EP0064909A1 - Variable directional coupler for microwaves - Google Patents

Variable directional coupler for microwaves Download PDF

Info

Publication number
EP0064909A1
EP0064909A1 EP82400756A EP82400756A EP0064909A1 EP 0064909 A1 EP0064909 A1 EP 0064909A1 EP 82400756 A EP82400756 A EP 82400756A EP 82400756 A EP82400756 A EP 82400756A EP 0064909 A1 EP0064909 A1 EP 0064909A1
Authority
EP
European Patent Office
Prior art keywords
coupling
load
orifices
guide
waveguides
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP82400756A
Other languages
German (de)
French (fr)
Inventor
Jean-Pierre Bergero
Jacques Bisjak
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thales SA
Original Assignee
Thomson CSF SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thomson CSF SA filed Critical Thomson CSF SA
Publication of EP0064909A1 publication Critical patent/EP0064909A1/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P5/00Coupling devices of the waveguide type
    • H01P5/04Coupling devices of the waveguide type with variable factor of coupling

Definitions

  • the present invention relates to a variable directional coupler for microwave waves.
  • a coupling of two microwave radio waveguides is used whenever it is desired, for various reasons, to deflect part of the propagating wave in a first waveguide. , said primary guide, towards a second waveguide, called secondary guide.
  • a parameter representative of the coupling is then the ratio (expressed in practice in decibels) between the wave deflected in the secondary guide and the wave propagating in the primary guide.
  • the known systems consist either in having an adjustable attenuator at the output of the secondary, or in using two directional couplers with 3 decibels between which an adjustable phase shifter is interposed.
  • the subject of the present invention is a device for modifying the directional coupling between two waveguides of extremely simple structure and requiring no additional component.
  • the invention relates to a variable directional coupler for microwave waves, the coupling being carried out between two waveguides.
  • rectangular microwave radio waves the wave produced in one of the guides, called the primary guide, inducing in the other guide, called the secondary guide, via a coupling zone, a wave and a power available to the one of the ends of the secondary guide, called the preferred end, much greater than that available at the other end, called the non-preferred end.
  • said non-preferred end comprises a filler which is made of an absorbent material.
  • Means allow the displacement of this load in the coupling zone.
  • This load has a wedge-shaped profile which tapers towards the preferred end of the secondary, the profile of the load being such that, during its displacement, the variation of the couplings which remain satisfies the laws of variation providing good directivity in a wide band.
  • FIG 1 there is shown in a vertical section a primary guide 1 and a secondary guide 2 rectangular, superimposed so as to have a common wall 3 in which are formed n coupling orifices 4 i (i being an integer varying from 1 to n).
  • the directivity of the coupling is ensured in a conventional manner both by a spacing of the coupling orifices of a distance equal to a quarter of the wavelength, and by a dimensioning of the coupling orifices progressively increasing from the ends of the coupling zone. towards the center of the coupling zone, according to a binomial law or according to a Tchebyscheff law.
  • the first coupling orifice 4 1 has a surface smaller than that of the second 4 2 , which also has a smaller surface than that of the third 4 3 etc ..., this progression according to one of the aforementioned laws.
  • the coupling is varied in obscuring a variable portion of the waves coupled by each coupling orifice 4i by means of the load 5 which is moved, for example, manually.
  • Figures 2a, 2b, 2c and 2d are partial views of the common wall 3, showing different positions of the load 5 during its movement, we see that the attenuations to the right of coupling orifices 4i vary according to the position of the load 5 in the coupling zone.
  • FIG. 2d differs from FIGS. 2a, 2b and 2c in that the coupling zone no longer consists of a single row of coupling orifices, but of two identical parallel rows, which is a more common way of achieving a "multi-hole" coupling.
  • the variation of the coupling is obtained by displacement of the load 5 in the coupling zone, that is to say here in the portion 6 of the common wall 3 comprising the coupling orifices (the portion 6 being shown in section on the figure 1).
  • this load has a wedge-shaped profile, and is tapered towards the preferred end of the secondary.
  • the profile of the load is produced taking into account in particular the frequency, the absorbent material used, the coupling orifices, etc., so as to maintain a variation in the couplings which remain despite the displacement of the load, which satisfies the laws of variation providing good directivity in a wide band.
  • This absorbent mobile load 5 makes it unnecessary to use a fixed load at the non-privileged end of the secondary.
  • FIG. 3 is shown in a horizontal section a primary guide 1 and a secondary guide 2 arranged in a cross so as to present a common wall section 7 in which slots are made such as the slot 8.
  • the coupling zone is constituted by the section 7 of wall common to the two waveguides.
  • FIGS. 4a and 5a represent the variation of the coupling C as a function of the frequency F of the microwave wave, for five different positions of the load in the coupling zone, giving rise to five different curves, numbered from 0 to 4.
  • the FIG. 4a curves correspond to a "multi-hole” coupling, and those of FIG. 5a to a "cross” coupling. If we refer to these figures, we see that the coupling remains constant as a function of the frequency for a given position of the load when it varies from one position of the load to another, which is the goal.
  • FIGS. 4b and 5b represent the variation of the directivity D as a function of the frequency F of the microwave wave, for four different positions of the load in the coupling zone, giving rise to five different curves, numbered from 0 to 3.
  • the curves in FIG. 4b correspond to a "multi-hole” coupling and those of FIG. 5b to a "cross” coupling. If one refers to these figures one realizes that the directivity of the coupling varies with the frequency whereas it is practically independent of the position of the load in the zone of coupling, which is also the goal - sought.
  • the directivity of the coupling varies little with frequency, by a few decibels in FIGS. 4b and 5b. It should be noted that there is a prejudice according to which the directivity of the coupling is strongly disturbed if an absorbent load is moved in the coupling zone. Our invention shows, by FIGS. 4b and 5b, that it is possible to obtain good directivity by moving an absorbent load in the coupling zone if certain precautions are taken with regard to the shape of the load and the coupling holes in particular.
  • the absorbent filler can be made of epoxy resin loaded with resistive materials or can be made of a metallized dielectric strip. To make power couplers, other materials are used such as silicon carbide Si C or water circulation wedges.
  • Our invention is particularly used when it is desired to obtain a directional coupler and when the precision of machining of the orifices of the coupling zone is insufficient to obtain the desired characteristics. This is the case for couplers having a weak coupling, and whose coupling holes are small, and operating at high frequency.
  • Our invention allows once the coupler has been made to adjust the coupling precisely without adding new parts and without degrading performance.
  • the tip of the movable load being tapered, the attenuation produced varies little with displacement and the precision of the adjustment is high.
  • Our invention can also be used in applications where it is advantageous to be able to vary the directional coupling in greater proportions.
  • FIG. 6 is a diagram showing the variable directional coupler according to the invention, one end of which - that on the right in the figure - of the primary guide 1 is connected to a microwave source 9, while the opposite end of this guide primary is connected to a microwave receiver 10.
  • the non-preferred end of the secondary guide 2 comprises the displaceable load 5, and the opposite end of the secondary guide receives, for example, a measuring device 11 or any member capable of using the diverted energy.

Landscapes

  • Constitution Of High-Frequency Heating (AREA)
  • Non-Reversible Transmitting Devices (AREA)

Abstract

This coupler comprises means for moving an absorbent and tapered load (5), placed at one end of a secondary waveguide (2), into a coupling zone (6) situated on the wall (3) common to a primary waveguide (1) and to the secondary waveguide (2). Application to microwave radio circuits. <IMAGE>

Description

La présente invention concerne un coupleur directif variable pour ondes hyperfréquences.The present invention relates to a variable directional coupler for microwave waves.

Dans les circuits de transmission d'ondes hyperfréquences on utilise un couplage de deux guides d'ondes radioélectriques hyperfréquences toutes les fois que l'on souhaite, pour diverses raisons, dévier une partie de l'onde se propageant dans un premier guide d'ondes, dit guide primaire, vers un second guide d'ondes, dit guide secondaire. Un paramètre représentatif du couplage est alors le rapport (exprimé dans la pratique en décibels) entre l'onde déviée dans le guide secondaire et l'onde se propageant dans le guide primaire.In microwave wave transmission circuits, a coupling of two microwave radio waveguides is used whenever it is desired, for various reasons, to deflect part of the propagating wave in a first waveguide. , said primary guide, towards a second waveguide, called secondary guide. A parameter representative of the coupling is then the ratio (expressed in practice in decibels) between the wave deflected in the secondary guide and the wave propagating in the primary guide.

Lorsque, pour des raisons tout aussi diverses, on souhaite privilégier une extrémité du guide secondaire en ne récupérant une onde qu'à cette extrémité, on a recours à un couplage directif.When, for equally diverse reasons, it is desired to favor one end of the secondary guide by only recovering a wave at this end, a directional coupling is used.

Pour assurer la directivité du couplage pour une fréquence donnée, il est connu de superposer les deux guides et de pratiquer dans la paroi commune des orifices distants du quart de la longueur d'onde. Un tel couplage est plus connu dans la pratique sous le nom de couplage "multitrous".To ensure the directivity of the coupling for a given frequency, it is known to superimpose the two guides and to practice in the common wall orifices distant by a quarter of the wavelength. Such coupling is better known in practice under the name of "multi-hole" coupling.

Et, pour assurer une directivité du couplage dans une bande de fréquences, il est connu de conférer à ces orifices, en fonction de leur localisation relative sur la paroi commune, des dimensions qui sont en progression suivant une loi binômiale ou une loi de Tchebyscheff.And, to ensure directivity of the coupling in a frequency band, it is known to confer on these orifices, as a function of their relative location on the common wall, dimensions which are increasing according to a binomial law or a Tchebyscheff law.

Pour assurer la directivité du couplage, il est également connu de disposer les deux guides en croix et de pratiquer des fentes dans le tronçon de paroi commune aux deux guides. Un tel couplage est plus connu dans la pratique sous le nom de couplage "en croix". La directivité est ici indépendante de l'espacement et du dimensionnement relatif des fentes. On met en effet à profit la relation existant entre le sens de polarisation du champ magnétique et le sens de propagation de l'onde électromagnétique. En choisissant un sens de propagation de l'onde dans le guide primaire, on impose un sens de polarisation au champ magnétique dans le guide primaire y compris dans la zone de couplage située à l'intersection des deux guides, et par là même on impose un sens de propagation de l'onde dans le guide secondaire.To ensure the directivity of the coupling, it is also known to arrange the two guides in a cross and to make slots in the wall section common to the two guides. Such coupling is better known in practice under the name of "cross" coupling. The directivity here is independent of the spacing and relative dimensioning of the slots. We use the relationship existing between the direction of polarization of the magnetic field and the direction of propagation of the electromagnetic wave. By choosing a direction of propagation of the wave in the primary guide, one imposes a direction of polarization on the magnetic field in the primary guide including in the zone of coupling located at the intersection of the two guides, and by this same one imposes a direction of propagation of the wave in the secondary guide.

Par ailleurs, pour contribuer à assurer la directivité du couplage on est conduit à disposer une charge adaptée à l'extrémité non privilégiée du secondaire.Furthermore, to help ensure the directivity of the coupling, it is necessary to have a load adapted to the non-privileged end of the secondary.

Il est connu de conférer à cette charge un profil en forme de "coin", c'est-à-dire effilé vers l'onde incidente, de façon à réaliser une absorption progressive de celle-ci et à éviter le plus possible les perturbations par réflexion.It is known to give this load a profile in the form of a "wedge", that is to say tapered towards the incident wave, so as to achieve a progressive absorption thereof and to avoid disturbances as much as possible. by reflection.

Il est intéressant en pratique de pouvoir faire varier le couplage, c'est-à-dire de pouvoir agir à son gré sur le rapport entre l'onde déviée dans le guide secondaire et l'onde se propageant dans le guide primaire. On souhaite en particulier faire varier le couplage lorsqu'on désire ajuster avec précisioh le couplage réalisé, bien au-delà de ce que permettent les tolérances mécaniques d'usinage, ou tout simplement pour éviter d'avoir à disposer de plusieurs couplages fixes différents.It is advantageous in practice to be able to vary the coupling, that is to say to be able to act as desired on the ratio between the wave deflected in the secondary guide and the wave propagating in the primary guide. In particular, it is desired to vary the coupling when it is desired to adjust the coupling produced with precision, far beyond what mechanical machining tolerances allow, or quite simply to avoid having to have several different fixed couplings.

Les systèmes connus consistent soit à disposer un atténuateur réglable à la sortie du secondaire, soit à utiliser deux coupleurs directifs à 3 décibels entre lesquels est interposé un déphaseur réglable.The known systems consist either in having an adjustable attenuator at the output of the secondary, or in using two directional couplers with 3 decibels between which an adjustable phase shifter is interposed.

Ces deux systèmes ont pour inconvénient majeur de nécessiter des composants supplémentaires.These two systems have the major drawback of requiring additional components.

La présente invention a pour objet un dispositif de modification du couplage directif entre deux guides d'ondes de structure extrêmement simple et ne nécessitant aucun composant supplémentaire.The subject of the present invention is a device for modifying the directional coupling between two waveguides of extremely simple structure and requiring no additional component.

L'invention concerne un coupleur directif variable pour ondes hyperfréquences, le couplage étant réalisé entre deux guides d'ondes radioélectriques hyperfréquence rectangulaires, l'onde produite dans l'un des guides, appelé guide primaire, induisant dans l'autre guide, appelé guide secondaire, par l'intermédiaire d'une zone de couplage, une onde et une puissance disponible à l'une des extrémités du guide secondaire, dite extrémité privilégiée, très supérieure à celle disponible à l'autre extrémité, dite extrémité non privilégiée. Selon l'invention, ladite extrémité non privilégiée comporte une charge qui est réalisée dans un matériau absorbant. Des moyens permettent le déplacement de cette charge dans la zone de couplage. Cette charge a un profil en forme de coin qui est effilé vers l'extrémité privilégiée du secondaire, le profil de la charge étant tel que, lors de son déplacement, la variation des couplages qui subsistent satisfasse aux lois de variation procurant une bonne directivité dans une large bande.The invention relates to a variable directional coupler for microwave waves, the coupling being carried out between two waveguides. rectangular microwave radio waves, the wave produced in one of the guides, called the primary guide, inducing in the other guide, called the secondary guide, via a coupling zone, a wave and a power available to the one of the ends of the secondary guide, called the preferred end, much greater than that available at the other end, called the non-preferred end. According to the invention, said non-preferred end comprises a filler which is made of an absorbent material. Means allow the displacement of this load in the coupling zone. This load has a wedge-shaped profile which tapers towards the preferred end of the secondary, the profile of the load being such that, during its displacement, the variation of the couplings which remain satisfies the laws of variation providing good directivity in a wide band.

Les objets et caractéristiques de l'invention apparaîtront plus clairement à la lecture de la description suivante d'exemples de réalisation, ladite description étant faite en relation avec les dessins ci-annexés dans lesquels :

  • La figure 1 représente un coupleur directif variable conforme à l'invention, lorsque le couplage est un couplage "multitrous".
    • - Les figures 2a, 2b, 2c et 2d montrent différentes positions de la charge au cours de son déplacement, lorsque le couplage est un couplage "multitrous".
    • - La figure 3 représente un coupleur directif variable conforme à l'invention, lorsque le couplage est un couplage "en croix".
    • - Les figures 4a et 4b sont des courbes qui représentent l'une la variation du couplage, l'autre la variation de la directivité en fonction de la fréquence de l'onde hyperfréquence, obtenues à l'aide d'un coupleur directif variable conforme à l'invention, dans le cas d'un couplage "multitrous".
    • - Les figures 5a et 5b sont des courbes qui représentent l'une la variation du couplage, l'autre la variation de la directivité, en fonction de la fréquence de l'onde hyperféquence, obtenues à l'aide d'un coupleur directif variable conforme à l'invention, dans le cas d'un couplage "en croix".
    • - La figure 6, un schéma de montage du coupleur directif selon l'invention.
The objects and characteristics of the invention will appear more clearly on reading the following description of exemplary embodiments, said description being made in relation to the attached drawings in which:
  • FIG. 1 represents a variable directional coupler according to the invention, when the coupling is a "multi-hole" coupling.
    • - Figures 2a, 2b, 2c and 2d show different positions of the load during its movement, when the coupling is a "multi-hole" coupling.
    • - Figure 3 shows a variable directional coupler according to the invention, when the coupling is a "cross" coupling.
    • - Figures 4a and 4b are curves which represent one the variation of the coupling, the other the variation of the directivity as a function of the frequency of the microwave wave, obtained using a conforming variable directional coupler to the invention, in the case of a "multi-hole" coupling.
    • - Figures 5a and 5b are curves which represent one the variation of the coupling, the other the variation of the directivity, according to the frequency of the microwave wave, obtained using a variable directional coupler according to the invention, in the case of a "cross" coupling.
    • - Figure 6, a mounting diagram of the directional coupler according to the invention.

Des éléments identiques sur des figures différentes portent des références identiques.Identical elements in different figures bear identical references.

Sur la figure 1, on a représenté selon une coupe verticale un guide primaire 1 et un guide secondaire 2 rectangulaires, superposés de manière à présenter une paroi commune 3 dans laquelle sont pratiqués n orifices de couplage 4i (i étant un entier variant de 1 à n).In Figure 1, there is shown in a vertical section a primary guide 1 and a secondary guide 2 rectangular, superimposed so as to have a common wall 3 in which are formed n coupling orifices 4 i (i being an integer varying from 1 to n).

La directivité du couplage est assurée de manière classique à la fois par un espacement des orifices de couplage d'une distance égale au quart de la longueur d'onde, et par un dimensionnement des orifices de couplage croissant progressivement des extrémités de la zone de couplage vers le centre de la zone de couplage, suivant une loi binômiale ou suivant une loi de Tchebyscheff.The directivity of the coupling is ensured in a conventional manner both by a spacing of the coupling orifices of a distance equal to a quarter of the wavelength, and by a dimensioning of the coupling orifices progressively increasing from the ends of the coupling zone. towards the center of the coupling zone, according to a binomial law or according to a Tchebyscheff law.

Lorsque le dimensionnement relatif des orifices de couplage 4i suit une loi binômiale, les couplages 'élémentaires des n orifices de couplage sont entre eux comme les coefficients du binôme (a + b)n-1.When the relative dimensioning of the coupling orifices 4i follows a binomial law, the elementary couplings of the n coupling orifices are between them as the coefficients of the binomial (a + b) n-1.

Lorsque le dimensionnement relatif des orifices de couplage 4i suit une loi de Tchebyscheff, le couplage total des n orifices de couplage est égalé au polynôme de Tschebyscheff d'ordre n - 1 :

Figure imgb0001
When the relative dimensioning of the coupling orifices 4i follows a Tchebyscheff law, the total coupling of the n coupling orifices is equal to the polynomial of Tschebyscheff of order n - 1:
Figure imgb0001

Ainsi, dans la représentation qui a été faite sur la figure 1, le premier orifice de couplage 41 a une surface inférieure à celle du second 42, lequel a également une surface inférieure à celle du troisième 43 etc ..., cette progression suivant l'une des lois précitées.Thus, in the representation which was made in FIG. 1, the first coupling orifice 4 1 has a surface smaller than that of the second 4 2 , which also has a smaller surface than that of the third 4 3 etc ..., this progression according to one of the aforementioned laws.

Une charge 5 réalisée dans un matériau absorbant, disposée à l'extrémité non privilégiée du guide secondaire, contribue également à assurer la directivité du couplage.A load 5 made of an absorbent material, placed at the non-preferred end of the secondary guide, also contributes to ensuring the directivity of the coupling.

Conformément à l'invention on fait varier le couplage en occultant une portion variable des ondes couplées par chaque orifice de couplage 4i au moyen de la charge 5 que l'on déplace, par exemple, manuellement.In accordance with the invention, the coupling is varied in obscuring a variable portion of the waves coupled by each coupling orifice 4i by means of the load 5 which is moved, for example, manually.

Ainsi, si l'on se réfère aux figures 2a, 2b, 2c et 2d, qui sont des vues partielles de la paroi commune 3, montrant différentes positions de la charge 5 au cours de son déplacement, on constate que les atténuations au droit des orifices de couplage 4i varient selon la position de la charge 5 dans la zone de couplage.Thus, if we refer to Figures 2a, 2b, 2c and 2d, which are partial views of the common wall 3, showing different positions of the load 5 during its movement, we see that the attenuations to the right of coupling orifices 4i vary according to the position of the load 5 in the coupling zone.

La figure 2d se distingue des figures 2a, 2b et 2c en ce que la zone de couplage consiste, non plus en une seule rangée d'orifices de couplage, mais en deux rangées parallèles identiques, ce qui est une manière plus courante de réaliser un couplage "multitrous".FIG. 2d differs from FIGS. 2a, 2b and 2c in that the coupling zone no longer consists of a single row of coupling orifices, but of two identical parallel rows, which is a more common way of achieving a "multi-hole" coupling.

La variation du couplage est obtenue par déplacement de la charge 5 dans la zone de couplage, c'est-à-dire ici dans la portion 6 de la paroi commune 3 comportant les orifices de couplage (la portion 6 étant représentée en coupe sur la figure 1).The variation of the coupling is obtained by displacement of the load 5 in the coupling zone, that is to say here in the portion 6 of the common wall 3 comprising the coupling orifices (the portion 6 being shown in section on the figure 1).

Comme cela a été représenté sur les figures, cette charge a un profil en forme de coin, et est effilée vers l'extrémité priviligiée du secondaire. Le profil de la charge est réalisé en tenant compte notamment de la fréquence, du matériau absorbant utilisé, des orifices de couplage .... de façon à conserver une variation des couplages qui subsistent malgré le déplacement de la charge, qui satisfasse aux lois de variation procurant une bonne directivité dans une large bande.As shown in the figures, this load has a wedge-shaped profile, and is tapered towards the preferred end of the secondary. The profile of the load is produced taking into account in particular the frequency, the absorbent material used, the coupling orifices, etc., so as to maintain a variation in the couplings which remain despite the displacement of the load, which satisfies the laws of variation providing good directivity in a wide band.

Cette charge mobile absorbante 5 rend inutile l'utilisation d'une charge fixe à l'extrémité non priviligiée du secondaire.This absorbent mobile load 5 makes it unnecessary to use a fixed load at the non-privileged end of the secondary.

Sur la figure 3 on a représenté selon une coupe horizontale un guide primaire 1 et un guide secondaire 2 disposés en croix de manière à présenter un tronçon de paroi commune 7 dans lequel sont pratiquées des fentes telles que la fente 8.In FIG. 3 is shown in a horizontal section a primary guide 1 and a secondary guide 2 arranged in a cross so as to present a common wall section 7 in which slots are made such as the slot 8.

Pour ce second mode de réalisation du couplage comme pour le premier décrit précédemment, un déplacement de la charge 5 dans la zone de couplage conduit à une modification du couplage. Dans ce mode de réalisation, la zone de couplage est constituée par le tronçon 7 de paroi commune aux deux guides d'ondes.For this second embodiment of the coupling as for the first described above, a displacement of the load 5 in the coupling zone leads to a modification of the coupling. In this embodiment, the coupling zone is constituted by the section 7 of wall common to the two waveguides.

Les figures 4a et 5a représentent la variation du couplage C en fonction de la fréquence F de l'onde hyperfréquence, pour cinq positions différentes de la charge dans la zone de couplage, donnant lieu à cinq courbes différentes, numérotées de 0 à 4. Les courbes de la figure 4a correspondent à un couplage "multitrous", et celles de la figure 5a à un couplage "en croix". Si l'on se réfère à ces figures, on s'aperçoit que le couplage reste constant en fonction de la fréquence pour une position donnée de la charge lorsqu'il varie d'une position de la charge à l'autre, ce qui est bien le but recherché.FIGS. 4a and 5a represent the variation of the coupling C as a function of the frequency F of the microwave wave, for five different positions of the load in the coupling zone, giving rise to five different curves, numbered from 0 to 4. The FIG. 4a curves correspond to a "multi-hole" coupling, and those of FIG. 5a to a "cross" coupling. If we refer to these figures, we see that the coupling remains constant as a function of the frequency for a given position of the load when it varies from one position of the load to another, which is the goal.

Les figures 4b et 5b représentent la variation de la directivité D en fonction de la fréquence F de l'onde hyperfréquences, pour quatre positions différentes de la charge dans la zone de couplage, donnant lieu à cinq courbes différentes, numérotées de 0 à 3. Les courbes de la figure 4b correspondent à un couplage "multitrous" et celles de la figure 5b à un couplage "en croix". Si l'on se réfère à ces figures on s'aperçoit que la directivité du couplage varie avec la fréquence alors qu'elle est pratiquement indépendante de la position de la charge dans la zone de couplage, ce qui est également le but - recherché.FIGS. 4b and 5b represent the variation of the directivity D as a function of the frequency F of the microwave wave, for four different positions of the load in the coupling zone, giving rise to five different curves, numbered from 0 to 3. The curves in FIG. 4b correspond to a "multi-hole" coupling and those of FIG. 5b to a "cross" coupling. If one refers to these figures one realizes that the directivity of the coupling varies with the frequency whereas it is practically independent of the position of the load in the zone of coupling, which is also the goal - sought.

On constate que la directivité du couplage varie peu avec la fréquence, de quelques décibels sur les figures 4b et 5b. Il faut remarquer qu'il existe un préjugé selon lequel la directivité du couplage est fortement perturbée si l'on déplace une charge absorbante dans la zone de couplage. Notre invention montre, par les figures 4b et 5b, qu'il est possible d'obtenir une bonne directivité en déplaçant une charge absorbante dans la zone de couplage si l'on prend certaines précautions en ce qui concerne la forme de la charge et les orifices de couplage notamment. Pour des coupleurs fonctionnant à bas niveau de puissance, la charge absorbante peut être constituée de résine époxy chargée avec des matériaux résistifs ou peut être constituée d'une lame diélectrique métallisée. Pour réaliser des coupleurs de puissance, on utilise d'autres matériaux tels que du carbure de silicium Si C ou des coins à circulation d'eau.It can be seen that the directivity of the coupling varies little with frequency, by a few decibels in FIGS. 4b and 5b. It should be noted that there is a prejudice according to which the directivity of the coupling is strongly disturbed if an absorbent load is moved in the coupling zone. Our invention shows, by FIGS. 4b and 5b, that it is possible to obtain good directivity by moving an absorbent load in the coupling zone if certain precautions are taken with regard to the shape of the load and the coupling holes in particular. For couplers operating at low power, the absorbent filler can be made of epoxy resin loaded with resistive materials or can be made of a metallized dielectric strip. To make power couplers, other materials are used such as silicon carbide Si C or water circulation wedges.

Notre invention est particulièrement utilisée lorsque l'on veut obtenir un coupleur directif et lorsque la précision d'usinage des orifices de la zone de couplage est insuffisante pour obtenir les caractéristiques souhaitées. C'est le cas pour les coupleurs présentant un faible couplage, et dont les trous de couplage sont petits, et fonctionnant à fréquence élevée.Our invention is particularly used when it is desired to obtain a directional coupler and when the precision of machining of the orifices of the coupling zone is insufficient to obtain the desired characteristics. This is the case for couplers having a weak coupling, and whose coupling holes are small, and operating at high frequency.

Notre invention permet une fois le coupleur réalisé d'ajuster avec précision le couplage sans ajouter de pièces nouvelles et sans dégrader les performances. L'extrémité de la charge déplaçable étant effilée, l'atténuation produite varie peu avec le déplacement et la précision du réglage est grande.Our invention allows once the coupler has been made to adjust the coupling precisely without adding new parts and without degrading performance. The tip of the movable load being tapered, the attenuation produced varies little with displacement and the precision of the adjustment is high.

Dans l'art antérieur, de nombreux coupleurs réalisés sont inutilisables car les caractéristiques qu'ils donnent ne sont pas satisfaisantes ou il faut leur adjoindre des pièces nouvelles telles qu'un atténuateur ou un déphaseur réglables comme cela a déjà été signalé.In the prior art, many couplers produced are unusable because the characteristics which they give are not satisfactory or it is necessary to add to them new parts such as an adjustable attenuator or phase shifter as has already been reported.

Notre invention peut aussi être utilisée dans des applications où il est intéressant de pouvoir faire varier le couplage directif dans de plus fortes proportions.Our invention can also be used in applications where it is advantageous to be able to vary the directional coupling in greater proportions.

La figure 6 est un schéma montrant le coupleur directif variable selon l'invention dont l'une des extrémités - celle de droite sur la figure - du guide primaire 1 est reliée à une source hyperfréquence 9, alors que l'extrémité opposée de ce guide primaire est reliée à un récepteur hyperfréquence 10.FIG. 6 is a diagram showing the variable directional coupler according to the invention, one end of which - that on the right in the figure - of the primary guide 1 is connected to a microwave source 9, while the opposite end of this guide primary is connected to a microwave receiver 10.

L'extrémité non privilégiée du guide secondaire 2 comporte la charge déplaçable 5, et l'extrémité opposée du guide secondaire reçoit, par exemple, un appareil de mesure 11 ou n'importe quel organe susceptible d'utiliser l'énergie déviée.The non-preferred end of the secondary guide 2 comprises the displaceable load 5, and the opposite end of the secondary guide receives, for example, a measuring device 11 or any member capable of using the diverted energy.

En déplaçant la charge 5, on peut ajuster de façon très précise le couplage directif ou faire varier ce couplage directif dans de plus grandes proportions.By moving the load 5, it is possible to very precisely adjust the directional coupling or to vary this directional coupling in greater proportions.

Claims (6)

1. Coupleur directif variable pour ondes hyperfréquences, le couplage étant réalisé entre deux guides d'ondes radioélectriques hyperfréquence rectangulaires, l'onde produite dans l'un des guides, appelé guide primaire (1), induisant dans l'autre guide, appelé guide secondaire (2), par l'intermédiaire d'une zone de couplage, une onde et une puissance disponible à l'une des extrémités du guide secondaire, dite extrémité privilégiée, très supérieure à celle disponible à l'autre extrémité, dite extrémité non privilégiée, caractérisé en ce que ladite extrémité non privilégiée comporte une charge (5), qui est réalisée dans un matériau absorbant, des moyens permettant le déplacement de cette charge dans la zone de couplage (6), cette charge ayant un profil en forme de coin qui est effilé vers l'extrémité priviligiée du secondaire, le profil de la charge étant tel que, lors de son déplacement, la variation des couplages qui subsistent satisfasse aux lois de variation procurant une bonne directivité dans une large bande.1. Variable directional coupler for microwave waves, the coupling being carried out between two rectangular microwave waveguides, the wave produced in one of the guides, called the primary guide (1), inducing in the other guide, called the guide secondary (2), via a coupling zone, a wave and a power available at one end of the secondary guide, called the preferred end, much greater than that available at the other end, called the non-end privileged, characterized in that said non-privileged end comprises a load (5), which is made of an absorbent material, means allowing the displacement of this load in the coupling zone (6), this load having a profile in the form of wedge which is tapered towards the preferred end of the secondary, the profile of the load being such that, during its displacement, the variation of the couplings which remain satisfies the laws of variation providing good direct broadband activity. 2. Coupleur selon la revendication 1, caractérisé en ce que la zone de couplage (6) comporte des orifices de couplage (4.) pratiqués dans la paroi commune (3) aux deux guides d'onde superposés, ces orifices (4i) présentant une position relative et un dimensionnement relatif assurant une directivité du couplage.2. Coupler according to claim 1, characterized in that the coupling zone (6) comprises coupling orifices (4.) formed in the common wall (3) with the two superimposed waveguides, these orifices (4 i ) having a relative position and a relative dimensioning ensuring a directivity of the coupling. 3. Coupleur selon la revendication 2, caractérisé en ce que les dimensions des orifices de couplage (4i) sont telles que les couplages crées par chacun d'eux varient suivant une loi binômiale en fonction de la localisation de ces orifices sur la paroi commune (3) aux deux guides d'ondes (1 et 2).3. Coupler according to claim 2, characterized in that the dimensions of the coupling orifices (4 i ) are such that the couplings created by each of them vary according to a binomial law depending on the location of these orifices on the common wall (3) to the two waveguides (1 and 2). 4. Coupleur selon la revendication 2, caractérisé en ce que les dimensions, des orifices de couplage (4i) sont tels que les couplages crées par chacun d'eux sont liés par une loi de Tchebyscheff en fonction de leur localisation sur la paroi commune (3) aux deux guides d'ondes (1 et 2).4. Coupler according to claim 2, characterized in that the dimensions of the coupling orifices (4 i ) are such that the couplings created by each of them are linked by a Tchebyscheff's law according to their location on the common wall (3) to the two waveguides (1 and 2). 5. Coupleur selon la revendication 1, caractérisé en ce que la zone de couplage consiste dans le tronçon (7) de paroi commune aux deux guides d'ondes (1 et 2) disposés en croix, des fentes (8) étant pratiquées dans ce tronçon (7) de paroi commune.5. Coupler according to claim 1, characterized in that the coupling zone consists in the section (7) of wall common to the two waveguides (1 and 2) arranged in a cross, slots (8) being formed in this section (7) of common wall. 6. Coupleur selon l'une des revendications 1 à 5, caractérisé en ce que le guide primaire (1) a l'une de ses extrémités située à une source hyperfréquence (9) et l'extrémité opposée reliée à un récepteur hyperfréquence (10), alors que le guide secondaire (2) comporte la charge déplaçable (5) à son extrémité non priviligiée et que son extrémité opposée est reliée à un organe d'utilisation (11).6. Coupler according to one of claims 1 to 5, characterized in that the primary guide (1) has one of its ends located at a microwave source (9) and the opposite end connected to a microwave receiver (10 ), while the secondary guide (2) has the displaceable load (5) at its non-privileged end and its opposite end is connected to a user member (11).
EP82400756A 1981-05-05 1982-04-27 Variable directional coupler for microwaves Withdrawn EP0064909A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8108870 1981-05-05
FR8108870A FR2505559A1 (en) 1981-05-05 1981-05-05 VARIABLE DIRECTIVE COUPLING DEVICE FOR MICROWAVE WAVES

Publications (1)

Publication Number Publication Date
EP0064909A1 true EP0064909A1 (en) 1982-11-17

Family

ID=9258062

Family Applications (1)

Application Number Title Priority Date Filing Date
EP82400756A Withdrawn EP0064909A1 (en) 1981-05-05 1982-04-27 Variable directional coupler for microwaves

Country Status (3)

Country Link
EP (1) EP0064909A1 (en)
JP (1) JPS57193101A (en)
FR (1) FR2505559A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01274502A (en) * 1988-04-27 1989-11-02 Toshiba Tesuko Kk Directivity adjustment circuit in directional coupler

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1033860A (en) * 1950-03-14 1953-07-16 Philips Nv Device comprising a hollow waveguide
US3075158A (en) * 1958-10-31 1963-01-22 Nippon Electric Co Microwave coupler
US3230482A (en) * 1963-10-28 1966-01-18 Seymour B Cohn Compact directional coupler
FR1440327A (en) * 1965-06-25 1966-05-27 Thomson Houston Comp Francaise Improvements to high frequency coupling devices
FR1598161A (en) * 1968-08-21 1970-07-06

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1033860A (en) * 1950-03-14 1953-07-16 Philips Nv Device comprising a hollow waveguide
US3075158A (en) * 1958-10-31 1963-01-22 Nippon Electric Co Microwave coupler
US3230482A (en) * 1963-10-28 1966-01-18 Seymour B Cohn Compact directional coupler
FR1440327A (en) * 1965-06-25 1966-05-27 Thomson Houston Comp Francaise Improvements to high frequency coupling devices
FR1598161A (en) * 1968-08-21 1970-07-06

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PROCEEDINGS OF THE I.R.E, vol.39, no.3, mars 1951, New York (US) *

Also Published As

Publication number Publication date
FR2505559B1 (en) 1984-11-09
JPS57193101A (en) 1982-11-27
FR2505559A1 (en) 1982-11-12

Similar Documents

Publication Publication Date Title
EP0013222A1 (en) Diode phase shifter for microwaves and electronic scanning antenna comprising same
EP3726642B1 (en) Polarising screen with wideband polarising radiofrequency cell(s)
EP0201409A1 (en) Broad-band directional coupler for a microstrip line
EP0014115A2 (en) Tunable high frequency magnetostatic wave oscillator
FR2704358A1 (en) Waveguide polarisation duplexer
EP2658032B1 (en) Corrugated horn antenna
FR2850793A1 (en) TRANSITION BETWEEN A MICRO-TAPE CIRCUIT AND A WAVEGUIDE AND OUTDOOR TRANSCEIVING UNIT INCORPORATING THE TRANSITION
FR2743234A1 (en) WAVE LENGTH DEMULTIPLEXER
FR2889358A1 (en) Microwave bandstop filter for filtering assembly, has waveguide section with transversal section having variation whose amplitude is such that minimal spacing between two walls is comprised between specified range of average spacing
EP0467818B1 (en) Transition element between electromagnetic waveguides, especially between a circular waveguide and a coaxial waveguide
EP3903381B1 (en) Method for integrating a &#34;network&#34; antenna into a different electromagnetic medium, and associated antenna
EP0021872B1 (en) High frequency circuit block for simultaneously transmitting and receiving, transmitter-receiver for millimeter waves and radar using such a circuit block
EP0064909A1 (en) Variable directional coupler for microwaves
EP2006954B1 (en) Communication device for a railway vehicle
EP0048190B1 (en) Non-dispersive antenna array and its application to electronic scanning
FR2831716A1 (en) BENDING GUIDE ELEMENT AND TRANSMISSION DEVICE COMPRISING SAID ELEMENT
EP3900104B1 (en) Bidirectional hyperfrequency coupler comprising two parallel double-rib waveguides
EP0073165A1 (en) Microwave switch
EP0801467B1 (en) Low impedance distributed amplifier adapter for opto-electronic microwave signal transmitter with very wide band
FR2852739A1 (en) Polarized wave separator for use in bidirectional transmission satellite, has two filters with one end coupled to respective slits and another end constituting respective individual input/output
Goldsmith Diffraction loss in dielectric-filled Fabry-Perot interferometers
FR2546672A1 (en) MAGNETOSTATIC VOLUME-TUNABLE TUNABLE DEVICE
EP0921587B1 (en) Microwave filter with a steep upper edge
EP0812022B1 (en) Hyperfrequency photodetector and generator
FR2538958A1 (en) Microwave filter with tunable cutoff frequency and its application to the microwave mixer and to the radar operating in diversity mode

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): DE FR GB IT NL

17P Request for examination filed

Effective date: 19821208

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 19850129

RIN1 Information on inventor provided before grant (corrected)

Inventor name: BISJAK, JACQUES

Inventor name: BERGERO, JEAN-PIERRE