EP0063683B1 - Immobilisierung von Vanadin, das bei der Behandlung von Schwermetalle und Koksvorläufer enthaltenden Ölen auf Adsorbenzien abgelagert worden ist - Google Patents

Immobilisierung von Vanadin, das bei der Behandlung von Schwermetalle und Koksvorläufer enthaltenden Ölen auf Adsorbenzien abgelagert worden ist Download PDF

Info

Publication number
EP0063683B1
EP0063683B1 EP19820101793 EP82101793A EP0063683B1 EP 0063683 B1 EP0063683 B1 EP 0063683B1 EP 19820101793 EP19820101793 EP 19820101793 EP 82101793 A EP82101793 A EP 82101793A EP 0063683 B1 EP0063683 B1 EP 0063683B1
Authority
EP
European Patent Office
Prior art keywords
sorbent
metal
riser
vanadium
crude
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP19820101793
Other languages
English (en)
French (fr)
Other versions
EP0063683A2 (de
EP0063683A3 (en
Inventor
H. Wayne Beck
James D. Carruthers
Edward B. Cornelius
William P. Hettinger, Jr.
Stephen M. Kovach
James L. Palmer
Oliver J. Zandona
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ashland LLC
Original Assignee
Ashland Oil Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US06/277,752 external-priority patent/US4513093A/en
Application filed by Ashland Oil Inc filed Critical Ashland Oil Inc
Priority to AT82101793T priority Critical patent/ATE22109T1/de
Publication of EP0063683A2 publication Critical patent/EP0063683A2/de
Publication of EP0063683A3 publication Critical patent/EP0063683A3/en
Priority claimed from EP19840111374 external-priority patent/EP0175799B1/de
Application granted granted Critical
Publication of EP0063683B1 publication Critical patent/EP0063683B1/de
Expired legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G25/00Refining of hydrocarbon oils in the absence of hydrogen, with solid sorbents
    • C10G25/003Specific sorbent material, not covered by C10G25/02 or C10G25/03
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G25/00Refining of hydrocarbon oils in the absence of hydrogen, with solid sorbents
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G25/00Refining of hydrocarbon oils in the absence of hydrogen, with solid sorbents
    • C10G25/06Refining of hydrocarbon oils in the absence of hydrogen, with solid sorbents with moving sorbents or sorbents dispersed in the oil
    • C10G25/09Refining of hydrocarbon oils in the absence of hydrogen, with solid sorbents with moving sorbents or sorbents dispersed in the oil according to the "fluidised bed" technique

Definitions

  • This invention is concerned with producing a high grade reduced crude having lowered metals and Conradson carbon values from a poor grade of reduced crude having extremely high metals and Conradson carbon values.
  • this invention describes a sorbent material that can be utilized for the reduction of these metal and Conradson carbon values that exhibits a low catalytic cracking activity value.
  • a further embodiment of this invention is the inclusion of a metal additive as a select metal, organo metallic, its oxide or salt into the sorbent material during manufacture or during the processing cycle to immobilize the sodium vanadate, vanadium pentoxide deposited on the sorbent during processing.
  • This invention also describes a regeneration process to immobilize the vanadium pentoxide by maintaining the metal in a reduced or lower oxidation state to prevent vanadium mobility.
  • This invention also provides a method for the processing of reduced crudes high in metals and Conradson carbon to provide a feedstock for a reduced crude conversion process or for typical fluid catalytic cracking processes.
  • H-Oil's Dynacracking Phillips Heavy Oil Cracking (HOC): H-Oil, Gulf, Union-UOP processes, and Aurabon hydrotreating processes; and solvent deasphalting.
  • HOC Phillips Heavy Oil Cracking
  • FCC solvent deasphalting
  • Conradson carbon is to increase that portion of the feedstock converted to carbon deposited on the catalyst.
  • Conradson carbon is to increase that portion of the feedstock converted to carbon deposited on the catalyst.
  • contaminant coke from metal deposits
  • catalytic coke acid site cracking
  • entrained hydrocarbons pore structure adsorption-poor stripping
  • Conradson carbon Conradson carbon
  • coke production based on feed is the summation of three of the four kinds mentioned above plus exceedingly higher Conradson carbon values.
  • coke production when processing reduced crude is normally and most generally around 4-5wt% plus the Conradson carbon value of the feedstock.
  • two other types of coke former processes or mechanisms may be manifested present in reduced crude processing in addition to the four exhibited by VGO. They are adsorbed and absorbed high boiling hydrocarbons not removed by normal efficient stripping due to their high boiling points, and carbon associated with high molecular weight nitrogen compounds adsorbed on the catalyst's acid sites.
  • the spent-coked catalyst is brought back to new equilibrium activity by burning off the deactivating coke in a regeneration zone in the presence of air and recycled back to the reaction zone.
  • the heat generated during regeneration is removed by the catalyst and carried to the reaction zone for vaporization of the feed and to supply the heat for the cracking reaction.
  • the temperature in the regenerator is limited because of metallurgy limitations and the thermal-steam stability of the catalyst.
  • the thermal-steam stability of the zeolite containing catalyst is determined by the temperature and steam partial pressure at which the zeolite irreversibly loses its crystalline structure to form low activity amorphous material. Steam, generated by the burning of adsorbed carbonaceous material containing a high hydrogen content is highly detrimental.
  • This carbonaceous material is principally hydrogen containing carbonaceous product as previously described plus high boiling adsorbed hydrocarbons with boiling points as high as 815.5°C-926.7°C (1500-1700°F) that have a high hydrogen content, high boiling nitrogen containing hydrocarbons and porphyrins-asphaltenes.
  • the metal containing fractions of reduced crude contain Ni-V-Fe-Cu, present as porphyrins and asphaltenes. These metal containing hydrocarbons are deposited on the catalyst during processing, are cracked in the riser to deposit the metal or carried over by the spent catalyst as the metallo-porphyrins or asphaltenes and converted to the oxide during regeneration.
  • the adverse effects of these metals are to decrease the acidity of the zeolite thereby reducing catalytic cracking activity, thus, enhancing non-selective cracking and dehydrogenation to produce light gases such as hydrogen, methane and ethane and more importantly, increase coke production all of which affects selectivity and yield.
  • the increased production of light gases affects the economic yield and selectivity structure of the process and puts an increased demand on compressor capacity.
  • the increase in coke production also adversely affects catalyst activity-selectivity and leads to increased regenerator air demand and compressor capacity, and elevated regenerator temperatures.
  • a reduced crude or crude oil having a high metal and Conradson carbon value is contacted in an RCC type regenerator-reactor system with an inert solid sorbent of low surface area at temperatures above about 482.2°C (900°F). Residence time in the riser is below 5 seconds, preferably 0.5-2 seconds.
  • the particle size of the inert solid sorbent is approximately 20-150 microns in size to ensure adequate fluidization properties.
  • the reduced crude-crude oil is introduced at a temperature below thermal cracking at the bottom of the riser and contacts the inert solid sorbent at a temperature of 621.1°C-760°C (1150-1400°F) and exits the riser at a temperature in the reactor vessel of approximately 482.2°C-621.1°C (900-1050°F).
  • water, steam, naphtha, flue gas, etc. may be introduced to aid in vaporization and act as a lift gas to control residence time.
  • the sorbent is rapidly separated from the hydrocarbon vapors at the top of the riser by employing the vented riser concept developed by Ashland Oil, Inc., see U.S. Patent No. 4,066,533.
  • the metal and Conradson carbon compounds are deposited on the sorbent.
  • the spent sorbent is deposited as a dense bed at the bottom of the reactor vessel, transferred to a stripper and then to the regeneration zone.
  • the spent sorbent is contacted with an oxygen containing gas to remove the carbonaceous material through combustion to carbon oxides to yield a regenerated sorbent containing 0.05-0.2 wt% carbon.
  • the regenerated sorbent is then recycled to the bottom of the riser to meet additional high metal and Conradson carbon containing feed to repeat the cycle.
  • vanadium deposited on the sorbent is converted to vanadium oxides, in particular, vanadium pentoxide.
  • the melting point of vanadium pentoxide is much lower than temperatures encountered in the regeneration zone.
  • any momentary stoppage of flow such as occurs in a cyclone dipleg, permits coalescence of two or more particles and ultimately inhibition of flow and loss of cyclone operation.
  • vanadium pentoxide solidifies, thus causing solid plugs of microspheres bound together by the vanadium pentoxide cement. This cause and effect of vanadium pentoxide can be overcome by two methods.
  • the process of this invention and sorbent are not limited to a fluidized bed operation with microspherical particles of 10-200 microns in size, but can include moving bed operations employing microspherical particles of greater than 200 microns in size.
  • the select sorbents of this invention will include solids of low catalytic activity, such as spent catalyst, clays, bentonite, kaolin, montmorillonite, smectites, and other 2-layered lamellar silicates, mullite, pumice, silica, laterite, etc.
  • the surface area of these sorbents would preferably be below 25 m 2 /g, have a pore volume of approximately 0.2 cc/g or greater and a micro-activity value as measured by the ASTM Test Method No. D3907-80 of below 20.
  • the metal additive is a water soluble compound which can be the oxide or one of its salts such as the nitrate, halide, sulfate, carbonate, etc. This mixture is spray dried to yield the finished promoted sorbent as a microspherical particle of 10-200 microns in size with the active promoter deposited within the pores and/or the outer surface of the sorbent particle.
  • the concentration of vanadia on the spent sorbent is targeted to be approximately 2-5 wt% of final particle weight, the concentration of metal additive will be in the range of 1-6 wt% to maintain at least a one to one atomic ratio of vanadium to metal additive at all times.
  • the sorbent can also be impregnated with these metal additives after spray drying, employing techniques well known in the art or combined with the clay as a gel so as to serve also as a binder and pore volume extender in the spray dried product.
  • the metal additives of this invention will form compounds or complexes with vanadia that have higher melting points or serve to immobilize the migration of vanadia at the temperatures encountered in the regeneration zone.
  • the targeted one to one molar ratio is chosen as more or less a practical objective. Initially, in those cases where the additive is included in the preparation the metal additive will be at a concentration far exceeding targeted ratios. However, as vanadia content increases, this ratio gradually decreases as vanadia is deposited on the sorbent. The melting point and migration behaviour of the vanadia-metal oxide compound or complex decreases, as vanadia increases, usually approaching a eutectic having a melting point even lower than vanadium pentoxide. For this reason, the additive is kept high in the virgin sorbent or is added in approximately stoichiometric proportions with vanadium in the feedstock.
  • this approach also relates to the lower valences of vanadium, and further in processing a sulfur containing feed and regeneration in the presence of an oxygen containing gas there will likely exist vanadium sulfides, sulfites, sulfates, and which will create still other mixtures containing mixed oxides and sulfides, sulfates, etc.
  • the metal additive is not incorporated in the initial sorbent preparation or added to the sorbent during manufacture then it can be added during the processing cycle at any point of sorbent travel in the processing unit. This would include but not be limited to addition of an aqueous solution of the inorganic metal salt or hydrocarbon solution of metallo-organic compounds at the riser bottom 17, along the riser length 4, the dense bed 9 in reactor vessel 5, stripper 10 and stripper 15, regenerator inlet 14, regenerator dense bed 12, or regenerated sorbent standpipe 16.
  • the vanadium deposited on the sorbent is immobilized through select regeneration conditions. Initially, the vanadium is deposited on the sorbent and in the regeneration zone under typical conditions is converted to vanadium pentoxide during coke combustion. The sorbent containing vanadium pentoxide is transferred to the riser and under the reducing conditions resulting from contacting vaporized feed will undergo reduction to lower oxidation states. Since reduced vanadium oxide is covered by the heavy coke deposition it will be protected against oxidation in the regeneration zone. Under controlled conditions of combustion the coke level on the sorbent will be reduced to 0.05-0.2 wt% on sorbent weight, preferably 0.1-0.2 wt%.
  • Operation of the regenerator in a semi-reducing condition can also be utilized to maintain vanadium in a lower valence state.
  • This type of operation establishes a condition wherein all the oxygen has been consumed and that none is left to further reduce the coke level or oxidize the vanadium to a higher oxidation level.
  • vanadium pentoxide in the riser yields vanadium oxide (V..-4, V0 2 ) and vanadium trioxide (V+3, V 2 0 3 ) which have much higher melting points, such as 982.2°C (1800°F) or higher.
  • V..-4, V0 2 vanadium oxide
  • V+3, V 2 0 3 vanadium trioxide
  • the lower vanadium oxidation states are maintained so as to avoid the flow and fusion problems which otherwise would occur.
  • the selective sorbent of this invention with or without the additive metal promoter is charged to a fluidized Metal Removal System as outlined in Figure 1.
  • Sorbent particle circulation and operating parameters are maintained by methods well known to those skilled in the art.
  • the equilibrium sorbent at temperatures of 593.3°C-760°C (1100-1400°F) contacts the reduced crude containing high metals and Conradson carbon values at riser wye 17.
  • the reduced crude can be accompanied by steam and/or naphtha, or dry gases or flue gas injected at point 2, water and/or naphtha injected at point 3 to aid in vaporization, sorbent fluidization and controlling contact time in riser 4.
  • the sorbent and vaporous hydrocarbons travel up riser 4 at a contact time of 0.1-5 seconds, preferably 0.5-2 seconds.
  • the sorbent and vaporous hydrocarbons are separated in vented riser outlet 6 at a final reaction temperature of 482.2°C-621.1°C (900-1050°F).
  • the vaporous hydrocarbons are transferred to cyclone 7 where any entrained sorbent fines are separated and the hydrocarbon vapors are sent to the fractionator via transfer line 8.
  • the spent sorbent drops to the bottom of vessel 5 to form a dense bed 9.
  • the spent sorbent is then transferred to stripper 10 for removal of any entrained hydrocarbon vapors and then to regenerator vessel 11 to form dense bed 12.
  • An oxygen containing gas such as air is admitted to the bottom of dense bed 12 in vessel 11 to combust the coke to carbon oxides.
  • the resulting flue gas is processed through cyclones and exits from regenerator vessel 11 via line 13.
  • the regenerated sorbent is transferred to stripper 15 to remove any entrained combustion gases and then transferred to riser wye 17 via line 16 to repeat the cycle.
  • Addition points 18 and 19 can be utilized to add a metal additive promoted sorbent.
  • the metal additive as an aqueous solution or an organo-metallic compound in aqueous or hydrocarbon solvent can be added at addition points 18 and 19 as well as at addition points 2 and 3 on feed line 1, addition point 20 in riser 4, addition point 21 to the bottom of vessel 5 into dense bed 9.
  • the addition of the metal additive is not limited to these locations but can be practiced at any point along the reduced crude-sorbent processing cycle.
  • Sorbent and reduced crude feedstock are processed in a manner similar to that described previously.
  • the spent sorbent after stripping in stripper 10 is transferred to regenerator vessel 11.
  • the amount of oxygen containing gases admitted through line 14 into dense bed 12 is sufficient to only regenerate a large portion of the coke deposited on the sorbent.
  • the regenerated sorbent exiting regenerator vessel 11 to stripper 15 contains 0.05-0.2 wt% coke, preferably 0.1-0.2 wt%.
  • This amount of coke on regenerated sorbent is sufficient to help ensure that the vanadium pentoxide reduced in the riser to lower vanadium oxides (monoxide, trioxide) will remain in these reduced states.
  • the small amount of coke remaining on the sorbent ensures that vanadium in the lower oxidation state is not re-oxidized to the higher +5 state.
  • the regenerator vessel as illustrated in Figure 1 is a simple one zone-dense bed type.
  • the regenerator section is not limited to this example but can exist of two or more zones, stacked or side-by-side arrangement, with internal and/or external circulation transfer lines from zone to zone.
  • a sorbent clay spray dried to yield microspherical particles in 20-150 micron size, had vanadia deposited upon it in varying concentrations.
  • the sorbent, free of vanadia, and those containing varying vanadia concentrations were placed in individual ceramic crucibles and calcined at 760.0°C (1400°F) in air for two hours. At the end of this time the period the crucibles were withdrawn from the muffle furnace and cooled to room temperature. The surface texture and flow characteristics of these samples were noted and the results are reported in Table I.
  • the sorbent free of vanadia does not form any crust or clumps or fused particles at temperatures encountered in the regenerator section of the process described in this invention. At vanadia concentrations above 5,000 ppm the absorbent begins to clump and bind badly and does not flow at all.
  • An extension of the clumping test is the use of a ceramic-alumina crucible to determine the end product of vanadia reacting with the metal additives. If vanadia does not react with the metal additive or only a small amount of compound formation occurs, then the vanadia will diffuse through and over the porous alumina walls and deposit as a yellowish to orange deposit on the outside walls of the crucible. On the other hand, when compound formation occurs, there is little or no vanadia deposits on the outside crucible wall. Two series of tests were performed, in the first series shown in Table 2, 1/1 mixture by weight of vanadia pentoxide and the metal additive was placed in the crucible and heated to 815.6°C(1500°F) in air for 12 hours. Compound formation or vanadia diffusion was noted.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Claims (10)

1. Verfahren zur Herstellung eines Toprückstandes des oder Rohöls mit herabgesetztem Metallgehalt und herabgesetztem Koksrückstand nach Conradson, aus einem Toprückstand oder Rohöl mit einem erhöhten Metallgehalt und erhöhten Koksrückstand nach Conradson, indem man das Ausgangsmaterial zum Immobilisierung von Vanadiumverbindungen mit einem Sorptionsmittel, welches einen katalytischen Krackmikroaktivitäts-Testwert von weniger als 20 besitzt, bei erhöhter Temperatur in einer Riser-Wirbelschicht-Transportzone oder in einer Bewegtbett-Reaktionszone in Berührung bringt, sodann die gasförmigen Produkte und das erschöpfte Sorptionsmittel rasch trennt und das erschöpfte Sorptionsmittel in Gegenwart eines sauerstoffhaltigen Gases der Regeneration unterwirft, wobei das regenerierte Sorptionsmittel zur Riser-Transportzone oder zur Bewegtbett-Reaktionszone zur Behandlung von frischem Toprückstand oder Rohöl rückgeführt wird, dadurch gekennzeichnet, daß das Sorptionsmittel ein durch einen Metallzusatz aktiviertes Sorptionsmittel ist, welches durch Einbringung eines Metallzusatzes entweder in Form einer wässerigen Lösung oder einer Lösung in Kohlenwasserstoff in das Sorptionsmittel entweder durch Vermischen der Lösung des Metallzusatzes mit dem Sorptionsmittel und Sprühtrocknen des Gemisches; Imprägnieren des sprühgetrockneten Sorptionsmittels mit der Lösung des Metallzusatzes; oder Zugabe der Lösung des Metallzusatzes zum Sorptionsmittel während des Verfahrenszyklusentweder zum Riser oder zur Bewegtbett-Reaktionszone, zur Abtrennzone des erschöpften Sorptionsmittels oder zur Regenerationszone, erhalten wird.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß der Metallzusatz eine in einem Kohlenwasserstoff lösliche metallorganische Verbindung ist, die dem Sorptionsmittel im Riser zugesetzt wird.
3. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß der Metallzusatz ein wasserlösliches Metalloxyd oder ein anorganisches Salz ist, das dem Sorptionsmittel in der Reaktionszone zugesetzt wird.
4. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Vanadiumkonzentration am Sorptionsmittel 10.000 ppm oder mehr beträgt und daß der Metallzusatz zur Immobilisierung der Vanadiumverbindungen auf einem Sorptionsmittel folgende Elemente umfaßt: Mg, Ca, Sr, Ba, Sc, Y, La, Ti, Zr, Hf, Nb, Ta, Mn, Fe, In, TI, Bi, Te, die Lanthanid- und Actinidreihe der Elemente.
5. Verfahren zur Herstellung eines Toprückstandes oder Rohöls mit herabgesetztem Metallgehalt und herabgesetztem Koksrückstand nach Conradson, aus einem Toprückstand oder Rohöl mit einem erhöhten Metallgehalt und erhöhten Koksrückstand nach Conradson, indem man das Ausgangsmaterial mit einem Sorptionsmittel, welches einen katalytischen Krackmikroaktivitäts-Testwert von weniger als 20 besitzt, bei erhöhter Temperatur in einer Riser-Wirbelschicht-Transportzone oder in einer Bewegtbett-Reaktionszone in Berührung bringt, sodann die gasförmigen Produkte und das erschöpfte Sorptionsmittel rasch trennt und das erschöpfte Sorptionsmittel in Gegenwart eines sauerstoffhaltigen Gases zur Immbolisierung von auf dem Sorptionsmittel abgelagerten Vanadiumverbindungen der Regeneration unterwirft, wobei das regenerierte Sorptionsmittel zur Riser-Transportzone oder zur Bewegtbett-Reaktionszone zur Behandlung von frischem Toprückstand oder Rohöl rückgeführt wird, dadurch gekennzeichnet, daß die Regeneration unter kontrollierten Bedingungen durchgeführt wird, um ein teilweise regeneriertes Sorptionsmittel und das abgelagerte Vanadium in einem niedrigeren Oxydationszustand zu erhalten und dabei die hohen Fluidisierungseigenschaften des Sorptionsmittels beizubehalten.
6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, daß der Toprückstand oder das Rohöl 100 ppm oder mehr Metalle bestehend aus Nickel, Vanadium, Eisen und Kupfer enthält und einen Wert von 8 Gew.-% oder höher an Koksrückstand nach Conradson aufweist und daß das Produkt nach der Entkohlung und Entmetllisierung weniger als 100 ppm Metalle, vorzugsweise weniger als 50 ppm Metalle und weniger als 10 Gew.-% Koksrückstand nach Conradson, vorzugsweise weniger als 8 Gew.-% Koksrückstand nach Conradson enthält.
7. Verfahren nach Anspruch 5, dadurch gekennzeichnet, daß der Oxydationszustand des Vanadiums in der Riser-Transportreaktionszone auf einen niedrigeren Wert herabgesetzt und daß dieser niedrigere Wert durch Anwendung einer unvollständigen Verbrennung des Kokses auf dem Sorptionsmittel in der Regenerationszone aufrechterhalten wird.
8. Verfahren nach Anspruch 5, dadurch gekennzeichnet, daß das Sorptionsmittel aus Tonen, Bentonit, Kaolin, Montmorilloniten, Smectiten und anderen zweischichtigen, lamellaren Silikaten, Mullit, Bims, Kieselsäure, Laternit und dem Sorptionsmittel zugesetzten, Mg, Ca, Ba, Ti, Zr, Ta, In, Bi und Fe umfassenden Bindematerialien besteht.
9. Zusammensetzung zur Verwendung als Sorptionsmittel im Verfahren nach Anspruch 1 und Anspruch 8 mit mikrosphärischem Ton und 1-6 Gew.-% Titan oder Zirkonium als Oxyd in der Endform.
10. Zusammensetzung zur Verwendung als Sorptionsmittel im Verfahren nach Anspruch 1 und Anspruch 8 mit mikrosphärischem Ton und 1-6 Gew.-% Tantal, Wismut oder Indium als Oxyd in der Endform.
EP19820101793 1981-03-30 1982-03-06 Immobilisierung von Vanadin, das bei der Behandlung von Schwermetalle und Koksvorläufer enthaltenden Ölen auf Adsorbenzien abgelagert worden ist Expired EP0063683B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT82101793T ATE22109T1 (de) 1981-03-30 1982-03-06 Immobilisierung von vanadin, das bei der behandlung von schwermetalle und koksvorlaeufer enthaltenden oelen auf adsorbenzien abgelagert worden ist.

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US06/277,752 US4513093A (en) 1981-03-30 1981-03-19 Immobilization of vanadia deposited on sorbent materials during treatment of carbo-metallic oils
US277752 1981-03-30
US28179781A 1981-07-09 1981-07-09
US06/427,355 US4469588A (en) 1981-03-30 1982-09-29 Immobilization of vanadia deposited on sorbent materials during visbreaking treatment of carbo-metallic oils
EP19840111374 EP0175799B1 (de) 1983-06-20 1984-09-24 Immobilisierung von Vanadin, abgelagert auf Adsorbentien während der Visbreaking von Carbo-Metall ölen

Publications (3)

Publication Number Publication Date
EP0063683A2 EP0063683A2 (de) 1982-11-03
EP0063683A3 EP0063683A3 (en) 1983-08-17
EP0063683B1 true EP0063683B1 (de) 1986-09-10

Family

ID=27440639

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19820101793 Expired EP0063683B1 (de) 1981-03-30 1982-03-06 Immobilisierung von Vanadin, das bei der Behandlung von Schwermetalle und Koksvorläufer enthaltenden Ölen auf Adsorbenzien abgelagert worden ist

Country Status (1)

Country Link
EP (1) EP0063683B1 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0175799B1 (de) * 1983-06-20 1990-08-16 Ashland Oil, Inc. Immobilisierung von Vanadin, abgelagert auf Adsorbentien während der Visbreaking von Carbo-Metall ölen
US4980045A (en) * 1988-08-02 1990-12-25 Chevron Research Company Heavy oil pretreatment process with reduced sulfur oxide emissions

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4013546A (en) * 1974-07-19 1977-03-22 Texaco Inc. Removing metal contaminant from regenerated catalyst in catalytic cracking process
US3977963A (en) * 1975-04-17 1976-08-31 Gulf Research & Development Company Method of negating the effects of metals poisoning on cracking catalysts
US4141858A (en) * 1976-03-29 1979-02-27 Phillips Petroleum Company Passivating metals on cracking catalysts
US4162213A (en) * 1976-04-29 1979-07-24 Mobil Oil Corporation Catalytic cracking of metal-contaminated oils
CA1127581A (en) * 1978-02-06 1982-07-13 David B. Bartholic Preparation of fcc charge from residual fractions
US4243514A (en) * 1979-05-14 1981-01-06 Engelhard Minerals & Chemicals Corporation Preparation of FCC charge from residual fractions
US4325809A (en) * 1978-02-06 1982-04-20 Engelhard Minerals & Chemicals Corporation Hydrocarbon processing
US4169042A (en) * 1978-03-13 1979-09-25 Phillips Petroleum Company Cracking process and catalyst for same containing tellurium
US4238367A (en) * 1978-10-06 1980-12-09 Phillips Petroleum Company Passivation of metals on cracking catalyst with thallium
US4256564A (en) * 1979-04-03 1981-03-17 Phillips Petroleum Company Cracking process and catalyst for same containing indium to passivate contaminating metals
US4311580A (en) * 1979-11-01 1982-01-19 Engelhard Minerals & Chemicals Corporation Selective vaporization process and dynamic control thereof

Also Published As

Publication number Publication date
EP0063683A2 (de) 1982-11-03
EP0063683A3 (en) 1983-08-17

Similar Documents

Publication Publication Date Title
CA1175000A (en) Immobilization of vanadian deposited on sorbent materials during treatment of carbo-metallic oils
US4432890A (en) Immobilization of vanadia deposited on catalytic materials during carbo-metallic oil conversion
US4549958A (en) Immobilization of vanadia deposited on sorbent materials during treatment of carbo-metallic oils
EP0072653B1 (de) Endotherme Entfernung von Koks, der bei der Umwandlung von Koksvorläufer und Schwermetalle enthaltenden Ölen an adsorbierten Materialien abgelagert worden ist
KR100735970B1 (ko) 유동 촉매 분해에서 가솔린 황의 감소
US4414098A (en) Upgrading carbo-metallic oils with used catalyst
US7361264B2 (en) Mixed metal oxide additives
US4485184A (en) Trapping of metals deposited on catalytic materials during carbometallic oil conversion
JPS5949275B2 (ja) 抜頭原油の加工に際して触媒材料に沈着したバナジアの不動化
US4824815A (en) Cracking catalysts containing strontium carbonate
US4425259A (en) Endothermic removal of coke deposited on catalytic materials during carbo-metallic oil conversion
RU2603964C2 (ru) Усовершенствованный пассиватор/ловушка металла для процессов кфк
EP0063712A2 (de) Immobilisierung von Vanadin, das bei der Umwandlung von Koksvorläufer und Schwermetalle enthaltenden Ölen auf Katalysatoren abgelagert worden ist
US4350614A (en) Catalytic cracking catalyst
US4743358A (en) Method for suppressing the harmful effects of metal contaminants on hydrocarbon conversion catalysts using a strontium colloid system
EP0074349A1 (de) Fixieren von vanadium niedergeschlagen auf saugfähigem material während behandlung von karbometallölen
US5174890A (en) Catalytic cracking using a metals scavenging composition
EP0073874B1 (de) Immobilisierung von Vanadinoxid, das bei der Umwandlung von Koksvorläufer und Schwermetalle enthaltenden Ölen auf Katalysatoren abgelagert wurde
EP0063683B1 (de) Immobilisierung von Vanadin, das bei der Behandlung von Schwermetalle und Koksvorläufer enthaltenden Ölen auf Adsorbenzien abgelagert worden ist
EP1733005A1 (de) Zn-haltiger fcc-katalysator und verwendung davon zur verringerung des schwefelgehalts in benzin
US4750987A (en) Immobilization of vanadia deposited on catalytic materials during carbo-metallic oil conversion
EP0175799A1 (de) Immobilisierung von Vanadin, abgelagert auf Adsorbentien während der Visbreaking von Carbo-Metall ölen
US4515900A (en) Sorbent useful in a visbreaking treatment of carbo-metallic oils
US4174272A (en) Catalytic cracking of hydrocarbons
CA1183792A (en) Immobilization of vanadia deposited on catalytic materials during carbo-metallic oil conversion

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT BE CH DE FR GB IT LU NL SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

17P Request for examination filed

Effective date: 19830505

AK Designated contracting states

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19860910

Ref country code: CH

Effective date: 19860910

Ref country code: BE

Effective date: 19860910

Ref country code: AT

Effective date: 19860910

REF Corresponds to:

Ref document number: 22109

Country of ref document: AT

Date of ref document: 19860915

Kind code of ref document: T

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19860930

REF Corresponds to:

Ref document number: 3273094

Country of ref document: DE

Date of ref document: 19861016

ITF It: translation for a ep patent filed
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

ET Fr: translation filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19870331

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19881216

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19890131

Year of fee payment: 8

ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19890331

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19900306

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19901001

GBPC Gb: european patent ceased through non-payment of renewal fee
NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19901130

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19910330

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19921201