EP0061259A1 - Hydrokrackverfahren mit verbessertem Wasserstoff-Nutzungsgrad - Google Patents

Hydrokrackverfahren mit verbessertem Wasserstoff-Nutzungsgrad Download PDF

Info

Publication number
EP0061259A1
EP0061259A1 EP82301236A EP82301236A EP0061259A1 EP 0061259 A1 EP0061259 A1 EP 0061259A1 EP 82301236 A EP82301236 A EP 82301236A EP 82301236 A EP82301236 A EP 82301236A EP 0061259 A1 EP0061259 A1 EP 0061259A1
Authority
EP
European Patent Office
Prior art keywords
hydrogen
vapor phase
hydrocracking
polymeric membrane
feed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP82301236A
Other languages
English (en)
French (fr)
Inventor
Donald Lewis Gage Maclean
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Monsanto Co
Original Assignee
Monsanto Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US06/243,220 external-priority patent/US4367135A/en
Priority claimed from US06/243,273 external-priority patent/US4362613A/en
Application filed by Monsanto Co filed Critical Monsanto Co
Publication of EP0061259A1 publication Critical patent/EP0061259A1/de
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G49/00Treatment of hydrocarbon oils, in the presence of hydrogen or hydrogen-generating compounds, not provided for in a single one of groups C10G45/02, C10G45/32, C10G45/44, C10G45/58 or C10G47/00
    • C10G49/22Separation of effluents

Definitions

  • This invention relates to processes for catalytically hydrocracking a hydrocarbonaceous feed, and particularly to catalytic hydrocracking processes in which hydrogen is recovered from the hydrocrackate and is recycled to the hydrocracking zone.
  • the processes for hydrocracking hydrocarbonaceous feed stocks which processes exhibit enhanced efficiencies of hydrogen utilization.
  • the enhanced efficiencies of hydrogen utilization can be achieved with little additional energy consumption over similar hydrocracking processes which do not provide the enhanced efficiencies of hydrogen utilization.
  • the enhanced efficiencies of hydrogen utilization provided by the hydrocracking processes of this invention can be achieved without undue deleterious effects on the maintenance or operation of equipment for effecting the hydrocracking.
  • existing equipment for effecting hydrocracking can readily be modified to utilize processes in accordance with this invention and, i' desired; the throughput of a hydrocarbonaceous feed stock in a hydrocracker may be increased and the yield of C 5 + hydrocarbons may also be increased.
  • the processes of this invention may reduce the amount of hydrogen which needs to be produced by, say, a hydrogen plant to ensure that the hydrocracking zone has sufficient hydrogen of adequate purity to enable the hydrocracking to proceed in an advantageous manner.
  • Petroleum crude feed stocks contain a broad range of molecular weight components. Frequently, the heavier fractions of the petroleum crude feed stocks are cracked, i.e., broken down into . smaller molecules, in order to provide desirable hydrocarbonaceous products, e.g., for direct consumer use or as a feed to other refinery operations.
  • refiners In recent years a lack of availability of high grade petroleum crude feed stocks has existed, and refiners are therefore faced with using lower grade petroleum crude feed stocks which, for instance, have greater and greater portions of heavy fractions. Accordingly, refiners must effectively use cracking processes in order to use these available petroleum crude feed stocks to make highly sought petroleum products.
  • hydrocracking in which free hydrogen, i.e., atomic or molecular hydrogen (hereinafter referred to as "hydrogen"), is present during a catalyticany-promoted cracking process.
  • the hydrogen serves several important functions.
  • the hydrogen can, under certain conditions, react with polycyclic aromatic components which are generally relatively inert to cracking, to convert the polycyclic aromatics to compounds which can be cracked more readily.
  • the hydrogen can reduce the production of unsaturated hydrocarbons.
  • the hydrogen can reduce the formation of tar and coke during the hydrocracking process.
  • the hydrogen can minimize the production of less saleable by-products as well as minimize the rate of deactivation of catalyst used to effect the hydrocracking.
  • a one percent increase in hydrogen purity in a hydrocracker may, under certain circumstances, increase the cycle length between hydrocracking catalyst regeneration by.about one percent. Also, an increase in hydrogen purity can increase the C 5 + yield from the hydrocracker.
  • hydrocracking can be an extremely large consumer of hydrogen within a refinery operation, and the hydrogen must be supplied by a source external from the hydrocracker.
  • the hydrogen In many refineries, at least a portion of the hydrogen is provided by the production of hydrogen from hydrocarbon in a hydrogen plant. Frequently, a significant portion of the hydrogen for hydrocracking is provided by hydrogen-producing operations within the refinery, e.g., catalytic reforming.
  • the hydrogen In order to reduce the demand for hydrogen from a hydrogen plant it is generally desired to not use the hydrogen on a once through basis, but rather, to recycle hydrogen to the hydrocracking zone. Accordingly, in most instances, a portion of the hydrogen is recovered from the effluent (hydrocrackate) from the hydrocracking zone by a gas-liquid separation with the separated vapor phase being recycled to the hydrocracking zone. Under certain conditions the concentration of hydrogen in the separated vapor phase may be as high as 80 or more volume percent and thus be directly useful for recycling to the hydrocracking zone due to its high hydrogen concentration.
  • Membranes have been proposed for gas separations including the separation of hydrogen from other gases. Henri, for instance, in British Patent Application 2,055,152A broadly proposes the use of membranes for the enrichment of industrial gases from hydrocracking units. Henri suggests only that membranes might be useful in processing gases from hydrocracking operations but does not disclose any of the specifics which are necessary in order to provide an operable, efficient hydrocracking process.
  • hydrocracking processes are provided which can exhibit an enhanced utilization of hydrogen.
  • polymeric membranes are employed to recover hydrogen as a hydrogen permeate from at least a portion of a hydrogen-rich vapor phase separated by gas-liquid separation from the hydrocracker (hereafter "separated vapor phase").
  • the separated vapor phase is substantially in equilibrium with the liquid phase from which it is separated and is at a sufficiently low temperature and a sufficiently high pressure that the concentration of hydrogen in the separated vapor phase is greater than the minimum hydrogen concentration in the vapor phase in the hydrocracking zone (hydrocracking vapor phase).
  • At least a portion of the separated vapor phase contacts the feed-side of the polymeric membrane, and the hydrogen permeate is obtained at the opposite side, i.e., permeate exit side, of the membrane.
  • the hydrogen permeate has a greater concentration of hydrogen than the concentration of hydrogen in the separated vapor phase and a greater hydrogen purity than the hydrogen feed gas to the hydrocracking zone.
  • the hydrogen permeate having the high hydrogen concentration is compressed to a sufficient pressure for passage to the hydrocracking zone and is passed to the hydrocracking zone as a portion of the total hydrogen feed gas to the hydrocracking zone.
  • the processes of this invention have been found to provide many advantages.
  • the hydrogen concentration of the hydrogen permeate is generally very high due to the high hydrogen concentration of the separated vapor phase fed to the membrane.
  • the highly- pure hydrogen permeate can off-set the demand for hydrogen from the hydrogen plant to provide a hydrogen feed gas having an adequate concentration of hydrogen to maintain a desired hydrogen partial pressure in the hydrocracking zone.
  • the combination of the hydrogen permeate with less pure hydrogen-containing streams from, say, catalytic reformers, hydrotreaters, etc. would provide a combined gas having a concentration of hydrogen greater than the less pure hydrogen-containing streams. Therefore, a lesser amount of hydrogen from a hydrogen plant per unit volume of the less pure hydrogen-containing stream need be employed.
  • an advantageous driving force for the permeation of hydrogen through the membrane can be achieved.
  • desirable rates of hydrogen permeation can be achieved such that, say, a relatively small membrane area need be employed (thereby reducing capital costs) and/ or desirably high concentrations of hydrogen in the hydrogen permeate can readily be obtained and/or the hydrogen permeate can be at a desirably high pressure to minimize recompression costs for recycling the hydrogen permeate to the hydrocracking zone.
  • the increased concentration of hydrogen provided by the hydrogen permeate of this invention can also be utilized to increase the hydrogen partial pressure in the hydrocracking zone and/or increase hydrocarbonaceous feed throughput in the hydrocracking zone.
  • the rate of hydrogen supplied to the hydrocracking zone in the total hydrogen feed gas may be decreased without decreasing the hydrocarbonaceous feed throughput in the hydrocracking zone.
  • higher hydrogen concentrations in the hydrogen feed gas (at a given hydrocarbonaceous feed throughput) can enable the use of lower pressures in the hydrocracking zone.
  • savings in compression expenses to operate the hydrocracking zone may be realized.
  • enhanced efficiencies of hydrogen utilization can be readily achieved by the processes of this invention without unduly deleteriously affecting the hydrocracking operation.
  • the hydrocarbonaceous feed may contain nitrogen-bearing components which, when cracked, yield free nitrogen. Free nitrogen and hydrogen can react under the hydrocracking conditions to produce ammonia which tends to deactivate many hydrocracking catalysts.
  • the hydrocrackate will contain nitrogen, and a portion of. that nitrogen will be separated from the liquid phase and thus be contained in the separated vapor phase. If this nitrogen-containing.separated vapor phase were .
  • the separated vapor phase may be passed to a membrane which is selective to the permeation of hydrogen as compared to the permeation of nitrogen such that the hydrogen permeate contains very little nitrogen.
  • the recycling of the hydrogen permeate to the hydrocracking zone would not, therefore, result in an undesirable build-up of nitrogen in the hydrocracking zone.
  • a hydrocarbonaceous feed is cracked in a hydrocracking zone in the presence of hydrogen and hydrocracking catalyst under hydrocracking conditions.
  • Hydrocarbonaceous feeds suitable for hydrocracking include petroleum- or coal-based hydrocarbon stocks.
  • the hydrocarbonaceous feed to a hydrocracking operation results from a fractionation of a crude stock and comprises that fraction boiling above about 200°C and may include residual stocks having at least about 10 percent by volume boiling above 550°C.
  • the hydrocarbonaceous feed to the hydrocracking zone is treated with hydrogen to accomplish desulfurization, demetalization, denitrogenation and the like in order to remove components which may adversely affect the hydrocracking catalyst or may be undesirable in the hydrocrackate.
  • the hydrocarbonaceous feed is usually below the temperature of the hydrocracking zone and therefore may often be heated to about the temperature of the hydrocracking zone prior to being introduced into the hydrocracking zone.
  • the temperature of the hydrocarbonaceous feed prior to being introduced into the hydrocracking zone is preferably below that which promotes thermocracking, at least prior to the introduction of the hydrocarbonaceous feed into the hydrocracking zone, since thermocracking may often produce cracked products which are less desirable than those obtained through hydrocracking.
  • the temperature of the hydrocracking zone is frequently at least about 250 0 or 270°C and may range up to about 700° or 750°C. In most instances, the temperature of the hydrocracking zone is about 300° or 350°C to about 450°C.
  • the total pressure in the hydrocracking zone is at least about 45, say, about 50 to about 200 or 250 atmospheres absolute.
  • the hydrocarbonaceous feed is admixed with at least a portion of the hydrogen feed gas prior to introducing the hydrocarbonaceous feed into the hydrocracking zone.
  • the hydrogen feed gas is desirably provided in an amount sufficient to effect the hydrocracking reactions and to provide a sufficient hydrogen partial pressure throughout the hydrocracking reaction zone to avoid unduly rapid coking and deactivation of the hydrocracking catalyst.
  • the amount of hydrogen provided to the hydrocracking zone is substantially greater than the amount of hydrogen consumed in the hydrocracking reactions.
  • the amount of hydrogen provided to the hydrocracking zone is usually about 0.05 to 10, preferably, about 0.1 to 5, N m 3 , normal cubic meters (Nm 3 ) per liter of hydrocarbonaceous feed.
  • the hydrogen feed gas frequently contains at least about 75, preferably at least about 80, volume percent of hydrogen. Generally, with lower pressures in the hydrocracking zone, higher hydrogen concentrations in the hydrogen feed gas are desired.
  • the hydrogen feed gas to the hydrocracking zone is preferably heated to approximately the temperature of the hydrocracking zone prior to being introduced into the hydrocracking zone. Often, in order to ensure a good dispersion of the hydrogen with the hydrocarbonaceous feed, the hydrogen feed - gas and hydrocarbonaceous feed are admixed prior to being introduced into the hydrocracking zone.
  • the hydrocarbonaceous feed generally contacts the hydrocracking catalyst at a liquid hourly space velocity (the volume of liquid hydrocarbonaceous feed at 20°C per volume of catalyst within the reaction zone) of about 0.1 to 10, e.g., about 0.5 to 5, reciprocal hours.
  • a liquid hourly space velocity the volume of liquid hydrocarbonaceous feed at 20°C per volume of catalyst within the reaction zone
  • hydrocracking catalysts comprise one or more metallic components selected from Groups VI-A and VIII of the periodic table of elements.
  • the catalyst comprises at least one metal, metal oxide, or metal salt of chromium, molybdenum, tungsten, iron, cobalt, nickel, ruthenium, rhodium, palladium, osmium, iridium, and platinum on a support.
  • the support for the metallic components for hydrocracking catalysts is usually an inorganic oxide, and may preferably be of an acidic nature. Included within suitable inorganic oxides are alumina, silica, crystalline alumina silicates, and the like.
  • the catalyst may, for instance, be-in a fixed bed in the hydrocracking zone or moving bed. or fluidized bed operations may .be employed. Also, the catalyst may be in a suspension and passed through the reaction zone as a slurry.
  • the hydrocracking zone contains liquid phase and hydrocracking vapor phase constituents.
  • the minimum concentration of hydrogen in the hydrocracking vapor phase is at least about 65 volume percent.
  • the minimum concentration of hydrogen in the hydrocracking vapor phase is approximated by the concentration of hydrogen in the vapor phase of the hydrocrackate at the conditions of the hydrocracking zone. In many instances, the minimum concentration of hydrogen in the hydrocracking vapor phase is about 65 to 85, say, 70 to 80, volume percent.
  • the hydrocrackate exiting the hydrocracking zone contains substantial amounts of hydrogen in a vapor phase as well as dissolved in the liquid phase of the hydrocrackate.
  • the hydrocrackate is passed to a gas-liquid separator in order to recover a substantial portion of the hydrogen.
  • the gas-liquid separation is conducted to provide a separated vapor phase substantialiy in equilibrium with the liquid phase from which it is separated, the separated vapor phase being at a sufficiently low temperature and at a sufficiently high pressure that the separated vapor phase comprises a greater concentration of hydrogen than the minimum concentration of hydrogen in the hydrocracking vapor phase.
  • the temperature of the gas-liquid separation is below about 70°C, e.g., 20° to 70°C, say, about 20° to 50° or 55°C.
  • the pressure of the separated vapor phase is at least about 0.5 times the pressure in the hydrocracking zone.
  • the pressure of the separated vapor phase is up to about the pressure in the hydrocracking zone, e.g., about 0.9 to 1 times the pressure in the hydrocracking zone.
  • the separated vapor phase may be at a pressure greater than that of the hydrocracking zone; however, the expense of compression to achieve such pressures is generally not economically justifiable.
  • pressure losses to the vapor phase are preferably minimized to reduce recompression requirements.
  • the separated vapor phase has a hydrogen concentration of at least about 70, say, at least about 75, e.g., 75 to 85 or 90, volume percent.
  • the gas-liquid separation may be conducted in any suitable manner.
  • the hydrocrackate may be cooled to, say, below about 70°C and then the vapor and liquid phases separated, or the separation may proceed in a series of steps.
  • the hydrocrackate at an elevated temperature, may be separated into a first liquid phase and a first vapor phase.
  • the first vapor phase is then cooled to below about 70°C thereby resulting in the formation of a condensed liquid, and these vapor and liquid phases are then separated.
  • the latter gas-liquid separation procedure may be advantageous in certain instances to minimize heat exchanger requirements since a smaller volume of fluid need be cooled to temperatures below about 70°C.
  • Any suitable gas-liquid separation apparatus may find use in the process such as knock-out pots (gravity separators), impingement separators, cyclonic separators, and the like.
  • At least a portion of the separated vapor phase from the gas-liquid separator is contacted with the polymeric membrane to obtain a hydrogen permeate.
  • the separated vapor phase may be split into two streams, one of which is directly recycled to the hydrocracking zone and the other of which is contacted with the polymeric membrane.
  • all of the separated vapor phase may be passed to the polymeric membrane.
  • the portion of the separated vapor phase which is contacted with the polymeric membrane is preferably at least about 5, e.g., at least about 10, say, about 10 to 95, percent of the total separated vapor phase.
  • the portion of the separated vapor phase which is contacted with the polymeric membrane may be selected in view of various factors such as the desired purity of the hydrogen recycled to the hydrocracking zone, the selectivity of the separation of the polymeric membrane, the membrane surface area required to effect the separation, the expense of recompression of the hydrogen permeate, and the like.
  • the processes of this invention may be particularly attractive with respect to hydrocracking processes of the general type in which the separated vapor phase is recycled to the hydrocracking zone and a portion of the separated vapor phase is expelled (i.e., purged on a continuous or intermittent basis) to prevent undue build-up of undesirable components in the hydrocracking vapor phase (thereby reducing the hydrogen partial pressure).
  • the processes of this invention can substantially reduce the loss of hydrogen since the portion of the separated vapor phase which would otherwise be expelled can be contacted with the membranes, and thus only the gases not permeating the polymeric membrane, i.e., hydrogen-depleted gases, would be expelled from the system.
  • the feed vapor phase is heated to increase the temperature of the feed vapor phase by at least about 5° or 10 0 , e.g., about 10° to 60°C.
  • the feed vapor phase may be processed in another gas-liquid separator, e.g., knock-out pot, cyclone separator, or impingement separator to remove entrained liquids.
  • the entrained liquids are removed prior to any heating of the feed vapor phase to be contacted with the polymeric membrane.
  • the temperature of feed vapor phase is preferably below that temperature which may adversely affect the polymeric membrane.
  • the temperature of the feed vapor phase contacting the polymeric menorane is less than about 125°C, e.g., less than about 65°C, and is often about 10 0 to 60°C, preferably at least about 20° or 25° to 55 0 C.
  • this driving force is a different.al in fugacities of hydrogen across the polymeric membrane. Since fugacities for ideal gases are approximated by partial pressures, conveniently the driving force is referred to in terms of partial pressure differentials. Since partial pressures are related to the concentration of a moiety in a gas and the total pressure of the gas, these parameters can be varied jointly or separately to provide suitable partial pressure differentials across the membrane in order to provide desirable permeation fluxes.
  • the feed vapor phase has an advantageously high partial pressure of hydrogen to enable desirable driving forces for hydrogen permeation to be achieved.
  • large driving forces for the permeation of hydrogen can often be provided without the need to maintain the permeate exit side of the membrane at such low total pressures that an undue amount of compression is required to incrcese the pressure of the hydrogen permeate for reintroduction into the hydrocracking zone.
  • the large driving forces which are obtainable in the processes of this invention can, for instance, enable advantageous rates of permeation of hydrogen and thus excessive membrane surface area need not be required to obtain a desired amount of hydrogen permeate.
  • the large driving forces can also enhance the hydrogen purity in the hydrogen permeate with a feed vapor phase of a given hydrogen concentration.
  • the permeate exit side of the polymeric membrane is often at least about 7 or 15 atmospheres absolute, and may be as high as 40 or more atmospheres absolute, in order to minimize recompression costs for reintroducing the permeated hydrogen into the hydrocracking zone while still providing desirable recoveries of hydrogen.
  • the total pressure on the permeate exit side of the polymeric membrane is.at least about 20 atmospheres below the pressure on the feed side of the polymeric membrane. In many instances, this total pressure differential is at least about 35 or 40 atmospheres absolute and, depending upon the strength of the membrane, this pressure differential may be up to about 100 or 150 atmospheres.
  • the recovery of hydrogen from the feed vapor phase and the purity of hydrogen in the hydrogen permeate are interrelated.
  • the purity of the hydrogen in the hydrogen permeate decreases with increased recovery of hydrogen from the feed vapor phase.
  • the percentage of the hydrogen in the feed vapor phase which permeates the polymeric membrane will depend on the amount of hydrogen desired in the hydrogen permeate and the required purity of that hydrogen.
  • the percentage of hydrogen per- .meating is at least about 50, say, at least about 70, often about 70 to 95, percent of the hydrogen in the feed vapor phase.
  • the hydrogen permeate from the polymeric membrane has a hydrogen purity greater than that of the feed vapor phase.
  • the increase in hydrogen purity which is achieved will depend, in part, upon the hydrogen concentration of the feed vapor phase, the selectivity of the polymeric membrane, the permeability of the polymeric membrane to hydrogen, the effective membrane surface area (i.e., that membrane surface area available for effecting separations), and the driving force for the permeation of hydrogen.
  • One method for expressing the increase in hydrogen purity is in terms of the contaminant reduction ratio which is defined as the quantity of 100 minus the hydrogen purity percentage of the hydrogen permeate (H 2 % PS ) divided by the quantity of 100 minus the hydrogen purity of the feed vapor phase (H 2 % FG ). Frequently the contaminant reduction ratio is less than about 0.7, say, about 0.01 to 0.5.
  • the hydrogen permeate often contains at least about 90, e.g., about 90 to 99, volume percent hydrogen.
  • the hydrogen permeate which is recovered from the permeate exit side of the polymeric membrane can be removed and, preferably, without additional recompression be admixed with a hydrogen-containing stream providing another portion of the hydrogen feed gas to the hydrocracking zone (make-up hydrogen stream).
  • the make-up hydrogen stream should be at a slightly lower total pressure, e.g., than the total pressure of the hydrogen permeate.
  • the mixture of the hydrogen permeate and make-up hydrogen stream is preferably at a total pressure of at least about 5 or 20 atmospheres absolute and is compressed to about the pressure in the hydrocracking zone. This compression may occur in several stages.
  • a recycle compressor is required to reintroduce this gas into the hydrocracking zone,
  • the admixed make-up hydrogen stream and hydrogen permeate may thus be compressed to a sufficient pressure for introduction into the recycle stream passing to the suction of the recycle compressor.
  • the non-permeate-stream from the membrane may be used for any suitable purpose.
  • hydrocarbon products may be recovered from the non-permeate stream, the non-permeate stream may be used as a feed to a petroleum or petrochemical conversion operation or the non-permeate stream may be used for fuel. Since the non-permeate stream can be at essentially the same pressure as the feed vapor phase contacting the polymeric membrane, significant amounts of energy can be recovered from it by, for instance, the use of a turbine.
  • Suitable polymeric membranes for use in the processes of this invention need not exhibit extremely high selectivities of separation in order to recover a hydrogen permeate during an adequate purity for use in hydrocracking.
  • the selectivity of separation of a membrane is described in terms of the ratio of the permeability of the fast permeating gas (e.g., hydrogen) to the permeability of the slow permeating gas (e.g., methane) wherein the permeability of the gas through the membrane can be defined as the volume in cubic centimeters of gas at standard temperature and pressure, which passes through a membrane per square centimeter of surface area, per second, for a partial pressure differential of 1 centimeter of mercury across the membrane.
  • the fast permeating gas e.g., hydrogen
  • the slow permeating gas e.g., methane
  • the separation factor of suitable polymeric membranes is at least about 7 or 10 for the separation of hydrogen over methane.
  • the separation factor for hydrogen over methane is at least about 20, say, at least about 25.
  • Separation factors for hydrogen over methane of 100 or greater may be provided by certain polymeric membranes; however, polymers which provide such extremely high separation factors often exhibit low permeabilities to hydrogen. Therefore, the polymer for a membrane may be selected on its ability to quickly permeate hydrogen rather than on its selectivity of separation.
  • the higher the permeability of hydrogen through a polymeric membrane the less available membrane surface area required under given conditions to permeate a desired amount of hydrogen through the polymeric membrane.
  • Particularly desirable polymeric membranes exhibit hydrogen permeabilities of at least about 1x10 -6 , preferably at least about 20x10 -6 , cubic centimeters of hydrogen per square centimeter of membrane surface area per second at a partial pressure differential of 2 centimeter of mercury across the membrane at 25 0 C.
  • the polymeric membrane also exhibit a separation factor for hydrogen over nitrogen of at least about 10 or 20.
  • Polymeric membranes include membranes of organic polymer or organic polymer mixed with inorganics such as fillers, reinforcements, etc.
  • Polymers which may be suitable for the polymeric membranes and which may exhibit suitable selectivities for the permeation of hydrogen as compared to the permeation of each of methane and nitrogen, can be substituted or unsubstituted polymers and may be selected from polysulfones; poly(styrenes), including styrene- containing copolymers such as acrylonitrile-styrene copolymers, styrene-butadiene copolymers and styrene-vinylbenzylhalide copolymers; polycarbonates; cellulosic polymers, such as cellulose acetate, cellulose propionate, ethyl cellulose, methyl cellulose, nitrocellulose, etc.; polyamides and polyimides, including aryl polyamides and aryl polyimides; polyethers, poly(ary
  • aromatic-containing polymers are preferred for the polymeric membranes due to strength and due to the relatively high chemical resistance of these membranes to moieties in the feed vapor phase especially lower paraffins which usually are the predominant hydrocarbons in the feed vapor phase.
  • Particularly preferred polymers include aromatic-containing polysulfones, polycarbonates, polyCarylene oxides), polyamides and polyimides.
  • aromatic-containing polymers have both aliphatic and aromatic carbons, such as polymers containing bisphenol A-derived units within their polymeric backbones.
  • the membrane Since the rate of permeation through a polymeric membrane is affected by the thickness of the membrane through which a permeating moiety must pass, the membrane is preferably as thin as possible yet sufficiently thick to provide adequate strength to the membrane to withstand the separation conditions.
  • the membrane may be isotropic, i.e., have substantially the same density throughout, or may be anisotropic, i.e., have at least one zone of greater density than at least one other zone of the membrane. Anisotropic membranes are frequently advantageous since a moiety need only pass through a portion of the overall structural thickness of the polymeric membrane.
  • the polymeric membrane may be chemically homogeneous, i.e., constructed of the same material, or may be a composite membrane.
  • Suitable composite membranes may comprise a thin layer which effects the separation on a porous physical support which provides the necessary strength to the membrane to withstand membrane separation conditions but offers little resistance to gas flow.
  • Other suitable composite membranes are the multicomponent membranes such as disclosed by Henis, et al., in U.S. patent No. 4,230,463. These membranes comprise a porous separation membrane which substantially effects the separation and a coating material in occluding contact with the porous separation membrane. These multicomponent membranes are particularly attractive for gas separations in that good selectivity of separation and high fiux through the membrane can be obtained.
  • the materials for the coating of the multicomponent membranes such as disclosed by Henis, et al., may be natural or synthetic substances, and are often polymers, and advantageously exhibit the appropriate properties to provide occluding contact with the porous separation membrane.
  • a permeator containing the polymeric membrane may be of any suitable design for gas separations, e.g., plate and frame, or having spiral wound film membranes, tubular membranes, hollow fiber membranes, or the like.
  • the permeator comprises hollow fiber membranes due to the high membrane surface area per unit volume which can be obtained.
  • a plurality of the membranes can be arranged in parallel in a bundle and the feed vapor phase can be contacted with either the outside (shell side) or the inside (bore side) of the membranes.
  • the feed vapor phase is contacted with the shell side of the hollow filament membranes since passage of the feed vapor phase through the bore side of the membranes may involve substantially greater pressure losses to the feed vapor phase, which pressure losses can detract from the driving force for permeation and may unduly reduce the pressure of the non-permeate stream.
  • the concentration of hydrogen on the feed side of the membrane is continually diminishing as hydrogen permeates to the permeate exit side of the membrane, the hydrogen partial pressure differential across the membrane is continually changing. Therefore, flow patterns in the permeator can be utilized to provide desirable recoveries of hydrogen from the feed vapor phase. For instance, the flows of the feed vapor phase and the hydrogen permeate can be concurrent or countercurrent.
  • the shell side feed can be radial, i.e., the feed vapor phase transversely flows past the membranes either to the inside or, usually, the outside of the bundle, or the flow can be axial, i.e., the feed vapor phase disperses within the bundle and generally flows in the direction in which the hollow fibers or tubular membranes are longitudinally oriented.
  • Hollow fibers are an often preferred configuration for polymeric membranes for use in processes for recovering hydrogen from petroleum conversion operations.
  • the hollow fibers have an essentially cylindrical configuration with an outside diameter of about 50 to 1000, preferably, about 100 to 800, microns, and a concentric bore wherein the ratio of the wall thickness to outside diameter is about 0.1 to 0.45, say, about 0.15 to 0.35.
  • a hydrocracker is generally designated by the numeral 10 which receives a hydrocarbonaceous feed via a line 12.
  • the hydrocrackate exits hydrocracker 10 via a line 14, is cooled in a heat exchanger 16, and passes to a separator vessel 18 from which a vapor phase product and a liquid phase product are obtained.
  • the liquid phase product exits the separator vessel 18 via a line 20 and may be passed to, e.g., a low pressure separator for additional recovery of hydrogen and to a fractionation column to segregate the desired products.
  • the vapor phase product exits the first separator vessel 18 via a line 22 and passes to an entrained liquid separator 24.
  • the entrained liquid separator 24 may conveniently be a knock-out pot provided with a fibrous demister.
  • the vapor phase then passes to a heat exchanger 26 wherein the gas is suitably heated for introduction into a permeator 28, and then passes to the permeator 28.
  • the permeator 28 is a single-ended permeator having the vapor phase contact the exterior of the polymeric membranes contained therein.
  • Figure 5 of U.S. Patent No. 4,171,885 schematicaLLy depicts a single-ended permeator.
  • the polymeric membranes are conveniently in the form of hollow fibers.
  • a hydrogen permeate is withdrawn from the interior of the hollow fibers and passes through a line 30 for a combination with a make-up hydrogen stream passing to the hydrocracker.
  • the non- permeating gas i.e., the hydrogen depleted gas
  • a make-up hydrogen stream from a hydrogen providing source from within the refinery (which may form a hydrotreater) is passed via a line 34 to the hydrocracker system.
  • the make-up hydrogen stream in the line 34 is combined with relatively pure hydrogen from a hydrogen plant (not shown) via a line 36.
  • the pressures of these gases are usually relatively low, e.g., about 3 to 10 atmospheres absolute and are compressed in a compressor 38 to a pressure suitable .for combination with the hydrogen permeate in the line 30.
  • the compressed gases exit the compressor 38 are admixed with hydrogen permeate from the line 30 in a line 40 and then are passed to a compressor 42 which increases the pressure of the gases to a level at which the gases can be introduced into the hydrocracker.
  • Lines 44 and 46 conduct the gases from the ccmpressor 42 to the hydrocracker 10.
  • a hydrocracking plant prior to modification by this invention can be simplified to comprise a hydrocracking vessel.and a high pressure gas-liquid separator.
  • the hydrocarbonaceous feed and hydrogen feed gas are preheated and combined for passage to the hydrocracking vessel, and the hydrocrackate from the hydrocracking vessel is cooled and passed to a high pressure separator (at a pressure of about 150 atmospheres absolute and a temperature of about 46°C) with the separated vapor phase being compressed and recycled to the hydrocracking vessel.
  • the separated vapor phase is passed to a knock-out pot with a fibrous demister, heated to 55°C, split into 32 substantially equal streams with each stream passing to a single-ended permeator containing hollow fiber membranes providing about 375 square meters of effective membrane surface area.
  • the hollow fiber membranes are polysiloxane-coated anisotropic polysulfone hollow fibers such as disclosed in Example 1 of BeLgian Patent 882,475, granted 29 September 1980.
  • the hoLLow fiber membranes exhibit a hydrogen permeability of about 8x10 -6 cubic centimeters of hydrogen (STP) per square centimeter of membrane surface area per second per centimeter of mercury partial pressure, differential.
  • the separation factor for hydrogen over methane is about 80.
  • the hydrocarbonaceous feed stock comprises 120,000 kilograms per hour of a catalytically-cracked product which contains. aromatics and olefins, and 50,000 kilograms per hour of a recycled higher boiling liquid phase obtained by distilling the hydrocrackate.
  • the make-up hydrogen is obtained from a hydrotreater off gas containing about 73 volume percent hydrogen and substantially pure hydrogen from a hydrogen plant.
  • the hydrocracking vessel is operated at a pressure of about 150 atmospheres absolute.
  • the high pressure separator is at a pressure of about 142 atmospheres absolute and a temperature of 2 bout 46°C.
  • the permeate exit side of the permeators is at a pressure of about 70 atmospheres absolute.
  • Example A is a comparative Example illustrating the unmodified operation of the hydrocracker system.
  • Example B and C the separated vapor phase is passed to the permeators, and the total amount of hydrogen passed to the hydrocracker vesse is maintained constant with respect to the comparative Example.
  • Example B no hydrogen from the hydrogen plant is used as make-up, whereas in Example C the amount of hydrogen from the hydrogen plant is the same as that in the comparative Example.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
EP82301236A 1981-03-12 1982-03-11 Hydrokrackverfahren mit verbessertem Wasserstoff-Nutzungsgrad Withdrawn EP0061259A1 (de)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US06/243,220 US4367135A (en) 1981-03-12 1981-03-12 Processes
US243220 1981-03-12
US06/243,273 US4362613A (en) 1981-03-13 1981-03-13 Hydrocracking processes having an enhanced efficiency of hydrogen utilization
US243273 1981-03-13

Publications (1)

Publication Number Publication Date
EP0061259A1 true EP0061259A1 (de) 1982-09-29

Family

ID=26935684

Family Applications (1)

Application Number Title Priority Date Filing Date
EP82301236A Withdrawn EP0061259A1 (de) 1981-03-12 1982-03-11 Hydrokrackverfahren mit verbessertem Wasserstoff-Nutzungsgrad

Country Status (1)

Country Link
EP (1) EP0061259A1 (de)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0448439A1 (de) * 1990-03-20 1991-09-25 Institut Français du Pétrole Verfahren zur Fraktionierung von einem Gasgemisch enthaltend Wasserstoff, leichte alifatische Kohlenwasserstoffe und leichte aromatische Kohlenwasserstoffe
EP0952203A1 (de) * 1998-04-24 1999-10-27 Shell Internationale Researchmaatschappij B.V. Entschwefelung von Kohlenwasserstoffe enthaltenden Einsätzen
US7306651B2 (en) 2002-02-15 2007-12-11 L'Air Liquide, Société Anonyme à Directoire et Conseil de Surveillance pour l'Etude et l'Exploitation des Procédés Georges Claude Method for treatment of a gaseous mixture comprising hydrogen and hydrogen sulphide
EP1930397A1 (de) * 2006-10-26 2008-06-11 Petrochina Company Limited Vorrichtung und Verfahren zur Erhöhung der Konzentration rückgeführten Wasserstoffs in einem Hochdruck-Hydrierungsreaktor
CN109970029A (zh) * 2019-04-08 2019-07-05 大连理工大学 一种膜分离强化的高含氢炼厂气变压吸附氢气提纯工艺

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3471397A (en) * 1967-02-27 1969-10-07 Universal Oil Prod Co Black oil conversion process
US3733260A (en) * 1972-02-04 1973-05-15 Texaco Inc Hydrodesulfurization process
FR2265673A1 (en) * 1974-03-27 1975-10-24 Raffinage Cie Francaise Sepn of hydrogen from hydrocarbon conversion effluents - by passage through diffusion barriers, and recycling hydrogen

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3471397A (en) * 1967-02-27 1969-10-07 Universal Oil Prod Co Black oil conversion process
US3733260A (en) * 1972-02-04 1973-05-15 Texaco Inc Hydrodesulfurization process
FR2265673A1 (en) * 1974-03-27 1975-10-24 Raffinage Cie Francaise Sepn of hydrogen from hydrocarbon conversion effluents - by passage through diffusion barriers, and recycling hydrogen

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
OIL & GAS JOURNAL, vol. 78, no. 21, May 1980, pages 63-68, Tulsa Oklahoma (USA); *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0448439A1 (de) * 1990-03-20 1991-09-25 Institut Français du Pétrole Verfahren zur Fraktionierung von einem Gasgemisch enthaltend Wasserstoff, leichte alifatische Kohlenwasserstoffe und leichte aromatische Kohlenwasserstoffe
FR2659964A1 (fr) * 1990-03-20 1991-09-27 Inst Francais Du Petrole Procede de fractionnement d'un melange gazeux renfermant de l'hydrogene des hydrocarbures aliphatiques legers et des hydrocarbures aromatiques legers.
EP0952203A1 (de) * 1998-04-24 1999-10-27 Shell Internationale Researchmaatschappij B.V. Entschwefelung von Kohlenwasserstoffe enthaltenden Einsätzen
US7306651B2 (en) 2002-02-15 2007-12-11 L'Air Liquide, Société Anonyme à Directoire et Conseil de Surveillance pour l'Etude et l'Exploitation des Procédés Georges Claude Method for treatment of a gaseous mixture comprising hydrogen and hydrogen sulphide
EP1930397A1 (de) * 2006-10-26 2008-06-11 Petrochina Company Limited Vorrichtung und Verfahren zur Erhöhung der Konzentration rückgeführten Wasserstoffs in einem Hochdruck-Hydrierungsreaktor
US7785547B2 (en) 2006-10-26 2010-08-31 Petrochina Company Limited Apparatus and method for increasing the concentration of recycled hydrogen in a high pressure hydrogenation reactor
CN109970029A (zh) * 2019-04-08 2019-07-05 大连理工大学 一种膜分离强化的高含氢炼厂气变压吸附氢气提纯工艺
CN109970029B (zh) * 2019-04-08 2022-03-29 大连理工大学 一种膜分离强化的高含氢炼厂气变压吸附氢气提纯工艺

Similar Documents

Publication Publication Date Title
US4367135A (en) Processes
US4362613A (en) Hydrocracking processes having an enhanced efficiency of hydrogen utilization
US5082551A (en) Hydroconversion effluent separation process
CA1249504A (en) Product recovery process
EP0009385B1 (de) Verfahren zur Herstellung von Methanol
EP0021756B1 (de) Selektives Adsorptionsverfahren und -system
US5507856A (en) Hydrogen recovery by adsorbent membranes
US4180552A (en) Process for hydrogen recovery from ammonia purge gases
US6011192A (en) Membrane-based conditioning for adsorption system feed gases
US4172885A (en) Process for the recovery of hydrogen from ammonia purge gases
US6350371B1 (en) Refinery process including membrane separation
EP0013804B1 (de) Verbessertes Carbonylierungsverfahren unter Rückführung eines Teiles des Reaktionsgases
GB2154600A (en) Producing and purifying methane
EP2074057B1 (de) Verfahren zur extraktion von wasserstoff aus einem gasgemisch
EP0582184A1 (de) Rückgewinnung von Wasserstoff mittels Adsorptionsmembranen
EP0434562B1 (de) Verfahren und Vorrichtung zum Abscheiden von Kohlenwasserstoffmonoxid aus Wasserstoff enthaltenden Gasgemischen
US6165350A (en) Selective purge for catalytic reformer recycle loop
US7575670B1 (en) Process for the production of low sulfur diesel from an asphaltene-containings feedstock
EA006275B1 (ru) Способ непрерывного получения углеводородов из синтез-газа в шламовых реакторах и отделения получаемой жидкой фазы от твёрдой фазы
US4842718A (en) Process for recovery of hydrocarbons from a fluid feed
US6264828B1 (en) Process, including membrane separation, for separating hydrogen from hydrocarbons
JPS6260129B2 (de)
EP0061259A1 (de) Hydrokrackverfahren mit verbessertem Wasserstoff-Nutzungsgrad
US6179996B1 (en) Selective purge for hydrogenation reactor recycle loop
EA006933B1 (ru) Способ непрерывного получения углеводородов из синтез-газа в шламовых реакторах и отделения получаемой жидкой фазы от твердой фазы

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): DE FR GB IT NL

17P Request for examination filed

Effective date: 19821102

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 19831209

RIN1 Information on inventor provided before grant (corrected)

Inventor name: MACLEAN, DONALD LEWIS GAGE