prior art.
  • door interlock 38 prevents the operation of the microwave oven while the door is open. Additionally, in the present invention, it provides a signal to the microprocessor when the cook has performed the programmed request to turn the food over.
  • FIG. 2 illustrates a representative chart 52 of the cooking program performed by the microprocessor using a typical recipe of the preferred embodiment.
  • the total cooking time T is entered by the cook.
  • this cooking time is instead calculated from food type, food mass, doneness selected and average measured power input to the magnetron 10.
  • the cook After placing the food in the oven and closing the door, the cook enters into the microprocessor via the control panel 20 the type of food which is to be cooked and the total cooking time.
  • the type of food to be cooked is preferably represented by a two digit number code entered via push buttons 34.
  • the code which is appropriate for a particular food type is listed on the control panel area 32.
  • This area 32 would preferably have two columns of information.
  • the left column 40 would list various types of food such as roast, hamburger, pie, rolls, vegetables, etc.
  • the right hand column 42 would list a corresponding two digit number code.
  • the entry of this code into the control panel 20 after having selected the browning function by pushing the Auto-Brown button 26, causes the microprocessor to select the appropriate recipe for that type of food from the associated read-only-memory.
  • control panel 20 can list the more common food types and the balance can be listed in a cookbook which may be provided to the consumer upon the sale of the microwave oven.
  • the cook would then enterthe total cooking time T via the numerical buttons 34.
  • the total cooking time would be based upon a suggested recipe time from a cookbook of how long to cook a particular quantity of that type of food to a preselect range of doneness, i.e. from rare to well done and a number of gradiations therebetween.
  • the cook may, of course, refine these choices not only to accommodate his own personal taste, but also to accommodate finer gradiations in mass or quantity and the cooking pans he uses.
  • the microprocessor uses the food code entered by the cook to look up a recipe for that food type located in a read-only-memory module.
  • This recipe is comprised of a number of constants 50, 17 in the preferred embodiment, which provides the microprocessor the information it needs to run the cooking program 52. Included therein is such information as to how long relatively the microwave generating device is to be on, how long relatively the infrared heater is to be on, and in which order they are to be on, etc.
  • Each of these constants 50 will have been empirically predetermined by expert cooks operating the microwave generating device 10 and the infrared heater 12 in the microwave oven in various sequences, for various times and at various powers to obtain optimum cooking and browning for a given type of food.
  • the microprocessor will use these constants to reproduce exactly the same sequence of operations performed by the expert cook to give optimum results each time the microwave oven is used at home.
  • the method of the present invention can thus provide excellent cooking and browning for many categories of foods, results never before achievable in a microwave oven.
  • the recipe 50 includes constants, such as r10 and r11, which indicate in which order microwave and infrared radiation should be applied. If microwave radiation is to be applied first, a time chart of the cooking program executed by the microprocessor will result in a chart 52 as illustrated in Figure 2.
  • the specification of a specific constant number, such as r11, is only suggestive.
  • the actual constant may be a single bit of information located anywhere in the read-only-memory section allocated for a particular recipe.
  • the cooking program executed by the microprocessor using the recipe 50 is broken into two major periods, C and D.
  • the inclusion of two separate periods C and D allows the microprocessor to interrupt cooking at some predetermined percentage of time, indicated by r7, to provide for the turning over of food, the readjusting of the power levels and cycle times and the order of cycling of the radiation devices 10 and 12.
  • r7 some predetermined percentage of time
  • microwave cooking With microwave cooking, the only present source of increased evaporation is the continuously operated air blower. But since it operates at reduced temperatures vis-a-vis conventionally heated ambient air, its moisture absorbing capabilities remain limited. Furthermore, the evaporation itself reduces the temperature of the surface area which thereby reduces the energy available to drive the browning reaction as well as reduces the energy available to further vaporize surface area water.
  • the present invention uses the infrared heater 12 to provide additional energy to the surface area of the food specifically to increase the vaporization rate of the surface area water, to increase water activity, and to increase the reaction activation energy available.
  • the air blower 13 which is normally operated throughout the periods in which the microwave generating device 10 is on, may also be operated with the heater 12 to increase the rate of evaporation or to reduce (by cooling) the rate of the browning reaction.
  • a constant r9 is provided to indicate whether the air blower 13 should be on during the infrared portions of the first period D.
  • the period of time for which the microwave generating device is on during the preamble 56 is determined by constant r12 and by cooking time T entered by the cook. This time, tx 1, is the result of the multiplication of constant r12 by time T.
  • the power applied to the microwave generating device 10 is given by constant r16.
  • the constant may be used to set the duty cycle, dcx 1, of a magnetron 10 for example. Varying the duty cycle of a magnetron is a conventional technique for varying the cumulative microwave power input to the microwave oven's cavity.
  • the duty cycle, dcx1, of the magnetron 10 may be controlled by the microprocessor by controlling the percentage of time triac 17 is enabled.
  • Variations in power are necessary to adjust microwave cooking for different food's capabilities to absorb microwave energy as well as their ability to transfer heat.
  • the infrared heater 12 is turned on. This initial period may be longer as the heater 12, starting cold, may have a delay to bring it up to a temperature at which it will begin browning the food efficiently.
  • microwave ovens in the United States use a 120 volt, 1800 watt maximum power supply. This power is insufficient to operate both the microwave generating device 10 and the infrared heater 12 simultaneously. Thus all representations of the preferred embodiment illustrated and discussed herein will have either one or the other device on at any given moment, but not both. It should be noted at this point that if the microwave generating device 10 is a magnetron, a power level of 70% of full power means that the microprocessor is applying power to the high voltage power supply 14 only 70% of the time. The other 30% may conveniently be used to supply power to the infrared generating device 12.
  • the period of time during which power is applied to the infrared heater 12 is indicated by ty1.
  • Time ty1 is determined by multiplying constant r14 by cooking T.
  • constant r14 constant r14
  • cooking T As an essential purpose of this initial period is to bring the heater from room temperature up to the temperature range at which it will be used in succeeding cycles to brown the food, various infrared heaters have varying response times. Accordingly, the length of this period will vary with the infrared heater used. Many times the cook will use his microwave oven to cook a second item of food immediately after the first item is done. In such a case, the infrared heater may be well above room temperature to begin with and require a much shorter time to reach operational temperatures.
  • the microprocessor must know the initial temperature of the infrared heater. Depending on food type and the form of compensation which may be necessary, this measurement may be taken either at the very beginning of the cooking algorithm or just prior to applying power to the infrared generating device 12 during the first preamble period 56.
  • the temperature of the infrared heater 12 may be determined by the resistance of its heater , element (not shown).
  • the temperature is given by the formula where To is a predetermined temperature such as 20°C, R° is the resistance of the heater element at this temperature, R is the measured resistance, and a is a temperature coefficient for the heater in ohms per degree centigrade.
  • the constant a may be derived from the standard temperature coefficient for the metal used in the resistance element by multiplying it by the resistance R°.
  • the resistance of heater 12 is measured by measuring the voltage and current into heater 12.
  • the power sensing circuit 22 of Figure 1 measures both voltage and current and returns them to the microprocessor. The resistance then is v/I.
  • This circuit 22 may be of conventional design.
  • this power sensing circuit may also conveniently be used to provide voltage or constant power regulation to the infrared heater 12 to compensate for manufacturing variations from heater to heater and for line voltage variation.
  • microwave radiation of a fixed duration and power is cycled with the application of power to the infrared heater 12 a fixed number of times, N.
  • the length of the microwave half cycle, tuw1 is determined by constant r3 multiplied by cooking time T.
  • the microwave power, dc1 is determined by a constant r1 which may be used to set the magnetron's 1 duty cycle.
  • the length of time power is applied to the infrared heater in a half cycle, tir1, is determined by a constant r5.
  • the total number of cycles, N is determined by the cooking time T multiplied by constant r7, minus the nominal preamble time, tx1 + ty1, this entire sum divided by the cycle time, tuw1 + tir1. Or, as T is a multiplier for all terms this equation may be restated as
  • the food was brought up to a temperature at which browning may begin and the infrared heater was activated to both bring it up to temperature and begin drying and browning the food.
  • the infrared heater was activated to both bring it up to temperature and begin drying and browning the food.
  • the infrared heater was on, heat induced regionally by microwave radiation will have had time to conduct to lower temperature areas of the food.
  • the food is now ready to accept more microwave radiation to both continue cooking and to maintain water level and temperature of the surface region of the food for browning purposes.
  • the infrared heater is cycled with the microwave generating device 10 in a co-ordinated fashion to maintain the food surface at the proper conditions for best browning as cooking proceeds.
  • the food is both cooked and browned in an optimal manner.
  • the first operation at the beginning of this period D is to determine from a constant r8 whether to turn the food over.
  • the reason this must be done for certain foods lies partly in the fact that a single infrared heater located on the roof of the microwave oven cavity is highly directional. It browns only the top of the food. With some foods this may be all that is desired, such as with cupcakes. With other foods, though, the food must be turned over to brown the bottom.
  • the microprocessor signals the cook with appropriate indicators: flashing lights, audible alarms or some combination thereof, that it is time to turn the food over.
  • the cook opens the microwave oven door, turns the food over, and closes the door.
  • the closing of the door is signaled by door interlock 38.
  • the microprocessor then resumes cooking.
  • a timer may be provided to restart the cooking after a set period, such as 30 seconds. Thereafter the cook may still turn the food over without serious interference with the cooking program, but overall browning will necessarily be uneven.
  • cooking period D would appear as represented in Figure 2.
  • Period D is again divided into two parts, a preamble period 54 and a cycling period 60.
  • the second preamble period 54 allows further flexibility in accommodating the cooking needs of various types of food.
  • the preamble 54 may be substantially a long microwave period to finish cooking, or it may be a long infrared period to provide for more browning.
  • the time the microwave generating device 10 is activated, tx2, is determined by constant r13 multiplied by cooking time T.
  • the power at which the microwave generating device 10 is run is determined by constant r17.
  • This constant r17 may be used to set a magnetron duty cycle, dcx2.
  • the period the infrared heater is on is determined by constant r15 multiplied by cooking time T.
  • This time, ty2 may again be modified as is the first preamble's infrared heater time, ty1, by the initial temperature of the heater in the ,same manner as described above.
  • the heater will generally be on longer during this second preamble 54 to dry the accumulated juices on the bottom of the food which has just been turned over.
  • the microprocessor again cycles the microwave radiation with the infrared for a fixed number of cycles M.
  • a given cycle radiates microwave for a time, tuw2 and then infrared for a time tir2.
  • Tuw2 is determined from constant r4 multiplied by cooking time T
  • tir2 is determined from constant r6 multiplied by cooking time T.
  • the total number of cycles M is determined by the length of the period D, minus the second preamble time, tx2 + ty2, divided by the cycle time, tuw-2 + tir2. As all terms have T as a factor, the equation reduces to
  • constant r12 is used to set the power level of the microwave generating device lower. If the device is a magnetron 10, r2 may be its duty cycle, dc2.
  • the microprocessor signals the cook that the food is done.
  • the food might not be fully cooked in the sense that in some foods there should be a period in which the heat built up in same areas of the food is allowed to conduct to lower temperature areas of the food to finish the cooking in those areas. This practice is common today.
  • An alternative embodiment contains all the features of the first embodiment with the addition that the cook inputs to the microprocessor the mass (or quantity) of the food to be cooked instead of the time. He also selects a doneness such as RARE 28 from a set of donenesses 29 on the control panel 20 by pressing the button 28 marked RARE.
  • a doneness such as RARE 28 from a set of donenesses 29 on the control panel 20 by pressing the button 28 marked RARE.
  • the buttons 29, as can be seen from Figure 1 also contain subheadings indicating degrees of doneness from warm 28 to hottest 30. These categories may be used where RARE 28 to WELL 30 are inappropriate for the food to be cooked, such as with a cup of coffee. Also the buttons may be color coded with shades of brown, from light brown on button 28 to dark brown on button 30).
  • the microprocessor uses the food code 32 previously entered along with the doneness 28 selected to index an array of empirically predetermined constants X F , D for each food type and doneness. As food types range from 00 to 99 and as there are five doneness categories 29, this array would be 100 by 5 and contain 500 X F , D . constants.
  • the microprocessor uses the indexed constant in the formula to calculate the total cooking time T, where M is the food mass and P is the averaged measured power.
  • This method is disclosed in the copending application of Buck, Serial No. 73,077. Of course, in that application, microwave power was applied constantly at full or at a predetermined power. The above equation must be modified to adjust cooking time for the periods that the microwave generating device is off and for the various power levels at which the microwave generating device 10 will be operating.
  • the computed value of T may then be used to compute the actual operating times of the two radiation devices 10 or 12 in the cooking program.
  • P must be average because the instantaneous power input to the magnetron 10 may fluctuate widely due to varying impedances on the magnetron output and varying line voltages on the power supply 16.
  • the value of T will then vary slightly during the running of the program, but this variance will become progressively less as the number of samples increases.
  • the actual run time Tr may be retained by the microprocessor and a time-to-complete, Tc, where may be displayed to the cook on a display 21.
  • the power sensing circuit 22 to measure power input to the infrared heater 12 and the magnetron 10 may be of conventional design.
  • doneness is basically an internal phenomena while browning is a surface phenomena, and the two are not totally dependent upon each other.
  • the disclosed method may be altered by those skilled in the art to implement separate browning choices.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Electric Ovens (AREA)
  • General Preparation And Processing Of Foods (AREA)

Claims (24)

1. Procédé pour cuire et brunir des aliments dans un four à micro-ondes, comprenant les étapes qui consistent:
a) à appliquer des micro-ondes à un aliment afin d'élever sa température;
b) à fournir de la puissance à un élément chauffant à infrarouge (12) dont le rayonnement irradie ledit aliment pour le faire brunir; et
c) à appliquer des micro-ondes pour la poursuite de la cuisson dudit aliment, caractérisé par l'étape qui consiste:
d) à commander les étapes a), b) et c) en fonction de paramètres prédéterminés empiriquement, enregistrés dans une mémoire d'un microprocesseur associé au four à micro-ondes, où l'étape a) d'application de micro-ondes à l'aliment est effectuée de manière que la température de la surface de l'aliment s'élève à au moins une température à laquelle un brunissage notable peut apparaître, et en outre où l'étape b) comprend une mesure de la température de l'élément chauffant à infrarouge (12) et un réglage de la durée correspondante soit (i) de l'application de micro-ondes à l'aliment, soit (ii) de l'application d'énergie à l'élément chauffant à infrarouge (12), soit des deux, lorsque ladite température dépasse un niveau prédéterminé.
2. Procédé selon la revendication 1, caractérisé en ce que les périodes temps, séquences et niveaux de puissance pour chacune desdites étapes a), b) et c) sont prédéterminés empiriquement à partir de plusieurs types d'aliment, par unité de masse, et réduits auxdits paramètres pour une mise en oeuvre par un algorithme de cuisson, en ce que ledit microprocesseur est interconnecté de façon commandée avec ladite mémoire et un panneau de commande (20); et en ce que l'introduction de codes correspondant à l'un desdits types d'aliments et à sa masse, par l'intermédiaire dudit panneau de commande, dans ledit microprocesseur amène ledit microprocesseur à extraire lesdits paramètres de ladite mémoire et à exécuter ledit algorithme de cuisson en utilisant lesdits paramètres et ladite masse d'aliment.
3. Procédé selon la revendication 1 ou 2, caractérisé en ce que ladite indication de masse est établie par l'introduction d'un temps de cuisson global dans ledit microprocesseur par l'intermédiaire dudit panneau de commande (20).
4. Procédé selon l'une des revendications 1, 2 et 3, caractérisé en ce que ladite indication de masse est établie par l'introduction de la masse dudit aliment en unités appropriées de poids ou de quantité dans ledit microprocesseur par l'intermédiaire dudit panneau de commande (20).
5. Procédé selon l'une des revendications 1-4, caractérisé par les étapes qui consistent à mesurer les températures dudit élément chauffant à infrarouge avant l'application de puissance à cet élément et à régler l'exécution des étapes a) et b) lorsque ladite température dépasse sensiblement un niveau prédéterminé.
6. Procédé selon l'une des revendications 1-5, caractérisé en ce que l'élément chauffant (12) comporte une entrée d'énergie électrique, et en ce que l'application de puissance audit élément (12) est régulée afin d'établir une puissance de sortie constante.
7. Procédé selon l'une des revendications 1-6, caractérisé en ce que l'étape d) est effectuée d'une manièretelle que lateneur en eau de la zone superficielle dudit aliment soit réglée vers un niveau prédéterminé empiriquement, dépendant du type d'aliment, auquel la réaction de brunissage est la plus rapide.
8. Procédé selon l'une des revendications 1-7, caractérisé en ce que l'étape c) est effectuée d'une manière telle que l'application de micro-ondes fournit un apport d'eau supplémentaire à ladite zone superficielle afin de compenser l'eau éliminée par l'action dudit rayonnement infrarouge.
9. Procédé selon l'une des revendications 1-8, caractérisé par l'autre étape qui consiste à retourner l'aliment pour en faire brunir le dessous, dans lequel l'étape d) comprend l'achèvement de la cuisson sensiblement au moment où le brunissage dudit dessous s'achève.
10. Procédé selon l'une des revendications 1-9, dans lequel ledit aliment comprend une croûte de pâte, caractérisé par une période initiale avant la première application de micro-ondes, dans laquelle un rayonnement infrarouge est appliqué audit aliment pour faire durcir ladite croûte de pâte.
11. Procédé selon l'une des revendications 1-10, caractérisé par l'autre étape qui consiste à faire passer de l'air sur ledit aliment afin d'augmenter la vitesse de séchage de la surface.
12. Procédé selon l'une des revendications 1-11, caractérisé en ce que la puissance fournie à la source (10) desdites micro-ondes et la puissance fournie à l'élément chauffant à infrarouge sont appliquées pendant l'exécution des étapes b) et c) suivant une séquence de périodes de temps essentiellement alternées, de la puissance étant appliquée d'abord à l'un, puis à l'autre desdits dispositifs (10, 12).
13. Four à micro-ondes conçu à la fois pour la cuisson et le brunissage d'aliments, comprenant:
une source d'énergie (10) à micro-ondes;
un élément chauffant à infrarouge (12);
des moyens (20) de commande interconnectés fonctionnellement avec ladite source d'énergie (10) à micro-ondes et ledit élément chauffant (12) à infrarouge;
lesdits moyens de commande (20) contenant le programme de cuisson-brunissage conçu pour amener lesdits moyens de commande à faire fonctionner ladite source d'énergie (10) à micro-ondes et ledit élément chauffant (12) à infrarouge; et
des moyens d'entrée (32, 34) par l'opérateur interconnectés fonctionnellement avec lesdits moyens de commande (20), caractérisé en ce que lesdits moyens de commande (20) comprennent une mémoire non volatile dans laquelle est stocke, pour chacun de plusieurs types prédéterminés d'aliment, un jeu de paramètres de durée et de séquence prédéterminés empiriquement;
en ce que ledit programme de cuisson-brunissage amène lesdits moyens de commande (20) à faire fonctionner lesdites sources (10, 12) en fonction de l'un desdits jeux de paramètres prédéterminés empiriquement;
et, en fonction de la température de l'élément chauffant (12) à infrarouge;
en ce que ledit programme est conçu pour se régler proportionnellement de lui-même afin d'occuper un temps total de cuisson, ledit temps total de cuisson ayant une relation prédéterminée avec la masse de l'aliment;
en ce que lesdits moyens d'entrée (32,34) pour l'opérateur sont conçus pour recevoir et transmettre auxdits moyens de commande (20) une entrée par opérateur représentative du type d'aliment;
en ce que le four comprend des moyens destinés à transmettre auxdits moyens de commande (20) une indication de la masse de l'aliment; et
en ce que lesdits moyens de commande (20) sont conçus pour réagir à une indication de type d'aliment afin d'exécuter ledit programme de cuisson-brunissage et de faire fonctionner ladite source (10) d'énergie à micro-ondes et ledit élément chauffant (12) à infrarouge en fonction de la température de l'élément chauffant (12) à infrarouge et de l'un desdits jeux de paramètres prédéterminés empiriquement, correspondant audit type d'aliment indiqué, pour un temps total de cuisson déterminé par ladite indication de masse de l'aliment.
14. Four selon la revendication 13, caractérisé en ce que lesdits moyens d'entrée (32, 34) pour l'opérateur sont en outre conçus pour recevoir et transmettre auxdits moyens de commande (20) un temps total de cuisson déterminé par l'opérateur, ledit temps de cuisson déterminé par l'opérateur étant représentatif de la masse de l'aliment.
15. Four selon la revendication 13, caractérisé en ce que lesdits moyens d'entrée pour l'opérateur sont en outre conçus pour recevoir et transmettre auxdits moyens de commande (20) une entrée par opérateur représentative de plusieurs degrés de cuisson de l'aliment; et en ce que ledit temps total de cuisson établit une autre relation prédéterminée avec le degré de cuisson de l'aliment.
16. Four selon l'une des revendications 13-15, caractérisé en ce que lesdits moyens de commande (20) comprennent des moyens destinés à mesurer la puissance moyenne fournie à ladite source d'énergie (10) à micro-ondes; en ce que ladite mémoire contient en outre, pour chacun desdits plusieurs types d'aliments et des degrés de cuisson de l'aliment, un paramètre prédéterminé empiriquement de masse par puissance en fonction du temps, et en ce que ladite relation prédéterminée du temps total de cuisson à la masse de l'aliment et au degré de cuisson de l'aliment est en outre mise en relation avec la puissance moyenne fournie à ladite source d'énergie à micro-ondes, ladite relation comprenant:
Figure imgb0007
où T est le temps total de cuisson, M est la masse de l'aliment et Xf,d est l'un des paramètres de ladite masse par puissance en fonction du temps correspondant audit type d'aliment indiqué et à un degré de cuisson d'aliment indiqué.
17. Four selon l'une des revendications 13-16, caractérisé par des moyens destinés à mesurer la température dudit élément chauffant (12) à infrarouge, interconnectés fonctionnellement avec lesdits moyens de commande (20), et dans lequel lesdits moyens de commande (20) sont conçus pour amener lesdits moyens à mesurer ladite température, et ledit programme est conçu pour se régler de lui-même d'une manière prédéterminée, commandée par l'un des paramètres provenant dudit jeu correspondant de paramètres prédéterminés empiriquement, en réponse à une température de l'élément chauffant notablement supérieure à une température ambiante prédéterminée.
18. Four selon l'une des revendications 13-17, caractérisé en ce que ledit programme comprend une première période de préambule et une première période de cycle, ladite première période de préambule étant conçue pour porter l'aliment au moins à une température à laquelle un brunissage notable peut commencer au moyen de la mise en oeuvre de ladite source d'énergie (10) à micro-ondes, ladite période de cycle étant conçue pour à la fois brunir et cuire ledit aliment à une vitesse optimale par la mise en oeuvre à la fois de ladite source d'énergie (10) à micro-ondes et dudit élément chauffant (12) à infrarouge.
19. Four selon l'une des revendications 13-18, caractérisé en ce que chacun desdits jeux de paramètres comprend au moins un paramètre représentatif d'un niveau de puissance moyenne auquel ladite source (10) d'énergie à micro-ondes doit être mise en oeuvre, et lesdits moyens de commande (20) comprennent en outre des moyens (14) qui, en réponse auxdits paramètres de niveau de puissance, appliquent de la puissance à ladite source d'énergie (10) à micro-ondes audit niveau moyen de puissance pendant au moins une opération de ladite source d'énergie à micro-ondes.
20. Four selon l'une des revendications 13-19, caractérisé en ce que chacun desdits jeux de paramètres contient un paramètre indiquant si un aliment en cours de cuisson doit être retournée, et ledit programme comprend un arrêt à un point prédéterminé et l'indication, par des moyens d'indication, à un opérateur de retourner ledit aliment.
21. Four selon la revendication 20, caractérisé en ce que ledit programme contient une seconde période de préambule et une seconde période de cycle, ladite seconde période de préambule étant conçue pour réduire sensiblement la teneur en eau de la partie dudit aliment initialement au-dessous au moyen dudit élément chauffant (12) à infrarouge, ladite seconde période de cycle étant conçue à la fois pour cuire et rissoler l'aliment à une vitesse optimale au moyen de ladite source (10) d'énergie à micro-ondes et dudit élément chauffant (12) à infrarouge.
22. Four selon l'une des revendications 13-21, caractérisé par des moyens (13) de brassage d'air interconnectés auxdits moyens (20) de commande afin de pouvoir être commandés; et dans lequel chacun desdits jeux de paramètres contient au moins un paramètre indiquant si de l'air doit être déplacé sur un aliment pendant au moins une opération dudit élément chauffant à infrarouge, et dans lequel ledit programme amène en outre lesdits moyens (20) de commande à faire fonctionner lesdits moyens (13) de brassage d'air comme indiqué par ledit paramètre.
23. Four selon l'une des revendications 13-22, caractérisé en ce que ladite source (10) d'énergie à micro-ondes est un magnétron (10) et en ce que lesdits moyens (14) d'application d'un niveau moyen de puissance audit magnétron (10) comprennent des moyens à cycle de travail, ledit programme amenant en outre ledits moyens (20) de commande à faire fonctionner ledit élément chauffant (12) à infrarouge pendant les parties d'un cycle de travail au cours desquelles aucune puissance n'est appliquée audit magnétron (10).
24. Four selon l'une des revendications 18-23, caractérisé en ce que ladite première période de cycle consiste essentiellement à faire fonctionner l'un, puis l'autre de ladite source (10) d'énergie à micro-ondes ou dudit élément chauffant (12) à infrarouge, suivant une séquence alternée, la durée de fonctionnement de chaque dispositif étant une période de temps prédéterminée, dont la détermination est établie par ledit programme à l'aide de paramètres prédéterminés provenant dudit jeu de paramètres correspondant audit type d'aliment indiqué, multipliée par un temps total de cuisson.
EP81104380A 1981-06-05 1981-06-05 Procédé pour brunir des aliments dans un four à micro-ondes Expired EP0066637B1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE8181104380T DE3175458D1 (en) 1981-06-05 1981-06-05 A method of browning food in a microwave oven
AT81104380T ATE22769T1 (de) 1981-06-05 1981-06-05 Verfahren zum aufbraeunen von nahrungsmitteln in einem mikrowellenherd.
EP81104380A EP0066637B1 (fr) 1981-06-05 1981-06-05 Procédé pour brunir des aliments dans un four à micro-ondes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP81104380A EP0066637B1 (fr) 1981-06-05 1981-06-05 Procédé pour brunir des aliments dans un four à micro-ondes

Publications (2)

Publication Number Publication Date
EP0066637A1 EP0066637A1 (fr) 1982-12-15
EP0066637B1 true EP0066637B1 (fr) 1986-10-08

Family

ID=8187757

Family Applications (1)

Application Number Title Priority Date Filing Date
EP81104380A Expired EP0066637B1 (fr) 1981-06-05 1981-06-05 Procédé pour brunir des aliments dans un four à micro-ondes

Country Status (3)

Country Link
EP (1) EP0066637B1 (fr)
AT (1) ATE22769T1 (fr)
DE (1) DE3175458D1 (fr)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8307123D0 (en) * 1983-03-15 1983-04-20 Microwave Ovens Ltd Microwave ovens
JPS60131793A (ja) * 1983-12-20 1985-07-13 松下電器産業株式会社 自動高周波加熱装置
KR960007569Y1 (ko) * 1990-06-30 1996-08-30 엘지전자 주식회사 전자레인지의 팬모터 회전수 조절회로
FR2701093B1 (fr) * 1993-02-02 1995-04-14 Moulinex Sa Appareil de cuisson comportant un dispositif de dorage et un dispositif de génération d'énergie micro-ondes et procédé de commande de cuisson d'un tel appareil .
EP0688146B1 (fr) * 1994-06-13 2000-04-26 Whirlpool Europe B.V. Procédé de commande d'un four à micro-ondes, four à micro-ondes et son utilisation pour la cuisson ou le chauffage d'aliments selon ce procédé
FR2730892B1 (fr) * 1995-02-17 1997-09-05 Moulinex Sa Procede de cuisson pour un four a chauffage combine par resistance chauffante et micro-ondes
FR2737552B1 (fr) * 1995-08-04 1998-03-06 Moulinex Sa Procede de relance d'une nouvelle operation de chauffage d'un aliment en fin de cuisson
EP0788292B1 (fr) * 1996-02-02 2002-01-23 AEG Hausgeräte GmbH Plague de cuisson avec réglage automatique
US5877477A (en) * 1996-12-18 1999-03-02 Amana Company, L.P. Oven with high power radiant cooking elements and methods of developing, optimizing, storing, and retrieving recipes for the operation of the oven
US6157014A (en) * 1999-06-29 2000-12-05 Amana Company, L.P. Product-based microwave power level controller
DE10342320A1 (de) * 2003-09-12 2005-04-07 BSH Bosch und Siemens Hausgeräte GmbH Steuerung für ein Gargerät
US9223384B2 (en) 2012-07-31 2015-12-29 Qualcomm Incorporated Synthesizing intermediate performance levels in integrated circuits, and related processor systems, methods, and computer-readable media

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1143947B (de) * 1954-08-17 1963-02-21 Robert Bosch Elektronik Ges Mi Einrichtung zur Waermebehandlung organischer Substanzen in einem elektromagnetischenStrahlungsfeld sehr hoher Frequenz
US3569656A (en) * 1969-07-24 1971-03-09 Bowmar Tic Inc Automatic cooking cycle control system for microwave ovens
US3854024A (en) * 1974-02-01 1974-12-10 Dca Food Ind Environmental temperature control system
US4137442A (en) * 1975-05-22 1979-01-30 Sharp Kabushiki Kaisha High-frequency oven having a browning unit
US4045640A (en) * 1975-12-08 1977-08-30 Norris Industries Inc. Stay-hot control for microwave oven
US4181744A (en) * 1977-08-30 1980-01-01 Litton Systems, Inc. Method of browning foods in a microwave oven
GB2011677B (en) * 1977-12-29 1982-04-07 Cannon Ind Ltd Cooking aids
GB2061576B (en) * 1977-12-29 1982-08-04 Cannon Ind Ltd Cooking aid
US4227062A (en) * 1978-05-31 1980-10-07 General Electric Company Optimum time ratio control system for microwave oven including food surface browning capability

Also Published As

Publication number Publication date
DE3175458D1 (en) 1986-11-13
EP0066637A1 (fr) 1982-12-15
ATE22769T1 (de) 1986-10-15

Similar Documents

Publication Publication Date Title
US4396817A (en) Method of browning food in a microwave oven
CA1236174A (fr) Fours a micro-ondes, et methodes de cuisson des aliments
US5567458A (en) Method and apparatus for automatic adiabatic cooking
EP0066637B1 (fr) Procédé pour brunir des aliments dans un four à micro-ondes
EP0358344B1 (fr) Fours à micro-ondes
US4481394A (en) Combined microwave oven and grill oven with automated cooking _performance
US6140621A (en) Toaster oven with timer display
CA1249036A (fr) Fours a micro-ondes, et methodes de cuisson d'aliments
EP0268329B1 (fr) Four à micro-ondes
EP0064082A1 (fr) Procede pour degeler de la nourriture dans un appareil de chauffage aux micro-ondes
EP0239290B1 (fr) Fours à micro-ondes et procédés de cuisson des aliments
RU97106760A (ru) Устройство для приготовления пищи
US5302793A (en) Microwave ovens with air inlet and air outlet temperature sensors
KR920002418B1 (ko) 간접 가열방식의 메뉴선택식 자동조리 가열방법 및 장치
CA1166702A (fr) Methode pour faire brunir les aliments dans un four a micro-ondes
JP3223957B2 (ja) 電気炊飯器
EP0083663A1 (fr) Dispositif de cuisson a micro-ondes
JPH07148068A (ja) 炊飯器のお焦げ湯の製造方法
KR930006562B1 (ko) 음식물의 조리방법 및 장치
JP2003014241A (ja) 加熱調理器
JP2988364B2 (ja) 高周波加熱装置
JP2861751B2 (ja) トースター
JP2890397B2 (ja) 炊飯器
EP1599774A1 (fr) Appareil de cuisson et son procede de commande
JPS6161517B2 (fr)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

17P Request for examination filed

Effective date: 19830614

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

REF Corresponds to:

Ref document number: 22769

Country of ref document: AT

Date of ref document: 19861015

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3175458

Country of ref document: DE

Date of ref document: 19861113

ITF It: translation for a ep patent filed
ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19930316

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19930318

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19930322

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19930323

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19930326

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 19930401

Year of fee payment: 13

Ref country code: AT

Payment date: 19930401

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19930630

Year of fee payment: 13

Ref country code: DE

Payment date: 19930630

Year of fee payment: 13

EPTA Lu: last paid annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19940605

Ref country code: GB

Effective date: 19940605

Ref country code: AT

Effective date: 19940605

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19940606

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19940630

Ref country code: CH

Effective date: 19940630

Ref country code: BE

Effective date: 19940630

BERE Be: lapsed

Owner name: LITTON SYSTEMS INC.

Effective date: 19940630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19950101

EUG Se: european patent has lapsed

Ref document number: 81104380.1

Effective date: 19950110

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19940605

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19950228

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19950301

EUG Se: european patent has lapsed

Ref document number: 81104380.1

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST