EP0058839A1 - Sensitized organic electron donor compounds - Google Patents
Sensitized organic electron donor compounds Download PDFInfo
- Publication number
- EP0058839A1 EP0058839A1 EP82100686A EP82100686A EP0058839A1 EP 0058839 A1 EP0058839 A1 EP 0058839A1 EP 82100686 A EP82100686 A EP 82100686A EP 82100686 A EP82100686 A EP 82100686A EP 0058839 A1 EP0058839 A1 EP 0058839A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- group
- nucleus
- layer
- dye
- aliphatic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 150000001875 compounds Chemical class 0.000 title claims abstract description 36
- RKJUIXBNRJVNHR-UHFFFAOYSA-N indolenine group Chemical group N1=CCC2=CC=CC=C12 RKJUIXBNRJVNHR-UHFFFAOYSA-N 0.000 claims abstract description 25
- 125000003170 phenylsulfonyl group Chemical group C1(=CC=CC=C1)S(=O)(=O)* 0.000 claims abstract description 18
- 125000003236 benzoyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C(*)=O 0.000 claims abstract description 15
- FCTIZUUFUMDWEH-UHFFFAOYSA-N 1h-imidazo[4,5-b]quinoxaline Chemical compound C1=CC=C2N=C(NC=N3)C3=NC2=C1 FCTIZUUFUMDWEH-UHFFFAOYSA-N 0.000 claims abstract description 13
- ANRHNWWPFJCPAZ-UHFFFAOYSA-M thionine Chemical compound [Cl-].C1=CC(N)=CC2=[S+]C3=CC(N)=CC=C3N=C21 ANRHNWWPFJCPAZ-UHFFFAOYSA-M 0.000 claims abstract 4
- -1 sulfonyl carbonyl Chemical group 0.000 claims description 88
- 125000004432 carbon atom Chemical group C* 0.000 claims description 47
- 125000004429 atom Chemical group 0.000 claims description 21
- 125000000217 alkyl group Chemical group 0.000 claims description 19
- 125000001931 aliphatic group Chemical group 0.000 claims description 18
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 claims description 18
- 125000003118 aryl group Chemical group 0.000 claims description 15
- 125000000623 heterocyclic group Chemical group 0.000 claims description 14
- 150000001450 anions Chemical class 0.000 claims description 13
- 239000011230 binding agent Substances 0.000 claims description 12
- 239000002253 acid Substances 0.000 claims description 11
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 claims description 11
- 125000001424 substituent group Chemical group 0.000 claims description 11
- UJOBWOGCFQCDNV-UHFFFAOYSA-N 9H-carbazole Chemical compound C1=CC=C2C3=CC=CC=C3NC2=C1 UJOBWOGCFQCDNV-UHFFFAOYSA-N 0.000 claims description 10
- 125000001797 benzyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])* 0.000 claims description 10
- 150000003254 radicals Chemical class 0.000 claims description 10
- 230000001235 sensitizing effect Effects 0.000 claims description 10
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 claims description 9
- 229910052739 hydrogen Inorganic materials 0.000 claims description 9
- 239000000758 substrate Substances 0.000 claims description 9
- MYKQKWIPLZEVOW-UHFFFAOYSA-N 11h-benzo[a]carbazole Chemical class C1=CC2=CC=CC=C2C2=C1C1=CC=CC=C1N2 MYKQKWIPLZEVOW-UHFFFAOYSA-N 0.000 claims description 8
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 claims description 8
- 229920003227 poly(N-vinyl carbazole) Polymers 0.000 claims description 7
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 claims description 6
- IOJUPLGTWVMSFF-UHFFFAOYSA-N benzothiazole Chemical compound C1=CC=C2SC=NC2=C1 IOJUPLGTWVMSFF-UHFFFAOYSA-N 0.000 claims description 6
- 125000004051 hexyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 claims description 6
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 claims description 6
- 125000003545 alkoxy group Chemical group 0.000 claims description 5
- 125000004093 cyano group Chemical group *C#N 0.000 claims description 5
- 229910052736 halogen Inorganic materials 0.000 claims description 5
- 150000002367 halogens Chemical class 0.000 claims description 5
- 125000001624 naphthyl group Chemical group 0.000 claims description 5
- BCMCBBGGLRIHSE-UHFFFAOYSA-N 1,3-benzoxazole Chemical compound C1=CC=C2OC=NC2=C1 BCMCBBGGLRIHSE-UHFFFAOYSA-N 0.000 claims description 4
- 239000000839 emulsion Substances 0.000 claims description 4
- AIGNCQCMONAWOL-UHFFFAOYSA-N 1,3-benzoselenazole Chemical compound C1=CC=C2[se]C=NC2=C1 AIGNCQCMONAWOL-UHFFFAOYSA-N 0.000 claims description 3
- ODIRBFFBCSTPTO-UHFFFAOYSA-N 1,3-selenazole Chemical compound C1=C[se]C=N1 ODIRBFFBCSTPTO-UHFFFAOYSA-N 0.000 claims description 3
- KXNQKOAQSGJCQU-UHFFFAOYSA-N benzo[e][1,3]benzothiazole Chemical compound C1=CC=C2C(N=CS3)=C3C=CC2=C1 KXNQKOAQSGJCQU-UHFFFAOYSA-N 0.000 claims description 3
- WMUIZUWOEIQJEH-UHFFFAOYSA-N benzo[e][1,3]benzoxazole Chemical compound C1=CC=C2C(N=CO3)=C3C=CC2=C1 WMUIZUWOEIQJEH-UHFFFAOYSA-N 0.000 claims description 3
- 150000001768 cations Chemical class 0.000 claims description 2
- 125000000951 phenoxy group Chemical group [H]C1=C([H])C([H])=C(O*)C([H])=C1[H] 0.000 claims description 2
- 125000004001 thioalkyl group Chemical group 0.000 claims description 2
- RAXXELZNTBOGNW-UHFFFAOYSA-N imidazole Natural products C1=CNC=N1 RAXXELZNTBOGNW-UHFFFAOYSA-N 0.000 claims 3
- SIKJAQJRHWYJAI-UHFFFAOYSA-N Indole Chemical compound C1=CC=C2NC=CC2=C1 SIKJAQJRHWYJAI-UHFFFAOYSA-N 0.000 claims 2
- ZCQWOFVYLHDMMC-UHFFFAOYSA-N Oxazole Chemical compound C1=COC=N1 ZCQWOFVYLHDMMC-UHFFFAOYSA-N 0.000 claims 2
- FZWLAAWBMGSTSO-UHFFFAOYSA-N Thiazole Chemical compound C1=CSC=N1 FZWLAAWBMGSTSO-UHFFFAOYSA-N 0.000 claims 2
- 125000001147 pentyl group Chemical group C(CCCC)* 0.000 claims 2
- 125000006413 ring segment Chemical group 0.000 claims 2
- 125000000472 sulfonyl group Chemical group *S(*)(=O)=O 0.000 claims 2
- HYZJCKYKOHLVJF-UHFFFAOYSA-N 1H-benzimidazole Chemical compound C1=CC=C2NC=NC2=C1 HYZJCKYKOHLVJF-UHFFFAOYSA-N 0.000 claims 1
- USYCQABRSUEURP-UHFFFAOYSA-N 1h-benzo[f]benzimidazole Chemical compound C1=CC=C2C=C(NC=N3)C3=CC2=C1 USYCQABRSUEURP-UHFFFAOYSA-N 0.000 claims 1
- MQVPEPQLLRCIIJ-UHFFFAOYSA-N 3h-pyrrolo[2,3-b]pyridine Chemical compound C1=CC=C2CC=NC2=N1 MQVPEPQLLRCIIJ-UHFFFAOYSA-N 0.000 claims 1
- 239000004215 Carbon black (E152) Substances 0.000 claims 1
- 125000005708 carbonyloxy group Chemical group [*:2]OC([*:1])=O 0.000 claims 1
- 229930195733 hydrocarbon Natural products 0.000 claims 1
- PZOUSPYUWWUPPK-UHFFFAOYSA-N indole Natural products CC1=CC=CC2=C1C=CN2 PZOUSPYUWWUPPK-UHFFFAOYSA-N 0.000 claims 1
- CTAPFRYPJLPFDF-UHFFFAOYSA-N isoxazole Chemical compound C=1C=NOC=1 CTAPFRYPJLPFDF-UHFFFAOYSA-N 0.000 claims 1
- 125000003226 pyrazolyl group Chemical group 0.000 claims 1
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 claims 1
- CBDKQYKMCICBOF-UHFFFAOYSA-N thiazoline Chemical compound C1CN=CS1 CBDKQYKMCICBOF-UHFFFAOYSA-N 0.000 claims 1
- 239000000975 dye Substances 0.000 abstract description 72
- 238000010276 construction Methods 0.000 abstract description 14
- 238000001228 spectrum Methods 0.000 abstract description 2
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 abstract 1
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 30
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 26
- 239000000243 solution Substances 0.000 description 23
- 238000000576 coating method Methods 0.000 description 22
- 239000011248 coating agent Substances 0.000 description 21
- 239000000463 material Substances 0.000 description 16
- 239000000203 mixture Substances 0.000 description 15
- 229920000728 polyester Polymers 0.000 description 15
- HUMNYLRZRPPJDN-UHFFFAOYSA-N benzaldehyde Chemical compound O=CC1=CC=CC=C1 HUMNYLRZRPPJDN-UHFFFAOYSA-N 0.000 description 14
- 229910052757 nitrogen Inorganic materials 0.000 description 14
- JOXIMZWYDAKGHI-UHFFFAOYSA-N toluene-4-sulfonic acid Chemical compound CC1=CC=C(S(O)(=O)=O)C=C1 JOXIMZWYDAKGHI-UHFFFAOYSA-N 0.000 description 14
- WFDIJRYMOXRFFG-UHFFFAOYSA-N Acetic anhydride Chemical compound CC(=O)OC(C)=O WFDIJRYMOXRFFG-UHFFFAOYSA-N 0.000 description 12
- WSLDOOZREJYCGB-UHFFFAOYSA-N 1,2-Dichloroethane Chemical compound ClCCCl WSLDOOZREJYCGB-UHFFFAOYSA-N 0.000 description 10
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 10
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 10
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 9
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 9
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 9
- XMBWDFGMSWQBCA-UHFFFAOYSA-N hydrogen iodide Chemical compound I XMBWDFGMSWQBCA-UHFFFAOYSA-N 0.000 description 9
- QGKMIGUHVLGJBR-UHFFFAOYSA-M (4z)-1-(3-methylbutyl)-4-[[1-(3-methylbutyl)quinolin-1-ium-4-yl]methylidene]quinoline;iodide Chemical compound [I-].C12=CC=CC=C2N(CCC(C)C)C=CC1=CC1=CC=[N+](CCC(C)C)C2=CC=CC=C12 QGKMIGUHVLGJBR-UHFFFAOYSA-M 0.000 description 8
- 125000003903 2-propenyl group Chemical group [H]C([*])([H])C([H])=C([H])[H] 0.000 description 8
- 239000001257 hydrogen Substances 0.000 description 8
- 125000004433 nitrogen atom Chemical group N* 0.000 description 8
- VLTRZXGMWDSKGL-UHFFFAOYSA-M perchlorate Inorganic materials [O-]Cl(=O)(=O)=O VLTRZXGMWDSKGL-UHFFFAOYSA-M 0.000 description 8
- QNGNSVIICDLXHT-UHFFFAOYSA-N para-ethylbenzaldehyde Natural products CCC1=CC=C(C=O)C=C1 QNGNSVIICDLXHT-UHFFFAOYSA-N 0.000 description 7
- VLTRZXGMWDSKGL-UHFFFAOYSA-N perchloric acid Chemical compound OCl(=O)(=O)=O VLTRZXGMWDSKGL-UHFFFAOYSA-N 0.000 description 7
- 229910052717 sulfur Inorganic materials 0.000 description 7
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 6
- CPELXLSAUQHCOX-UHFFFAOYSA-M Bromide Chemical compound [Br-] CPELXLSAUQHCOX-UHFFFAOYSA-M 0.000 description 6
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 6
- KKEYFWRCBNTPAC-UHFFFAOYSA-N Terephthalic acid Chemical compound OC(=O)C1=CC=C(C(O)=O)C=C1 KKEYFWRCBNTPAC-UHFFFAOYSA-N 0.000 description 6
- 150000001716 carbazoles Chemical class 0.000 description 6
- 238000006243 chemical reaction Methods 0.000 description 6
- QQVIHTHCMHWDBS-UHFFFAOYSA-N isophthalic acid Chemical compound OC(=O)C1=CC=CC(C(O)=O)=C1 QQVIHTHCMHWDBS-UHFFFAOYSA-N 0.000 description 6
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 6
- 238000002844 melting Methods 0.000 description 6
- 230000008018 melting Effects 0.000 description 6
- JZMJDSHXVKJFKW-UHFFFAOYSA-M methyl sulfate(1-) Chemical compound COS([O-])(=O)=O JZMJDSHXVKJFKW-UHFFFAOYSA-M 0.000 description 6
- IIACRCGMVDHOTQ-UHFFFAOYSA-M sulfamate Chemical compound NS([O-])(=O)=O IIACRCGMVDHOTQ-UHFFFAOYSA-M 0.000 description 6
- SNRUBQQJIBEYMU-UHFFFAOYSA-N Dodecane Natural products CCCCCCCCCCCC SNRUBQQJIBEYMU-UHFFFAOYSA-N 0.000 description 5
- BUGBHKTXTAQXES-UHFFFAOYSA-N Selenium Chemical compound [Se] BUGBHKTXTAQXES-UHFFFAOYSA-N 0.000 description 5
- 150000001299 aldehydes Chemical class 0.000 description 5
- 238000001816 cooling Methods 0.000 description 5
- 125000003438 dodecyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 5
- 125000005842 heteroatom Chemical group 0.000 description 5
- 239000003960 organic solvent Substances 0.000 description 5
- 125000004430 oxygen atom Chemical group O* 0.000 description 5
- 238000002360 preparation method Methods 0.000 description 5
- 229910052711 selenium Inorganic materials 0.000 description 5
- 230000035945 sensitivity Effects 0.000 description 5
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 4
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 4
- 238000002835 absorbance Methods 0.000 description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 4
- 239000000460 chlorine Substances 0.000 description 4
- 229910052801 chlorine Inorganic materials 0.000 description 4
- 125000001309 chloro group Chemical group Cl* 0.000 description 4
- 230000003647 oxidation Effects 0.000 description 4
- 238000007254 oxidation reaction Methods 0.000 description 4
- 229910052760 oxygen Inorganic materials 0.000 description 4
- 239000001301 oxygen Substances 0.000 description 4
- 125000002914 sec-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 4
- 125000004079 stearyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 4
- 125000004434 sulfur atom Chemical group 0.000 description 4
- IKCIWCPVRZLPPA-UHFFFAOYSA-N 11-ethylbenzo[a]carbazole Chemical compound C1=CC=CC2=C3N(CC)C4=CC=CC=C4C3=CC=C21 IKCIWCPVRZLPPA-UHFFFAOYSA-N 0.000 description 3
- 125000001731 2-cyanoethyl group Chemical group [H]C([H])(*)C([H])([H])C#N 0.000 description 3
- 229920001634 Copolyester Polymers 0.000 description 3
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 3
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 3
- 238000009835 boiling Methods 0.000 description 3
- 239000007795 chemical reaction product Substances 0.000 description 3
- 229920001577 copolymer Polymers 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 238000001914 filtration Methods 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 238000006384 oligomerization reaction Methods 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 108091008695 photoreceptors Proteins 0.000 description 3
- 230000005855 radiation Effects 0.000 description 3
- 238000010992 reflux Methods 0.000 description 3
- 150000003839 salts Chemical class 0.000 description 3
- 239000011669 selenium Substances 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 238000006467 substitution reaction Methods 0.000 description 3
- 239000011593 sulfur Substances 0.000 description 3
- 125000003944 tolyl group Chemical group 0.000 description 3
- 125000006569 (C5-C6) heterocyclic group Chemical group 0.000 description 2
- FUOSTELFLYZQCW-UHFFFAOYSA-N 1,2-oxazol-3-one Chemical class OC=1C=CON=1 FUOSTELFLYZQCW-UHFFFAOYSA-N 0.000 description 2
- GJGROPRLXDXIAN-UHFFFAOYSA-N 1,3-thiazol-4-one Chemical class O=C1CSC=N1 GJGROPRLXDXIAN-UHFFFAOYSA-N 0.000 description 2
- ZOBPZXTWZATXDG-UHFFFAOYSA-N 1,3-thiazolidine-2,4-dione Chemical class O=C1CSC(=O)N1 ZOBPZXTWZATXDG-UHFFFAOYSA-N 0.000 description 2
- AZQWKYJCGOJGHM-UHFFFAOYSA-N 1,4-benzoquinone Chemical compound O=C1C=CC(=O)C=C1 AZQWKYJCGOJGHM-UHFFFAOYSA-N 0.000 description 2
- ZRHUHDUEXWHZMA-UHFFFAOYSA-N 1,4-dihydropyrazol-5-one Chemical class O=C1CC=NN1 ZRHUHDUEXWHZMA-UHFFFAOYSA-N 0.000 description 2
- 125000004973 1-butenyl group Chemical group C(=CCC)* 0.000 description 2
- 125000006017 1-propenyl group Chemical group 0.000 description 2
- XJCUDCJASAZJBD-UHFFFAOYSA-N 2-(benzenesulfonyl)-1h-imidazo[4,5-b]quinoxaline Chemical compound N=1C2=NC3=CC=CC=C3N=C2NC=1S(=O)(=O)C1=CC=CC=C1 XJCUDCJASAZJBD-UHFFFAOYSA-N 0.000 description 2
- KVUPQEKUVSNRCD-UHFFFAOYSA-N 2-amino-1,3-oxazol-4-one Chemical compound NC1=NC(=O)CO1 KVUPQEKUVSNRCD-UHFFFAOYSA-N 0.000 description 2
- 125000004974 2-butenyl group Chemical group C(C=CC)* 0.000 description 2
- GCSVNNODDIEGEX-UHFFFAOYSA-N 2-sulfanylidene-1,3-oxazolidin-4-one Chemical class O=C1COC(=S)N1 GCSVNNODDIEGEX-UHFFFAOYSA-N 0.000 description 2
- UGWULZWUXSCWPX-UHFFFAOYSA-N 2-sulfanylideneimidazolidin-4-one Chemical class O=C1CNC(=S)N1 UGWULZWUXSCWPX-UHFFFAOYSA-N 0.000 description 2
- CAAMSDWKXXPUJR-UHFFFAOYSA-N 3,5-dihydro-4H-imidazol-4-one Chemical class O=C1CNC=N1 CAAMSDWKXXPUJR-UHFFFAOYSA-N 0.000 description 2
- 125000004975 3-butenyl group Chemical group C(CC=C)* 0.000 description 2
- RGHHSNMVTDWUBI-UHFFFAOYSA-N 4-hydroxybenzaldehyde Chemical compound OC1=CC=C(C=O)C=C1 RGHHSNMVTDWUBI-UHFFFAOYSA-N 0.000 description 2
- ROEOVWIEALGNLM-UHFFFAOYSA-N 5h-benzo[b]carbazole Chemical compound C1=CC=C2C=C3C4=CC=CC=C4NC3=CC2=C1 ROEOVWIEALGNLM-UHFFFAOYSA-N 0.000 description 2
- KIWBPDUYBMNFTB-UHFFFAOYSA-N Ethyl hydrogen sulfate Chemical compound CCOS(O)(=O)=O KIWBPDUYBMNFTB-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- AMIMRNSIRUDHCM-UHFFFAOYSA-N Isopropylaldehyde Chemical compound CC(C)C=O AMIMRNSIRUDHCM-UHFFFAOYSA-N 0.000 description 2
- ZMZDMBWJUHKJPS-UHFFFAOYSA-M Thiocyanate anion Chemical compound [S-]C#N ZMZDMBWJUHKJPS-UHFFFAOYSA-M 0.000 description 2
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 2
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 2
- 125000004390 alkyl sulfonyl group Chemical group 0.000 description 2
- 125000004391 aryl sulfonyl group Chemical group 0.000 description 2
- AMTXUWGBSGZXCJ-UHFFFAOYSA-N benzo[e][1,3]benzoselenazole Chemical class C1=CC=C2C(N=C[se]3)=C3C=CC2=C1 AMTXUWGBSGZXCJ-UHFFFAOYSA-N 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 125000002057 carboxymethyl group Chemical group [H]OC(=O)C([H])([H])[*] 0.000 description 2
- 239000003054 catalyst Substances 0.000 description 2
- PGWFQHBXMJMAPN-UHFFFAOYSA-N ctk4b5078 Chemical compound [Cd].OS(=O)(=O)[Se]S(O)(=O)=O PGWFQHBXMJMAPN-UHFFFAOYSA-N 0.000 description 2
- 125000004122 cyclic group Chemical group 0.000 description 2
- HGCIXCUEYOPUTN-UHFFFAOYSA-N cyclohexene Chemical compound C1CCC=CC1 HGCIXCUEYOPUTN-UHFFFAOYSA-N 0.000 description 2
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 2
- 125000001153 fluoro group Chemical group F* 0.000 description 2
- 125000005843 halogen group Chemical group 0.000 description 2
- ZMZDMBWJUHKJPS-UHFFFAOYSA-N hydrogen thiocyanate Natural products SC#N ZMZDMBWJUHKJPS-UHFFFAOYSA-N 0.000 description 2
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 2
- 125000002768 hydroxyalkyl group Chemical group 0.000 description 2
- 238000003384 imaging method Methods 0.000 description 2
- UEKDRLRXXAOOFP-UHFFFAOYSA-N imidazolidine-2,4-dione Chemical class O=C1CNC(=O)N1.O=C1CNC(=O)N1 UEKDRLRXXAOOFP-UHFFFAOYSA-N 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 230000006698 induction Effects 0.000 description 2
- 239000012212 insulator Substances 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- ZLTPDFXIESTBQG-UHFFFAOYSA-N isothiazole Chemical class C=1C=NSC=1 ZLTPDFXIESTBQG-UHFFFAOYSA-N 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 125000001434 methanylylidene group Chemical group [H]C#[*] 0.000 description 2
- 125000000449 nitro group Chemical group [O-][N+](*)=O 0.000 description 2
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 2
- 125000003261 o-tolyl group Chemical group [H]C1=C([H])C(*)=C(C([H])=C1[H])C([H])([H])[H] 0.000 description 2
- 238000000643 oven drying Methods 0.000 description 2
- 150000002916 oxazoles Chemical class 0.000 description 2
- 125000004095 oxindolyl group Chemical class N1(C(CC2=CC=CC=C12)=O)* 0.000 description 2
- ZRSNZINYAWTAHE-UHFFFAOYSA-N p-methoxybenzaldehyde Chemical compound COC1=CC=C(C=O)C=C1 ZRSNZINYAWTAHE-UHFFFAOYSA-N 0.000 description 2
- 125000001037 p-tolyl group Chemical group [H]C1=C([H])C(=C([H])C([H])=C1*)C([H])([H])[H] 0.000 description 2
- 239000000049 pigment Substances 0.000 description 2
- 229920000515 polycarbonate Polymers 0.000 description 2
- 239000004417 polycarbonate Substances 0.000 description 2
- 229920000139 polyethylene terephthalate Polymers 0.000 description 2
- 239000005020 polyethylene terephthalate Substances 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 150000003230 pyrimidines Chemical class 0.000 description 2
- 238000001953 recrystallisation Methods 0.000 description 2
- KIWUVOGUEXMXSV-UHFFFAOYSA-N rhodanine Chemical class O=C1CSC(=S)N1 KIWUVOGUEXMXSV-UHFFFAOYSA-N 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 239000004332 silver Substances 0.000 description 2
- 239000011343 solid material Substances 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 241000894007 species Species 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 125000000547 substituted alkyl group Chemical group 0.000 description 2
- 150000003557 thiazoles Chemical class 0.000 description 2
- 150000003549 thiazolines Chemical class 0.000 description 2
- 125000001544 thienyl group Chemical group 0.000 description 2
- WJUFSDZVCOTFON-UHFFFAOYSA-N veratraldehyde Chemical compound COC1=CC=C(C=O)C=C1OC WJUFSDZVCOTFON-UHFFFAOYSA-N 0.000 description 2
- 229920002554 vinyl polymer Polymers 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- SQAINHDHICKHLX-UHFFFAOYSA-N 1-naphthaldehyde Chemical compound C1=CC=C2C(C=O)=CC=CC2=C1 SQAINHDHICKHLX-UHFFFAOYSA-N 0.000 description 1
- LGZRKINMFDSKNG-UHFFFAOYSA-N 11-ethyl-8-methoxybenzo[a]carbazole Chemical compound C1=CC=CC2=C3N(CC)C4=CC=C(OC)C=C4C3=CC=C21 LGZRKINMFDSKNG-UHFFFAOYSA-N 0.000 description 1
- YQZJTPLKHKDXGL-UHFFFAOYSA-N 11h-benzo[a]carbazole-1-carbaldehyde Chemical compound C1=CC=C2NC3=C4C(C=O)=CC=CC4=CC=C3C2=C1 YQZJTPLKHKDXGL-UHFFFAOYSA-N 0.000 description 1
- PKZJLOCLABXVMC-UHFFFAOYSA-N 2-Methoxybenzaldehyde Chemical compound COC1=CC=CC=C1C=O PKZJLOCLABXVMC-UHFFFAOYSA-N 0.000 description 1
- NDOPHXWIAZIXPR-UHFFFAOYSA-N 2-bromobenzaldehyde Chemical compound BrC1=CC=CC=C1C=O NDOPHXWIAZIXPR-UHFFFAOYSA-N 0.000 description 1
- 125000006280 2-bromobenzyl group Chemical group [H]C1=C([H])C(Br)=C(C([H])=C1[H])C([H])([H])* 0.000 description 1
- 125000004189 3,4-dichlorophenyl group Chemical group [H]C1=C([H])C(Cl)=C(Cl)C([H])=C1* 0.000 description 1
- WUPHOULIZUERAE-UHFFFAOYSA-N 3-(oxolan-2-yl)propanoic acid Chemical compound OC(=O)CCC1CCCO1 WUPHOULIZUERAE-UHFFFAOYSA-N 0.000 description 1
- WMPDAIZRQDCGFH-UHFFFAOYSA-N 3-methoxybenzaldehyde Chemical compound COC1=CC=CC(C=O)=C1 WMPDAIZRQDCGFH-UHFFFAOYSA-N 0.000 description 1
- ZRYZBQLXDKPBDU-UHFFFAOYSA-N 4-bromobenzaldehyde Chemical compound BrC1=CC=C(C=O)C=C1 ZRYZBQLXDKPBDU-UHFFFAOYSA-N 0.000 description 1
- AVPYQKSLYISFPO-UHFFFAOYSA-N 4-chlorobenzaldehyde Chemical compound ClC1=CC=C(C=O)C=C1 AVPYQKSLYISFPO-UHFFFAOYSA-N 0.000 description 1
- 125000006283 4-chlorobenzyl group Chemical group [H]C1=C([H])C(=C([H])C([H])=C1Cl)C([H])([H])* 0.000 description 1
- 125000003143 4-hydroxybenzyl group Chemical group [H]C([*])([H])C1=C([H])C([H])=C(O[H])C([H])=C1[H] 0.000 description 1
- KVOWZHASDIKNFK-UHFFFAOYSA-N 4-octoxybenzaldehyde Chemical compound CCCCCCCCOC1=CC=C(C=O)C=C1 KVOWZHASDIKNFK-UHFFFAOYSA-N 0.000 description 1
- YDICCZGMUKNELM-UHFFFAOYSA-N 5-ethylbenzo[b]carbazole Chemical compound C1=CC=C2C=C3N(CC)C4=CC=CC=C4C3=CC2=C1 YDICCZGMUKNELM-UHFFFAOYSA-N 0.000 description 1
- PLAZXGNBGZYJSA-UHFFFAOYSA-N 9-ethylcarbazole Chemical compound C1=CC=C2N(CC)C3=CC=CC=C3C2=C1 PLAZXGNBGZYJSA-UHFFFAOYSA-N 0.000 description 1
- ZYASLTYCYTYKFC-UHFFFAOYSA-N 9-methylidenefluorene Chemical compound C1=CC=C2C(=C)C3=CC=CC=C3C2=C1 ZYASLTYCYTYKFC-UHFFFAOYSA-N 0.000 description 1
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical compound [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 229910001370 Se alloy Inorganic materials 0.000 description 1
- VMHLLURERBWHNL-UHFFFAOYSA-M Sodium acetate Chemical compound [Na+].CC([O-])=O VMHLLURERBWHNL-UHFFFAOYSA-M 0.000 description 1
- 239000005083 Zinc sulfide Substances 0.000 description 1
- LJOOWESTVASNOG-UFJKPHDISA-N [(1s,3r,4ar,7s,8s,8as)-3-hydroxy-8-[2-[(4r)-4-hydroxy-6-oxooxan-2-yl]ethyl]-7-methyl-1,2,3,4,4a,7,8,8a-octahydronaphthalen-1-yl] (2s)-2-methylbutanoate Chemical compound C([C@H]1[C@@H](C)C=C[C@H]2C[C@@H](O)C[C@@H]([C@H]12)OC(=O)[C@@H](C)CC)CC1C[C@@H](O)CC(=O)O1 LJOOWESTVASNOG-UFJKPHDISA-N 0.000 description 1
- JWGLGQHIGMBQRK-UHFFFAOYSA-N [3-(4-chlorophenyl)-5-thiophen-2-yl-3,4-dihydropyrazol-2-yl]-phenylmethanone Chemical compound C1=CC(Cl)=CC=C1C1N(C(=O)C=2C=CC=CC=2)N=C(C=2SC=CC=2)C1 JWGLGQHIGMBQRK-UHFFFAOYSA-N 0.000 description 1
- QLNFINLXAKOTJB-UHFFFAOYSA-N [As].[Se] Chemical compound [As].[Se] QLNFINLXAKOTJB-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- CWRYPZZKDGJXCA-UHFFFAOYSA-N acenaphthalene Natural products C1=CC(CC2)=C3C2=CC=CC3=C1 CWRYPZZKDGJXCA-UHFFFAOYSA-N 0.000 description 1
- HXGDTGSAIMULJN-UHFFFAOYSA-N acetnaphthylene Natural products C1=CC(C=C2)=C3C2=CC=CC3=C1 HXGDTGSAIMULJN-UHFFFAOYSA-N 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 230000002730 additional effect Effects 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 239000002671 adjuvant Substances 0.000 description 1
- 238000007605 air drying Methods 0.000 description 1
- 125000002877 alkyl aryl group Chemical group 0.000 description 1
- 125000004448 alkyl carbonyl group Chemical group 0.000 description 1
- 125000005196 alkyl carbonyloxy group Chemical group 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- 229940040526 anhydrous sodium acetate Drugs 0.000 description 1
- 150000008425 anthrones Chemical class 0.000 description 1
- 125000003710 aryl alkyl group Chemical group 0.000 description 1
- 125000005129 aryl carbonyl group Chemical group 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 description 1
- 229910052794 bromium Inorganic materials 0.000 description 1
- 125000001246 bromo group Chemical group Br* 0.000 description 1
- 244000309464 bull Species 0.000 description 1
- 229910052980 cadmium sulfide Inorganic materials 0.000 description 1
- UHYPYGJEEGLRJD-UHFFFAOYSA-N cadmium(2+);selenium(2-) Chemical compound [Se-2].[Cd+2] UHYPYGJEEGLRJD-UHFFFAOYSA-N 0.000 description 1
- 125000000609 carbazolyl group Chemical group C1(=CC=CC=2C3=CC=CC=C3NC12)* 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 229940127204 compound 29 Drugs 0.000 description 1
- 239000007859 condensation product Substances 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 230000001351 cycling effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005670 electromagnetic radiation Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- KTWOOEGAPBSYNW-UHFFFAOYSA-N ferrocene Chemical compound [Fe+2].C=1C=C[CH-]C=1.C=1C=C[CH-]C=1 KTWOOEGAPBSYNW-UHFFFAOYSA-N 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000001046 green dye Substances 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 125000000959 isobutyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- OVWYEQOVUDKZNU-UHFFFAOYSA-N m-tolualdehyde Chemical compound CC1=CC=CC(C=O)=C1 OVWYEQOVUDKZNU-UHFFFAOYSA-N 0.000 description 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical class C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 125000004108 n-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000000740 n-pentyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000004123 n-propyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000004957 naphthylene group Chemical group 0.000 description 1
- 150000002829 nitrogen Chemical class 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- GYHFUZHODSMOHU-UHFFFAOYSA-N nonanal Chemical compound CCCCCCCCC=O GYHFUZHODSMOHU-UHFFFAOYSA-N 0.000 description 1
- 125000001400 nonyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- BTFQKIATRPGRBS-UHFFFAOYSA-N o-tolualdehyde Chemical compound CC1=CC=CC=C1C=O BTFQKIATRPGRBS-UHFFFAOYSA-N 0.000 description 1
- 150000004866 oxadiazoles Chemical class 0.000 description 1
- FXLOVSHXALFLKQ-UHFFFAOYSA-N p-tolualdehyde Chemical compound CC1=CC=C(C=O)C=C1 FXLOVSHXALFLKQ-UHFFFAOYSA-N 0.000 description 1
- 125000005003 perfluorobutyl group Chemical group FC(F)(F)C(F)(F)C(F)(F)C(F)(F)* 0.000 description 1
- 125000005007 perfluorooctyl group Chemical group FC(C(C(C(C(C(C(C(F)(F)F)(F)F)(F)F)(F)F)(F)F)(F)F)(F)F)(F)* 0.000 description 1
- IEQIEDJGQAUEQZ-UHFFFAOYSA-N phthalocyanine Chemical compound N1C(N=C2C3=CC=CC=C3C(N=C3C4=CC=CC=C4C(=N4)N3)=N2)=C(C=CC=C2)C2=C1N=C1C2=CC=CC=C2C4=N1 IEQIEDJGQAUEQZ-UHFFFAOYSA-N 0.000 description 1
- 229920002037 poly(vinyl butyral) polymer Polymers 0.000 description 1
- 229920000058 polyacrylate Polymers 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920005668 polycarbonate resin Polymers 0.000 description 1
- 239000004431 polycarbonate resin Substances 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920001225 polyester resin Polymers 0.000 description 1
- 239000004645 polyester resin Substances 0.000 description 1
- 229920000570 polyether Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 229920000193 polymethacrylate Polymers 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 229920002689 polyvinyl acetate Polymers 0.000 description 1
- 239000011118 polyvinyl acetate Substances 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 150000003219 pyrazolines Chemical class 0.000 description 1
- 150000004053 quinones Chemical class 0.000 description 1
- 239000011541 reaction mixture Substances 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 239000012265 solid product Substances 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- BDHFUVZGWQCTTF-UHFFFAOYSA-M sulfonate Chemical compound [O-]S(=O)=O BDHFUVZGWQCTTF-UHFFFAOYSA-M 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 229920001897 terpolymer Polymers 0.000 description 1
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 239000004753 textile Substances 0.000 description 1
- JOXIMZWYDAKGHI-UHFFFAOYSA-M toluene-4-sulfonate Chemical compound CC1=CC=C(S([O-])(=O)=O)C=C1 JOXIMZWYDAKGHI-UHFFFAOYSA-M 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
- 229910052984 zinc sulfide Inorganic materials 0.000 description 1
- DRDVZXDWVBGGMH-UHFFFAOYSA-N zinc;sulfide Chemical compound [S-2].[Zn+2] DRDVZXDWVBGGMH-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03G—ELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
- G03G5/00—Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
- G03G5/02—Charge-receiving layers
- G03G5/04—Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
- G03G5/06—Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being organic
- G03G5/0698—Compounds of unspecified structure characterised by a substituent only
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03G—ELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
- G03G5/00—Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
- G03G5/02—Charge-receiving layers
- G03G5/04—Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
- G03G5/06—Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being organic
- G03G5/0622—Heterocyclic compounds
- G03G5/0624—Heterocyclic compounds containing one hetero ring
- G03G5/0627—Heterocyclic compounds containing one hetero ring being five-membered
- G03G5/0629—Heterocyclic compounds containing one hetero ring being five-membered containing one hetero atom
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03G—ELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
- G03G5/00—Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
- G03G5/02—Charge-receiving layers
- G03G5/04—Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
- G03G5/06—Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being organic
- G03G5/0622—Heterocyclic compounds
- G03G5/0644—Heterocyclic compounds containing two or more hetero rings
- G03G5/0661—Heterocyclic compounds containing two or more hetero rings in different ring systems, each system containing at least one hetero ring
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03G—ELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
- G03G5/00—Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
- G03G5/02—Charge-receiving layers
- G03G5/04—Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
- G03G5/06—Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being organic
- G03G5/0664—Dyes
- G03G5/0666—Dyes containing a methine or polymethine group
- G03G5/0672—Dyes containing a methine or polymethine group containing two or more methine or polymethine groups
- G03G5/0674—Dyes containing a methine or polymethine group containing two or more methine or polymethine groups containing hetero rings
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03G—ELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
- G03G5/00—Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
- G03G5/02—Charge-receiving layers
- G03G5/04—Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
- G03G5/09—Sensitisors or activators, e.g. dyestuffs
Definitions
- the present invention relates to novel photoconductive layers which comprise organic electron donor compounds and sensitizer dyes selected from the group consisting of 1) phenylsulfonyl or benzoyl substituted imidazo-[4,5-b]-quinoxaline dyes, 2) phenylsulfonyl or benzoyl substituted indolenine dyes, and 3) highly fluorinated aliphatic sulfonyl sensitizer dyes. These layers are particularly useful in imaging systems such as electrophotography or electroradiography.
- Imaging is effected by first uniformly electrostatically charging the surface of the photoconductive layer and then exposing the charged layer to an image or pattern of activating electromagnetic radiation, usually visible light or ultraviolet radiation. This exposure selectively enables the charge in the irradiated areas of the photoconductive insulator to dissipate. The charge which remains in the non-irradiated areas forms a latent image which may be further processed to form a more permanent record of the exposing image or pattern.
- a common electrophotographic construction comprises, in sequence, a substrate, a conductive layer, and a photoconductive insulating layer.
- Typical classes of photoconductive materials useful in electrophotography include 1) inorganic crystalline photoconductors such as cadmium sulfide, cadmium sulfoselenide, cadmium selenide, zinc sulfide, zinc oxide, and mixtures thereof, 2) inorganic photoconductive glasses such as amorphous selenium, selenium alloys, and selenium-arsenic, and 3) organic photoconductors such as phthalocyanine pigments and polyvinyl carbazole, with or without binders and additives which extend their range of spectral sensitivity.
- inorganic crystalline photoconductors such as cadmium sulfide, cadmium sulfoselenide, cadmium selenide, zinc sulfide, zinc oxide, and mixtures thereof
- inorganic photoconductive glasses such as amorphous selenium, selenium alloys, and selenium-arsenic
- organic photoconductors such as phthal
- U.S. Patent No. 3,824,099 shows the use of squaric acid methine sensitizing dyes and triaryl pyrazoline charge transport materials as an electrophotographic construction.
- Cadmium sulfoselenide plates are shown in U.S. Patent No. 3,764,315, and one of the original disclosures of the use of poly-N-vinylcarbazole as a photoconductive insulating layer is provided in U.S. Patent No. 3,037,861.
- Japanese Patent Publication 52-34735 discloses carbazole organic photoconductor materials which may have substituents thereon which would inherently prevent oligomerization of the carbazoles. This is not recognized in the disclosure and the carbazoles would still be subject to oxidation problems.
- Electronically active organic donor compounds have been found to be sensitized by phenylsulfonyl or benzoyl substituted imidazo-[4,5-b]-quinoxaline cyanine dyes.
- a novel class of electronically active organic donor compounds particularly useful in the present invention has the formula: where X is wherein R is an aliphatic, aromatic, or mixed aliphatic-aromatic group and Y is an aliphatic, aromatic, heterocyclic, or mixed aliphatic-aromatic group.
- R and Y may be independently selected from alkyl groups, benzyl groups, phenyl groups, naphthyl groups, anthracyl groups, etc., with such various substituents as alkoxy groups, amine groups, alkyl groups, hydroxyl groups, and halogen atoms thereon.
- These compounds have been found to be electron donor compounds and are useful in forming photoconductive layers when sensitized with cyanine dyes having an imidazo-[4,5-b]quinoxaline nucleus. They may be combined with polymeric binder materials to form photoconductive layers which are solid state molecular solution charge transport layers.
- the electron donor compounds have a reduced sensitivity to oxidation and oligomerization.
- All electronically active organic donor compounds may be sensitized to various portions of the electromagnetic spectrum by sensitizing dyes selected from the group consisting of 1) imidazo-[4,5-b]-quinoxaline cyanine dyes, 2) phenyl- sulfonyl or benzoyl substituted indolenine dyes and 3) highly fluorinated aliphatic sulfonyl sensitizer dyes.
- Typical electronically active organic electron donor compounds are poly-N-vinylcarbazole, polyanthracene, oxadiazoles, pyrazolines, poly(vinyl acenaphthalene), poly-2,9-methylene fluorene, polyvinyl ferrocene, polybenzocarbazole, polybenzoanthracene, and the like.
- Novel electronically active organic donor compounds useful in the practice of the present invention are bis (benzocarbazoles)trisubstitutedmethanes which may be represented by the formula wherein X is wherein R is an aliphatic, aromatic or mixed aliphatic-aromatic group and Y is an aliphatic, aromatic, heterocyclic or mixed aliphatic-aromatic group.
- All of the compounds of the present invention may be synthesized by reactkng the appropriate N-substituted benzo[a]carbazole or benzo[b]carbazole: with the correspondingly appropriate aldehyde:
- This process can be carried out in a solvent (e.g., ethanol) in the presence of an acid (e.g., HC1) catalyst.
- the reaction product may be isolated by simple filtration and washing.
- a solvent e.g., ethanol
- an acid e.g., HC1
- the reaction product may be isolated by simple filtration and washing.
- the preferential reaction of the aldehyde at the 5-position of the 11-benzo[a]carbazole and the insolubility of the reaction product: in ethanol no oligomeric species are formed such as occur in a similar reaction with N-ethyl-carbazole.
- the reaction product is also stabilized against oxidation of the methine group by the rings ortho to point at which the methine group is bonded to the benzocarbazole nucleus.
- R may, as previously stated, be selected from aliphatic, aromatic and mixed aliphatic-aromatic groups. These groups may or may not be substituted. If they are substituted, it would be preferred that they be electron donating substituents although election withdrawing substituents may be tolerated.
- R is selected from alkyl groups of 1 to 20 carbon atoms, preferably n-alkyl groups of 2 to 20 carbon atoms, aryl groups such as phenyl or naphthyl groups, with phenyl groups preferred, alkaryl groups, for example benzyl groups, and allyl groups.
- n-alkyl radical may be only.of the formula -(CH 2 ) n -CH 3 while n-alkyl group may have hydrogen atoms on the n-alkyl radical substituted with other moieties such as halogen atoms, hydroxyl radicals, alkoxy radicals, alkyl radicals, amine radicals, cyano radicals, etc.
- R moieties are ethyl, n-butyl, n-propyl, 4-methoxybutyl, 3-chloropropyl, 8-hydroxyoctyl, phenyl, benzyl, allyl, p-ethylphenyl, m-tert-butylnaphthyl, p-diethylaminophenyl, stearyl, dodecyl, etc.
- R preferably has fewer than 20 carbon atoms, but may have up to 30 or more carbon atoms. The main influence of this group, except where electronic induction occurs because of a change of the nature of this group, is in the solubility of the compound.
- Y may, as previously-stated, be selected from aliphatic, aromatic, and mixed aliphatic-aromatic groups. These groups may or may not be substituted. Examples of useful moieties are methyl, ethyl, n-pentyl, nonyl, stearyl, tolyl, anisyl (m-, p-, and o-), p-chlorobenzyl, o-bromobenzyl, p-hydroxybenzyl, veratryl, isobutyl, terphthalyl, p-octyloxybenzyl, p-dimethylaminophenyl, t-butyl, etc.
- Y moieties are phenyl, tolyl, anisyl, and benzyl groups because of their availability.
- group R the main influence of this group; except with regard to electron induction effects, is on the solubility of the compounds.
- Y has 20 or fewer carbon atoms, but up to 30 may be readily tolerated.
- the dyes may be represented by the formulae described in British Patent 1,555,053 which reference is incorporated herein in its entirety, and preferred dyes by the formulae: wherein W represents: (this formula being a particular case of formula I) wherein g represents a positive integer of from 1 to 3 (preferably 1 to 2), and r represents a positive integer of from 1 to 2, R and R 1 each represents a substituent independently selected from the group consisting of an acyclic hydrocarbon substituent, such as an alkyl group (including substituted alkyl), preferably containing from 1 to 13 carbon atoms, e.g. methyl, ethyl,.
- W represents: (this formula being a particular case of formula I) wherein g represents a positive integer of from 1 to 3 (preferably 1 to 2), and r represents a positive integer of from 1 to 2, R and R 1 each represents a substituent independently selected from the group consisting of an acyclic hydrocarbon substituent, such as an alkyl group (including substituted alkyl),
- propyl isopropyl, butyl, sec-butyl, hexyl, cyclohexyl, dodecyl, octadecyl, hydroxyalkyl (e.g. ⁇ -hydroxyethyl, ⁇ -hydroxypropyl, etc.), and alkenyl substituents, such as allyl, 1-propenyl, 2-propenyl, 1-butenyl, 2-butenyl and 3-butenyl, etc.; alkaryl substituents such as benzyl and ⁇ -phenylethyl; and aryl substituents, e.g., phenyl, p-tolyl, o-tolyl, 3,4-dichlorophenyl, etc., groups; R 2 represents a 6- or 7-position substituent selected from phenylsulfonyl or benzoyl; X- represents an acid anion such as for example, in order of general preference perchlorate, t
- Q represents a heterocyclic nucleus containing 5 atoms in the heterocyclic ring., 3 of said atoms being carbon atoms, 1 of said atoms being a nitrogen atom, and 1 of said atoms being selected- from the group consisting of a nitrogen atom, an oxygen atom, and a sulfur atom).
- L represents a cation nucleus of l-alkyl-2-phenylindol-3-yl, l-aryl-2-phenylindol-3-yl, 1-alkyl or aryl-2-phenyl-5-nitro-indol-3-yl, l-alkyl-2-phenyl-5-phenylsulfonylindol-3-yl, l-aryl-2-phenyl-5-phenylsul- fonylindol-3-yl, l-aryl-2-phenyl-5-phenylsulfonylindol-3-yl, 1-alkyl-2-phenyl-5-benzoylindol-3-yl, l-aryl-2-phenyl-5-benzoylindol-3-yl, 9-methyl-carbazol-3-yl, 2-alkyl or substituted alkyl-3-phenyl-5-oxo-3-iso- oxazolin-4-yl, 2-al
- the counterion (the acid anion, X-) has been found to significantly affect the sensitizing ability of the dyes according to the present invention.
- the reason for this is not understood.
- the general order of preference for the anions is perchlorate (most preferred), tetrafluoroborate, p-toluenesulfonate, methylsulfate, sulfamate, iodide, bromide, and chloride.
- the second nucleus (heterocyclic or paraamino- phenyl) should contain no more than 50 carbon atoms and no more than 10 non-metallic heteroatoms such as nitrogen, sulfur and oxygen (metal atoms may appear in these groups only in the form of salts).
- such second nucleus contains no more than 30 carbon atoms and most preferred no more than 20 carbon atoms.
- groups R and R 1 it is generally preferred to have no more than 18 carbon atoms and most preferred to have no more than 10 carbon atoms.
- group R 2 when benzoyl and phenyl-sulfonyl the generally preferred aryl groups of this invention are phenyl and naphthyl and derivatives thereof.
- R 4 and R 5 are preferred to have no more than 6 carbon atoms each. None of R 2 , R 4 and R 5 should contain metal atoms.
- the preferred dyes of this class are those of U.K. Patent No. 1,555,053 in which the imidazo-[4,5-b]-quinoxaline cyanine dye bears a 5-phenylsulfonyl or 5-benzoyl substituent.
- indolenine sensitizers which are a part of the present invention are disclosed in U.S. Patent No. 4,025,347. This reference teaches the use of the indolenine dyes in silver halide emulsions as sensitizer dyes.
- the dyes may be represented by the formulae: and wherein A is selected from and B is selected from and n represents a positive integer of from 1 to 4, m and q each represents a positive integer of from 1 to 2, p represents a positive integer of from 1 to 3, r is 0 or 1, R 2 represents a substituent independently selected from the group consisting of an acyclic hydrocarbon substituent (substituted or not), preferably aliphatic, such as an alkyl group (including substituted alkyl), preferably containing from 1 to 13 carbon atoms, e.g.
- R 1 represents a 5-position substituent selected from phenylsulfonyl or benzoyl
- X- represents an acid anion such as for example, in order of general preference perchlorate, tetrafluoroborate, p-toluenesulfonate, methylsulfate, sulfamate, iodide, bromide, and chloride
- R 3 and R 4 represents a substituted or non-
- Q represents a heterocyclic nucleus containing 5 atoms in the heterocyclic ring, 3 of said atoms being carbon atoms, 1 of said atoms being a nitrogen atom, and 1 of said atoms being selected from the group consisting of a nitrogen atom, an oxygen atom, and a sulfur atom).
- the counterion (the acid anion, X-) has been found to significantly affect the sensitizing ability of the dyes according to the present invention.
- the reason for this is not understood.
- the general order of preference for the anions is perchlorate (most preferred), tetrafluoroborate, p-toluenesulfonate, methylsulfate, sulfamate, iodide, bromide, and chloride.
- the preferred dyes are those of U.S. Patent No. 4,025,347 in which the indolenine portion of the dye bears a 5-phenylsulfonyl or 5-benzoyl substituent.
- the disulfone dyes used in the practice of the present invention are themselves well known in the art for use in light filters, photographic elements, and textiles. These dyes are shown, for example, in U.S. Patents Nos. 3,933,914 and 4,018,810. These dyes may be generally described by the formula: wherein R a represents a monovalent chromophoric radical, M represents or R f represents a highly fluorinated aliphatic radical, and R represents a monovalent electron-withdrawing radical.
- R groups may include such materials as a cyano, arylcarbonyl, alkylcarbonyl, perfuoralkyl, alkylsulfonyl, highly fluorinated alkylsulfonyl, perfluoroalkylsulfonyl, arylsulfonyl, nitro, sulfonyl floride, or sufonyl chloride radical.
- Radicals preferred for R include cyano, highly fluorinatd aliphaticsulfonyl, fluoroalkylsulfonyl or highly fluorinated alkylcarbonyloxy (for example having from 1-18 carbon atoms - preferably 1-8 carbon atoms), and arylsulfonyl (preferably phenylsulfonyl).
- highly fluorinated aliphatic radical is defined in the present invention as an aliphatic group having its carbon atoms fluorinated except that with two or more carbon atoms present in the group, the terminal carbon atom may have a hydrogen or chloro substituent, and with four or more carbon atoms the last two carbon atoms may have one or two hydrogen or chlorine subsituents.
- R 5 and R 2 are hydrogen, monovalent alkyl of 1 to 20 carbon atoms (preferably methyl or ethyl), cyanoaklyl (preferably cyanomethyl or cyanoethyl), aryl (preferably phenyl), or aralkyl (preferably benzyl); n is the integer 0, 1, or 2, X is halogen (preferably chlorine or bromine), lower alkyl (e.g., having 1-3 carbon atoms), cyano, nitro, lower alkoxy (preferably having 1-3 carbon atoms), hydrogen, hydroxyl, sulfonate, or carboxyl; and m is the integer 1-3; wherein X is as defined above, A is a trivalent alkenylene radical having from 2-4 carbon atoms, and Q is a divalent nitrogen atom, substituted nitrogen (e.g
- Rf is preferably a saturated fluoroaliphatic radical, for example containing 1 to 18 carbon atoms (preferably 1 to 8 carbon atoms) with the majority of the carbon atoms most preferably being perfluorinated.
- perfluorinated is employed to denote substitution of all carbon-bonded hydrogen atoms by fluorine atoms, in accord with the recognized usage of the term.
- the above mentioned highly fluorinated aliphatic groups are defined as aliphatic groups which can contain chlorine and hydrogen atoms bonded to the carbon atoms (not more than one chlorine or hydrogen for two adjacent carbons) as well as having fluorine atoms bonded to carbon atom.
- the fluoroaliphatic radical may be a straight or branched chain, cyclic, or a straight chain including a cyclic portion.
- the fluoroliphatic group may contain an oxygen atom linking two carbon atoms, e.g., -CF 2 0CF 2 - 1 or a nitrogen atom linking three carbon atoms, e.g., (R f CH 2 ) 2 NCF 2 -.
- Exemplary aliphatic groups include 1,1,1-tris-trifluoroethyl,-perfluoromethyl, perfluorobutyl, perfluorooctyl, perfluorododecyl, perfluoroisopropyl, perfluoro-(2-cyclohexylethyl), omega-chloroperfluorohexyl, 2-hydroperfluoropropyl, perfluoro(3- morpholinopropyl), and perfluoro(3-piperidinopropyl).
- binder materials known in the art are useful with the electronically active electron donor compounds of the present invention. It is of course preferred that the binder be essentially optically transparent or at least transparent to the wavelengths of radiation to which the compounds (sensitized or not) are sensitive.
- the useful binders are poly(vinyl chloride), poly(siloxanes), poly(vinyl butyral), poly(vinyl acetate), styrene/acrylonitrile copolymers, polyacrylates, polymethacrylates, polycarbonates, polyepoxides,.
- the binders are preferably electrically inactive themselves.
- the preferred polymeric binders are polycarbonates, polyesters, and styrene/ acrylonitrile copolymers. Coating aids, lubricants, surface active agents, and other adjuvants may be added to the composition.
- the organic electron donor compounds should be present as at least 20 percent by weight of the composition.
- the donor compound should be present as at least 25 or 35 percent by weight of the layer, and may comprise up to 100% by weight of the layer, excluding of course the sensitizer dye.
- the sensitizing dyes should be used in amounts which will increase the sensitivity of the composition. This is defined as an effective sensitizing amount of dye. Ordinarily amounts of up to 10% by weight dye may be used, but certain constructions can be envisaged with as much as 90% by weight of dye and 10 % by weight of organic electron donor compounds. Amounts of dye as small as 0.005 percent by weight can be useful. More preferred concentration ranges are between 0.05 and 5 percent by weight.
- the photosensitive materials of the present invention may also be useful as photoconductive toners, photovoltaic devices, organic semiconductors, and the like, and may use concentrations of organic electron donor compounds as low as 5 percent by weight.
- the benzocarbazole-aldehyde condensation products useful in the present invention are better charge transport materials than the corresponding benzocarbazoles by themselves. This is susprising because it is the benzocarbazole nucleus which is the electronically active portion of both molecules. Even when benzocarbazoles were used in reasonably higher molecular proportions to the binder than were the condensates, the condensates would still perform better.
- electronically active electron donor compounds of the present invention were obtained by condensing N-ethylbenzo[a]carbazole with each of the following aldehydes in equimolar replacement for the benzaldehyde:
- Example 1 In a manner substantially identical to that of .
- any of the compounds produced in Examples 1-21 to electrically inert polymeric binders formed positive charge transport layers. These layers could be formed on photoconductive layers and were capable of supporting injected photogenerated holes from the photoconductive layer and allowed the transport of these holes through the transport layer to selectively discharge the surface charge.
- Bulk sensitized photoreceptors were prepared by coating a solution consisting of 0.5 percent by weight solids of dye, 40 percent by weight of the same charge transport compound prepared in Example 1, and 59.5 percent of an organic solvent soluble polyester resin from a dichloromethane, 1,2-dichloroethane (50/50) solution were coated at about 1x10 -4 m wet thickness onto an aluminum coated polyethyleneterephthalate film.
- the sample was air dried at 85°C for approximately 15 minutes.
- the photoreceptor charged to a maximum voltage (V o ) under positive corona charging and the exposure energy and wavelength of radiation necessary to reduce the charge to one half V o (V f ) with little dark decay was recorded.
- V o maximum voltage
- V f V o
- Example 25 shows improved properties at its wavelength of maximum absorbance (621) in comparison to the wavelength of maximum absorbance !6S0) for compound 29.
- the wet thickness of the coating was 4 mil (1x10 -4 m).
- the coating was allowed to air dry and then oven dried for 15 min. at 80°C.
- the electrophotographic behavior of this construction is shown in Table II.
- Dye (A) has the structure
- the wet thickness of the coating was 4 mil (1x10 -4 m).
- the coating was air dried and then oven dried for 15 min. at 80°C.
- the electrophotographic behavior of the construction is shown in Table II.
- the p-toluene sulfonate counterpart of this dye was equivalently prepared using the p-toluene sulfonate indoleninium salt, 0.9 of the cyclohexene, and 80 g of acetic acid.
- a solution consisting of 0.6 g Vitel PE-200, 0.4 g of transport material indicated, and 0.005 g of the 5-phenylsulfonyl-indolenine dye indicated in a mixture of 4.5 g of dichloromethane and 4.5 g of 1.2-dichloroethane was prepared, filtered, and knife coated onto an aluminized polyester substrate.
- the wet thickness of the coating was 4 mil (1 x 10- 4 m).
- the coating was allowed to air dry and then oven dried for 15 minutes at 80°C.
- the electrophotographic performance of these constructions, determined by measuring the energy required to discharge the sample to half of their initial values (E V o/2 ). is shown in the accompanying Table.
- the wet thickness of the coating was 4 mil (1 x 10- 4 m).
- the coating was air dried and then oven dried for 15 minutes at 80°C.
- the electrophotographic behavior of this construction, determined by measuring the energy required to discharge the sample to half of its initial voltage (E V o/2 ) is shown in the accompanying Table.
- a bulk sensitized photoreceptor was prepared by coating a solution of 10 percent by weight solids (5.2% of p-dimethylamino-di- -perfluoromethylsulfonylcinnamilidene, 38% bis(N-ethyl-l,2-benzocarbazolyl)phenyl methane, and 56.8% polycarbonate resin at about 1x10 -4 m onto aluminized polyester(polyethyleneterephthalate). This was air dried for 15 minutes at 85°C. The sample was evaluated for its xerographic response to positive corona charging. The sample displayed a maximum sensitivity at 540 nm. At that wavelength, the construction required approximately 3 Joules/cm 2 to discharge the sheet to one half its potential from 740 volts. The sample displayed an initial discharge rate of 736 volts/sec. with 3.27 watts/cm 2 .
- the dye used in this example has the structure The dyes having the structures and were also found to work well in the construction of this example.
- a coating solution was prepared from 0.6 g polyester (Vitel® PE-200 organic solvent soluble copolyester of terephthalic acid, isophthalic acid, and ethylene glycol), 0.4 g of the compound of Example 1, and 0.005 g of disulfone dye A in a mixture of 4.5 g dichloromethane and 4.5 g of 1,2-dichloroethane, filtered, then knife coated onto an aluminized polyester substrate.
- the wet thickness of the coating was 1 x 10- 4 m before oven drying for 15 minutes at 80°C.
- the electrophotographic performance of this coating is shown in Table I.
- Coating solutions were prepared of 0.6 g of an organic solvent soluble copolyester derived from terephthalic acid, isophthalic acid and ethylene glycol (Vitel®PE-200), 0.4 g of the indicated charge transport material, and 0.005 g of the disulfone dye indicated in Table I. These materials were knife coated onto aluminized polyester from a solution with 4.5 g dichloromethane and 4.5 g of 1,2-dichloroethane after filtering. The wet thickness was 1 x 10- 4 m before air drying then oven drying for 15 minutes at 80°C. The electrophotographic performance of these coatings is shown in Table I.
- a coating solution of 1.0 g polyvinylcarbazole and 0.005 g disulfone dye D in a mixture of 4.5 g of dichloromethane and 4.5 g of 1,2-dichloroethane was knife coated at 1 x 10- 4 m wet thickness onto aluminized polyester. The coating was air dried then oven dried for 15 minutes at 80°C.
- the electrophotographic behavior of the construction is shown in Table I.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Plural Heterocyclic Compounds (AREA)
- Indole Compounds (AREA)
- Photoreceptors In Electrophotography (AREA)
Abstract
Description
- The present invention relates to novel photoconductive layers which comprise organic electron donor compounds and sensitizer dyes selected from the group consisting of 1) phenylsulfonyl or benzoyl substituted imidazo-[4,5-b]-quinoxaline dyes, 2) phenylsulfonyl or benzoyl substituted indolenine dyes, and 3) highly fluorinated aliphatic sulfonyl sensitizer dyes. These layers are particularly useful in imaging systems such as electrophotography or electroradiography.
- The technology of electrophotography is commercially well established. A wide variety of processes and apparatus are used, although they have many characteristics in common. One of the more common forms of this technology involves the use of a plate having a photoconductive insulating layer, generally coated on a conductive layer. Imaging is effected by first uniformly electrostatically charging the surface of the photoconductive layer and then exposing the charged layer to an image or pattern of activating electromagnetic radiation, usually visible light or ultraviolet radiation. This exposure selectively enables the charge in the irradiated areas of the photoconductive insulator to dissipate. The charge which remains in the non-irradiated areas forms a latent image which may be further processed to form a more permanent record of the exposing image or pattern. The most common form of additional processing involves the attraction of particles of material selectively to the charged areas and fusing them to the photoconductive layer or transferring the particles in their imagewise distribution to another surface to which they are more permanently bound by an adhesive or by fusion of the particles themselves. A common electrophotographic construction comprises, in sequence, a substrate, a conductive layer, and a photoconductive insulating layer.
- Typical classes of photoconductive materials useful in electrophotography include 1) inorganic crystalline photoconductors such as cadmium sulfide, cadmium sulfoselenide, cadmium selenide, zinc sulfide, zinc oxide, and mixtures thereof, 2) inorganic photoconductive glasses such as amorphous selenium, selenium alloys, and selenium-arsenic, and 3) organic photoconductors such as phthalocyanine pigments and polyvinyl carbazole, with or without binders and additives which extend their range of spectral sensitivity. These systems are well known in the art. For example, U.S. Patent No. 3,877,935 discusses various problems associated with the crystalline and amorphous classes of photoconductors and shows the use of polynuclear quinone pigments in a binder as a photoconductive layer. U.S. Patent No. 3,824,099 shows the use of squaric acid methine sensitizing dyes and triaryl pyrazoline charge transport materials as an electrophotographic construction. Cadmium sulfoselenide plates are shown in U.S. Patent No. 3,764,315, and one of the original disclosures of the use of poly-N-vinylcarbazole as a photoconductive insulating layer is provided in U.S. Patent No. 3,037,861. A number of diverse organic photoconductors have been disclosed since the development of the carbazole class of photoconductors such as quinones and anthrones (e.g., Hayashi et al., Bull. Chem. Soc. Japan, vol. 39, (1966) pp. 1670-1673), but the carbazoles have continued to attract the greatest attention.
- Problems particularly associated with the use of carbazoles as a positive charge transporting material which is capable of supporting the injection of photoexcited holes from a photoconductive layer and is capable of transporting the injected holes also exist in this area of technology. The carbazole condensates with aldehydes as shown in U.S. Patent No. 4,025,341 have a tendency to oligomerize. This oligomerization can cause a number of problems. The oligomers formed are not of a uniform molecular weight and carbazole content. This creates problems in purification and can create undesirable variations in photoconductive or charge transport properties. Triaryl methanes including a carbazole moiety (as shown in Xerox Disclosure Journal, Vol. 3, No. 1, Jan/Feb 1978, page 7) also tend to be sensitive to oxidation which converts them to an ionic species which will not act as a photoconductive insulator but rather will act as a conductor.
- Japanese Patent Publication 52-34735 discloses carbazole organic photoconductor materials which may have substituents thereon which would inherently prevent oligomerization of the carbazoles. This is not recognized in the disclosure and the carbazoles would still be subject to oxidation problems.
- Electronically active organic donor compounds have been found to be sensitized by phenylsulfonyl or benzoyl substituted imidazo-[4,5-b]-quinoxaline cyanine dyes.
- A novel class of electronically active organic donor compounds particularly useful in the present invention has the formula:
- These compounds have been found to be electron donor compounds and are useful in forming photoconductive layers when sensitized with cyanine dyes having an imidazo-[4,5-b]quinoxaline nucleus. They may be combined with polymeric binder materials to form photoconductive layers which are solid state molecular solution charge transport layers. The electron donor compounds have a reduced sensitivity to oxidation and oligomerization.
- All electronically active organic donor compounds, as they are known in the art, may be sensitized to various portions of the electromagnetic spectrum by sensitizing dyes selected from the group consisting of 1) imidazo-[4,5-b]-quinoxaline cyanine dyes, 2) phenyl- sulfonyl or benzoyl substituted indolenine dyes and 3) highly fluorinated aliphatic sulfonyl sensitizer dyes. Typical electronically active organic electron donor compounds are poly-N-vinylcarbazole, polyanthracene, oxadiazoles, pyrazolines, poly(vinyl acenaphthalene), poly-2,9-methylene fluorene, polyvinyl ferrocene, polybenzocarbazole, polybenzoanthracene, and the like.
- Novel electronically active organic donor compounds useful in the practice of the present invention are bis (benzocarbazoles)trisubstitutedmethanes which may be represented by the formula
Y is an aliphatic, aromatic, heterocyclic or mixed aliphatic-aromatic group. -
- This process can be carried out in a solvent (e.g., ethanol) in the presence of an acid (e.g., HC1) catalyst. The reaction product may be isolated by simple filtration and washing. For example, in the reaction of 11-ethylbenzo[a]carbazole with benzaldehyde in ethanol in the presence of HC1 as a catalyst, the preferential reaction of the aldehyde at the 5-position of the 11-benzo[a]carbazole and the insolubility of the reaction product:
- R may, as previously stated, be selected from aliphatic, aromatic and mixed aliphatic-aromatic groups. These groups may or may not be substituted. If they are substituted, it would be preferred that they be electron donating substituents although election withdrawing substituents may be tolerated. Preferably R is selected from alkyl groups of 1 to 20 carbon atoms, preferably n-alkyl groups of 2 to 20 carbon atoms, aryl groups such as phenyl or naphthyl groups, with phenyl groups preferred, alkaryl groups, for example benzyl groups, and allyl groups. Where the term 'group' is used anywhere in the practice of the present invention, as opposed to the term 'radical', the possibility of substitution is specifically intended to be included within the definition of that term. For example, n-alkyl radical may be only.of the formula -(CH2)n-CH3 while n-alkyl group may have hydrogen atoms on the n-alkyl radical substituted with other moieties such as halogen atoms, hydroxyl radicals, alkoxy radicals, alkyl radicals, amine radicals, cyano radicals, etc. Specific examples of useful R moieties are ethyl, n-butyl, n-propyl, 4-methoxybutyl, 3-chloropropyl, 8-hydroxyoctyl, phenyl, benzyl, allyl, p-ethylphenyl, m-tert-butylnaphthyl, p-diethylaminophenyl, stearyl, dodecyl, etc. R preferably has fewer than 20 carbon atoms, but may have up to 30 or more carbon atoms. The main influence of this group, except where electronic induction occurs because of a change of the nature of this group, is in the solubility of the compound.
- Y may, as previously-stated, be selected from aliphatic, aromatic, and mixed aliphatic-aromatic groups. These groups may or may not be substituted. Examples of useful moieties are methyl, ethyl, n-pentyl, nonyl, stearyl, tolyl, anisyl (m-, p-, and o-), p-chlorobenzyl, o-bromobenzyl, p-hydroxybenzyl, veratryl, isobutyl, terphthalyl, p-octyloxybenzyl, p-dimethylaminophenyl, t-butyl, etc. Preferred Y moieties are phenyl, tolyl, anisyl, and benzyl groups because of their availability. As with group R, the main influence of this group; except with regard to electron induction effects, is on the solubility of the compounds. Preferably Y has 20 or fewer carbon atoms, but up to 30 may be readily tolerated.
- The imidazo-[4,5-b]quinoxaline cyanine sensitizers which are a part of the present invention are disclosed in British Patent No. 1,555,053. This reference teaches cyanine dyes in silver halide emulsions or photoconductive binders as sensitizer dyes.
- The dyes may be represented by the formulae described in British Patent 1,555,053 which reference is incorporated herein in its entirety, and preferred dyes by the formulae:
- L represents a cation nucleus of l-alkyl-2-phenylindol-3-yl, l-aryl-2-phenylindol-3-yl, 1-alkyl or aryl-2-phenyl-5-nitro-indol-3-yl, l-alkyl-2-phenyl-5-phenylsulfonylindol-3-yl, l-aryl-2-phenyl-5-phenylsul- fonylindol-3-yl, l-aryl-2-phenyl-5-phenylsulfonylindol-3-yl, 1-alkyl-2-phenyl-5-benzoylindol-3-yl, l-aryl-2-phenyl-5-benzoylindol-3-yl, 9-methyl-carbazol-3-yl, 2-alkyl or substituted alkyl-3-phenyl-5-oxo-3-iso- oxazolin-4-yl, 2-alkyl or substituted alkyl-3-furyl-5-oxo-3-isoxazolin-4-yl, 2-alkyl or substituted alkyl-3-thienyl-5-oxo-3-isoxazolin-4-yl, 2-alkyl or substituted 3-pyrryl-5-oxo-3-isoxazolin-4-yl, l-aryl-3,5-dialkyl- pyrazol-4-yl series.
- Surprisingly the counterion (the acid anion, X-) has been found to significantly affect the sensitizing ability of the dyes according to the present invention. The reason for this is not understood. The general order of preference for the anions is perchlorate (most preferred), tetrafluoroborate, p-toluenesulfonate, methylsulfate, sulfamate, iodide, bromide, and chloride.
- With regard to the above mentioned substituent groups (i.e., R, R1, R2, R3, R4, R5, Z, Q, L and X-) the size of such groups is not believed to be of any substantial significance in the practice of this invention. Size changes may only require modification of solvents necessary to include them in photosensitive systems, but the action of these dyes is believed to be substantially the same, without regard to size. However, for purposes of economics, the following moiety sizes are generally preferred. The second nucleus (heterocyclic or paraamino- phenyl) should contain no more than 50 carbon atoms and no more than 10 non-metallic heteroatoms such as nitrogen, sulfur and oxygen (metal atoms may appear in these groups only in the form of salts). It is more preferred that such second nucleus contains no more than 30 carbon atoms and most preferred no more than 20 carbon atoms. For groups R and R1 it is generally preferred to have no more than 18 carbon atoms and most preferred to have no more than 10 carbon atoms. For group R2 (when benzoyl and phenyl-sulfonyl) the generally preferred aryl groups of this invention are phenyl and naphthyl and derivatives thereof. R4 and R5 are preferred to have no more than 6 carbon atoms each. None of R2, R4 and R5 should contain metal atoms.
- The preferred dyes of this class are those of U.K. Patent No. 1,555,053 in which the imidazo-[4,5-b]-quinoxaline cyanine dye bears a 5-phenylsulfonyl or 5-benzoyl substituent.
- The indolenine sensitizers which are a part of the present invention are disclosed in U.S. Patent No. 4,025,347. This reference teaches the use of the indolenine dyes in silver halide emulsions as sensitizer dyes.
- The dyes may be represented by the formulae:
- Surprisingly the counterion (the acid anion, X-) has been found to significantly affect the sensitizing ability of the dyes according to the present invention. The reason for this is not understood. The general order of preference for the anions is perchlorate (most preferred), tetrafluoroborate, p-toluenesulfonate, methylsulfate, sulfamate, iodide, bromide, and chloride.
- The preferred dyes are those of U.S. Patent No. 4,025,347 in which the indolenine portion of the dye bears a 5-phenylsulfonyl or 5-benzoyl substituent.
- The disulfone dyes used in the practice of the present invention are themselves well known in the art for use in light filters, photographic elements, and textiles. These dyes are shown, for example, in U.S. Patents Nos. 3,933,914 and 4,018,810. These dyes may be generally described by the formula:
- The preferred chromophoric radicals that are repreesnted by Ra in the general formula are radicals having chemical structures shown in Formulae II-V as follows:
- Rf is preferably a saturated fluoroaliphatic radical, for example containing 1 to 18 carbon atoms (preferably 1 to 8 carbon atoms) with the majority of the carbon atoms most preferably being perfluorinated.
- The term "perfluorinated" is employed to denote substitution of all carbon-bonded hydrogen atoms by fluorine atoms, in accord with the recognized usage of the term.
- The above mentioned highly fluorinated aliphatic groups are defined as aliphatic groups which can contain chlorine and hydrogen atoms bonded to the carbon atoms (not more than one chlorine or hydrogen for two adjacent carbons) as well as having fluorine atoms bonded to carbon atom. The fluoroaliphatic radical may be a straight or branched chain, cyclic, or a straight chain including a cyclic portion. Additionally, the fluoroliphatic group may contain an oxygen atom linking two carbon atoms, e.g., -CF20CF2-1 or a nitrogen atom linking three carbon atoms, e.g., (RfCH2)2NCF2-. Exemplary aliphatic groups include 1,1,1-tris-trifluoroethyl,-perfluoromethyl, perfluorobutyl, perfluorooctyl, perfluorododecyl, perfluoroisopropyl, perfluoro-(2-cyclohexylethyl), omega-chloroperfluorohexyl, 2-hydroperfluoropropyl, perfluoro(3- morpholinopropyl), and perfluoro(3-piperidinopropyl).
- The preparation of these dyes is clearly described in the above cited U.S. Patents.
- Various binder materials known in the art are useful with the electronically active electron donor compounds of the present invention. It is of course preferred that the binder be essentially optically transparent or at least transparent to the wavelengths of radiation to which the compounds (sensitized or not) are sensitive. Amongst the useful binders are poly(vinyl chloride), poly(siloxanes), poly(vinyl butyral), poly(vinyl acetate), styrene/acrylonitrile copolymers, polyacrylates, polymethacrylates, polycarbonates, polyepoxides,. polyurethanes, polyamides, polyethers, polyesters, polyolefins as well as block, graft, random, and alternating polymers, copolymers, terpolymers and mixtures thereof and the like. The binders are preferably electrically inactive themselves. The preferred polymeric binders are polycarbonates, polyesters, and styrene/ acrylonitrile copolymers. Coating aids, lubricants, surface active agents, and other adjuvants may be added to the composition.
- For use of the materials of the present invention as electrophotographic layers, the organic electron donor compounds should be present as at least 20 percent by weight of the composition. Preferably the donor compound should be present as at least 25 or 35 percent by weight of the layer, and may comprise up to 100% by weight of the layer, excluding of course the sensitizer dye. The sensitizing dyes should be used in amounts which will increase the sensitivity of the composition. This is defined as an effective sensitizing amount of dye. Ordinarily amounts of up to 10% by weight dye may be used, but certain constructions can be envisaged with as much as 90% by weight of dye and 10% by weight of organic electron donor compounds. Amounts of dye as small as 0.005 percent by weight can be useful. More preferred concentration ranges are between 0.05 and 5 percent by weight.
- The photosensitive materials of the present invention may also be useful as photoconductive toners, photovoltaic devices, organic semiconductors, and the like, and may use concentrations of organic electron donor compounds as low as 5 percent by weight.
- It has been surprisingly noted that the benzocarbazole-aldehyde condensation products useful in the present invention are better charge transport materials than the corresponding benzocarbazoles by themselves. This is susprising because it is the benzocarbazole nucleus which is the electronically active portion of both molecules. Even when benzocarbazoles were used in reasonably higher molecular proportions to the binder than were the condensates, the condensates would still perform better.
- These and other aspects of the present invention will be shown in the following examples.
- Into a round bottom flask equipped with a reflux condenser and a mechanical stirrer were added 22.4 grams (0.1 mole-) of N-ethylbenzo[a]carbazole and 5.3 grams (0.05 mole) of benzaldehyde. Two hundred milliliters of ethanol acidified with 8 ml of concentrated hydrochloric acid were then added. The mixture was stirred at reflux under a nitrogen atmosphere for sixteen hours. The insoluble, pure white product was isolated by filtration, washed with 100 ml of ethanol, and dried in a vacuum oven. The yield was 95% of the theoretic calculation.
- In a manner substantially identical to that of the previous example, electronically active electron donor compounds of the present invention were obtained by condensing N-ethylbenzo[a]carbazole with each of the following aldehydes in equimolar replacement for the benzaldehyde:
- 2. p-tolualdehyde
- 3. m-tolualdehyde
- 4. o-tolualdehyde
- 5. p-anisaldehyde
- 6. m-anisaldehyde
- 7. o-anisaldehyde
- 8. p-chlorobenzaldehyde
- 9. p-bromobenzaldehyde
- 10. o-bromobenzaldehyde
- 11. p-hydroxybenzaldehyde
- 12. a-naphthaldehyde
- 13. veratraldehyde
- 14. p-octyloxybenzaldehyde
- 15. iso-butyraldehyde
- 16. n-nonylaldehyde
- 17. terphthaldehyde
- In a manner substantially identical to that of . Example 1, the following combinations of carbazoles and aldehydes were used to synthesize compounds of the present invention.
- 18. benzo [a] carbazole and benzaldehyde
- 19. N-ethylbenzo [b] carbazole and benzaldehyde
- 20. N-ethyldibenzo[a]carbazole and benzaldehyde
- 21. N-ethyl-8-methoxybenzo[a]carbazole and benzaldehyde
- The addition of any of the compounds produced in Examples 1-21 to electrically inert polymeric binders formed positive charge transport layers. These layers could be formed on photoconductive layers and were capable of supporting injected photogenerated holes from the photoconductive layer and allowed the transport of these holes through the transport layer to selectively discharge the surface charge.
- Bulk sensitized photoreceptors were prepared by coating a solution consisting of 0.5 percent by weight solids of dye, 40 percent by weight of the same charge transport compound prepared in Example 1, and 59.5 percent of an organic solvent soluble polyester resin from a dichloromethane, 1,2-dichloroethane (50/50) solution were coated at about 1x10-4 m wet thickness onto an aluminum coated polyethyleneterephthalate film. The sample was air dried at 85°C for approximately 15 minutes. The photoreceptor charged to a maximum voltage (Vo) under positive corona charging and the exposure energy and wavelength of radiation necessary to reduce the charge to one half Vo (Vf) with little dark decay was recorded. The device was also found to display high charge acceptance, low dark decay, and negligible fatigue upon cycling.
- The following dye compounds were used in these examples.
-
- The general effectiveness of the dyes of the present invention as sensitizers for electron donors is shown by these examples.
- The results of these experiments show that the sensitizing abilities of imidazo [4,5-b] quinoxaline cyaning dyes for organic electron donors are improved by the substitution of the phenyl ring on the imidazo [4,5-b] quinoxaline nucleus with a phenylsulfonyl or benzoyl group. It must be noted, in order to appreciate the data, that this is independent of the additional effect of counterions (anions) on the sensitizing ability of these cyanine dyes. As previously noted, certain counterions (and especially perchlorate) are preferred. As shown in Examples 35 and 36, the same quaternary nitrogen containing cyanine dye displayed improved sensitizing ability for organic electron donor compounds when the para-toluenesulfonate counterion was replaced with a perchlorate anion. However, comparisons are meaningful between, for example, the compounds of Examples 25 and 35 where the nitro groups of the prior art are replaced with phenylsulfonyl groups according to the present invention and the counterion is the same in both cases. As can be seen from the data, the exposure energy necessary to reach one-half the initial voltage was lower for the phenylsulfonyl compound at all absorbance wavelengths. This shows the improvement in sensitivity alleged in the practice of the present invention. The comparison of compounds 25 to compounds 35 (with only hydrogens on the phenyl ring) and 24 (with chlorine substituents on the phenyl ring) show similar improvement at the absorption wavelengths evaluated. Example 25 shows improved properties at its wavelength of maximum absorbance (621) in comparison to the wavelength of maximum absorbance !6S0) for compound 29.
- A solution consisting of 0.6g of an organic solvent soluble copolyester derived from terephthalic acid, isophthalic acid, and ethylene glycol (Vitel PE-200), 0.4g of bis-5,5'-(N-ethylbenzo[a]carbazolyl)-phenylmethane and 0.005g of phenylsulfonylimidazo-[4,5-b]-quinoxaline dye (A) in a mixture of 4.5g of dichloromethane and 4.5g of 1,2-dichloroethane was prepared, filtered, and knife coated onto an aluminized polyester substrate. The wet thickness of the coating was 4 mil (1x10-4m). The coating was allowed to air dry and then was oven dried for 15 min. at 80°C. The electrophotographic performance of this construction is shown in Table II.
- A solution consisting of 0.6g polyester (Vitel PE-200), 0.4g of the charge transport material indicated in Table II, and 0.005g a phenylsulfonylimidazo-[4,5-b]-quinoxaline dye (A) in a mixture of 4.5g of dichloromethane and 4.5g of 1,2-dichloroethane was prepared, filtered, and knife coated onto an aluminized polyester substrate. The wet thickness of the coating was 4 mil (1x10-4m). The coating was allowed to air dry and then oven dried for 15 min. at 80°C. The electrophotographic behavior of this construction is shown in Table II.
-
- A solution consisting of 1.0g of polyvinylcarbazole and 0.005g of phenylsulfonylimidazo-[4f5-b]-quinoxaline dye (A) in a mixture of 4.5g dichloromethane and 4.5g of 1,2-dichloroethane was knife coated onto an aluminized polyester substrate. The wet thickness of the coating was 4 mil (1x10-4m). The coating was air dried and then oven dried for 15 min. at 80°C. The electrophotographic behavior of the construction is shown in Table II.
-
- 0.45 g of l-ethyl-2,3,3-trimethyl-5-phenyl- sulfonylindoleninium iodide and 0.085 g of 1-formyl-2-chloro-3-hydroxymethylene-l,2-cyclohexene were dissolved in a mixture of 5 ml of acetic acid and 8 ml of acetic anhydride. After the addition of 0.12 g anhydrous sodium acetate, the reaction mixture was heated to reflux for 5 minutes and cooled overnight.- The raw dye was purified by recrystallization from acetic acid. 0.32 g of pure dye were obtained. The dye exhibited a melting point of 226-227°C, maximum absorbence at 788 nm (in acetone) and [e] = 2.57 x 10 5.
- The p-toluene sulfonate counterpart of this dye was equivalently prepared using the p-toluene sulfonate indoleninium salt, 0.9 of the cyclohexene, and 80 g of acetic acid. A yield of 1.8 g of purified dye exhibited a melting point of 213-215°C, a maximum absorbence at 788 nm (in acetone), and [ε] = 2.93 x 105.
- The 1-methyl indolenine iodide counterpart of this last compound was identically prepared using 1-methyl indoleninium salts. It displayed a melting point of 182-183°C, maximum absorbence at 786 nm (in acetone), and [ε] = 1.94 x 105.
- Preparation of 1-ethyl-2-[(1-ethyl-3,3-dimethyl-5-phenylsulfonylindolenine-2-yl)-4-chloro-3,5-dimethylene-1,3,5-heptatrienylidene]-3,3-dimethyl-5-phenylsulfonylindoleninium p-toluenesulfonate.
- A solution of 4.99 g l-ethyl-3,3-dimethyl-5-phenylsulfonylindoleninium p-toluenesulfonate and 1.25 g of l-dimethylammonium-methylene-2-chloro-3-dimethylamino-methylene-1,2-cyclopentene-chloride in 80 ml of acetic anhydride was prepared and heated at 110°C for ninety minutes. After cooling, the reaction solution was poured into ethyl ether with stirring. The solid material was filtered on a Buchner funnel and dissolved in 200 ml boiling acetone. The solution was poured into 400 ml of boiling water. The dye separated upon cooling, yielding 1.8 g of dye displaying a melting point of 193-195, maximum absorbence at 811 nm (in acetone) and [e] = 2.93 x 105.
- Preparation of 1-ethyl-2-[(1-ethyl-3,3-dimethyl-5-benzoylindolenine-2-yl)-4-chloro-3,5-trimethylene-l,3,5-hetatrienylidene]-3,3-dimethyl-5-benzoylindoleninium p-toluenesulfonate.
- A solution of 2.4 g of l-ethyl-2,3,3-trimethyl-5-benzoylindoleninium p-toluenesulfonate and 0.45 g of 1-formyl-2-chloro-3-hydroxymethylene-1,2-cyclohexene in 60 ml of acetic anhydride was prepared and heated at 100°C for one hour. After cooling at room temperature, the reaction solution was poured into 200 ml of ethyl ether and the solid material obtained was filtered on a Buchner funnel and repeatedly washed with ethyl ether. 0.5 g of pure dye was obtained by recrystallization from acetone. The dye displayed a melting point of 208-210°C, a maximum absorbence at 797 nm (in acetone), and [e] = 2.81 x 105.
- Preparation of l-ethyl-2-[(I-ethyl-3,3-dimethyl-5-benzoylindolenine-2-yl)-4-chloro-3,5-dimethylene-1,3,5-heptatrienylidene]-3,3-dimethyl-5-benzoylindolenine p-toluenesulfonate.
- A solution of 4.3 g l-ethyl-2,3,3-trimethyl-5-benzoylindoleninium p-toluenesulfonate and 1.17 g l-dimethylammonium-methylene-2-chloro-3-dimethyl- aminomethylene-1,2-cyclopentene in 80 ml of acetic anhydride was prepared and heated at 110°C for ninety minutes. After cooling at room temperature, the reaction solution was poured into 400 ml of ethyl ether with stirring. The solid product was filtered and redissolved in 800 ml of boiling acetone. This solution was poured into 400 ml of hot water. After cooling, 0.25 g of green dye was collected on a Buchner funnel and washed with 200 ml of an acetone/ethyl ether (1:4) solution. The dye displayed a melting point of 223-234°C, a maximum absorbence at 822 nm, and [e] = 2.67 x 105.
- Different counterions and substituents on these dyes may be readily obtained by appropriate selection of the reagents.
- A solution consisting of 0.6 g Vitel PE-200 organic solvent soluble polyester, 0.4 g of Bis-5,5'-(N-ethylbenzo[a]carbozylyl)-phenylmethane, and 0.005 g 5-phenylsulfonyl-indolenine dye 1 in a mixture of 4.5 g dichloromethane, and 4.5 g of 1,2-dichloroethane was prepared, filtered, and knife coated onto an aluminized polyester substrate. The wet thickness of the coating was 4 mil (1 x-10-4 m). The coating was allowed to air dry and was then oven dried for 15 minutes at 80°C. The electrophotographic performance of this construction, determined by measuring the energy required to discharge the sample to half of its initial value (E Vo/2), is shown in the accompanying Table.
- A solution consisting of 0.6 g Vitel PE-200, 0.4 g of transport material indicated, and 0.005 g of the 5-phenylsulfonyl-indolenine dye indicated in a mixture of 4.5 g of dichloromethane and 4.5 g of 1.2-dichloroethane was prepared, filtered, and knife coated onto an aluminized polyester substrate. The wet thickness of the coating was 4 mil (1 x 10-4 m). The coating was allowed to air dry and then oven dried for 15 minutes at 80°C. The electrophotographic performance of these constructions, determined by measuring the energy required to discharge the sample to half of their initial values (E Vo/2). is shown in the accompanying Table.
- A solution consisting of 1.0 g of polyvinylcarbazole and 0.005 g of 5-phenylsulfonyl-indolenine dye 5 in a mixture of 4.5 g of dichloromethane and 4.5 g of 1,2-dichloroethane was knife coated onto an aluminized polyester substrate. The wet thickness of the coating was 4 mil (1 x 10-4 m). The coating was air dried and then oven dried for 15 minutes at 80°C. The electrophotographic behavior of this construction, determined by measuring the energy required to discharge the sample to half of its initial voltage (E Vo/2) is shown in the accompanying Table.
- The procedures of Examples 21-42 were employed except that 0.005 g of 5-benzoyl-indolenine dyes were employed in place of the 5-phenylsulfonyl-indolenine dyes used previously. The electrophotographic behavior of these constructions, determined by measuring the energy required to discharge the samples to half of their initial voltage, are shown in the accompanying Table.
-
-
-
-
-
-
5 ε = 2.57 x 10 5 -
-
-
-
-
- e = 3.2 x 105
- mp = 230-230.5°C
-
ε = 2.82 x 10 5 -
ε = 2.42 x 105 -
-
-
ε = 2.21 x 105 -
- ε = 2.5 x 10 5
- mp = 246-247°C
-
- e = 2.67 x 105
- mp = 222-223.5°C
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
- A bulk sensitized photoreceptor was prepared by coating a solution of 10 percent by weight solids (5.2% of p-dimethylamino-di- -perfluoromethylsulfonylcinnamilidene, 38% bis(N-ethyl-l,2-benzocarbazolyl)phenyl methane, and 56.8% polycarbonate resin at about 1x10-4m onto aluminized polyester(polyethyleneterephthalate). This was air dried for 15 minutes at 85°C. The sample was evaluated for its xerographic response to positive corona charging. The sample displayed a maximum sensitivity at 540 nm. At that wavelength, the construction required approximately 3 Joules/cm2 to discharge the sheet to one half its potential from 740 volts. The sample displayed an initial discharge rate of 736 volts/sec. with 3.27 watts/cm2.
-
- A coating solution was prepared from 0.6 g polyester (Vitel® PE-200 organic solvent soluble copolyester of terephthalic acid, isophthalic acid, and ethylene glycol), 0.4 g of the compound of Example 1, and 0.005 g of disulfone dye A in a mixture of 4.5 g dichloromethane and 4.5 g of 1,2-dichloroethane, filtered, then knife coated onto an aluminized polyester substrate. The wet thickness of the coating was 1 x 10-4m before oven drying for 15 minutes at 80°C. The electrophotographic performance of this coating is shown in Table I.
- Coating solutions were prepared of 0.6 g of an organic solvent soluble copolyester derived from terephthalic acid, isophthalic acid and ethylene glycol (Vitel®PE-200), 0.4 g of the indicated charge transport material, and 0.005 g of the disulfone dye indicated in Table I. These materials were knife coated onto aluminized polyester from a solution with 4.5 g dichloromethane and 4.5 g of 1,2-dichloroethane after filtering. The wet thickness was 1 x 10-4m before air drying then oven drying for 15 minutes at 80°C. The electrophotographic performance of these coatings is shown in Table I.
- A coating solution of 1.0 g polyvinylcarbazole and 0.005 g disulfone dye D in a mixture of 4.5 g of dichloromethane and 4.5 g of 1,2-dichloroethane was knife coated at 1 x 10-4m wet thickness onto aluminized polyester. The coating was air dried then oven dried for 15 minutes at 80°C. The electrophotographic behavior of the construction is shown in Table I.
-
-
-
-
-
-
Claims (16)
wherein X- represents an acid anion.
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US237067 | 1981-02-23 | ||
US06/237,067 US4357405A (en) | 1981-02-23 | 1981-02-23 | Fluorinated dye sensitized organic electron donor compound |
US236654 | 1981-02-23 | ||
US236653 | 1981-02-23 | ||
US06/236,654 US4337305A (en) | 1981-02-23 | 1981-02-23 | Sensitized organic electron donor compounds |
US06/236,653 US4356244A (en) | 1981-02-23 | 1981-02-23 | Quinoxaline cyanine dye sensitized organic electron donor compounds |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0058839A1 true EP0058839A1 (en) | 1982-09-01 |
EP0058839B1 EP0058839B1 (en) | 1986-04-16 |
Family
ID=27398889
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP19820100686 Expired EP0058839B1 (en) | 1981-02-23 | 1982-02-01 | Sensitized organic electron donor compounds |
Country Status (2)
Country | Link |
---|---|
EP (1) | EP0058839B1 (en) |
DE (1) | DE3270544D1 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0147468A1 (en) * | 1983-05-24 | 1985-07-10 | Sony Corporation | Electrophotographic sensitized material |
EP0292322A2 (en) * | 1987-05-22 | 1988-11-23 | Minnesota Mining And Manufacturing Company | Dyes suitable for sensitization of photoconductive systems |
EP0342810A3 (en) * | 1988-05-20 | 1990-06-06 | Minnesota Mining And Manufacturing Company | Cyanine dyes and preparation thereof |
US5008043A (en) * | 1990-03-16 | 1991-04-16 | Eastman Kodak Company | Optical article exhibiting a high level of second order polarization susceptibility |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3110591A (en) * | 1956-12-26 | 1963-11-12 | Eastman Kodak Co | Merocyanine sensitized photoconductive compositions comprising zinc oxide |
US3352670A (en) * | 1964-02-14 | 1967-11-14 | Minnesota Mining & Mfg | Supersensitizers for optically sensitized photoconductive layers |
GB1161797A (en) * | 1966-09-08 | 1969-08-20 | Agfa Gevaert Nv | Optically Sensitized Light-Sensitive Material |
DE2054253A1 (en) * | 1969-11-04 | 1971-05-13 | Fuji Photo Film Co Ltd | Electrophotoconductors for electrophography and electrophotographic material |
US3597196A (en) * | 1967-04-25 | 1971-08-03 | Eastman Kodak Co | Sensitization of organic photoconductors with cyanine merocyanine,and azocyanine dyes |
DE2137325A1 (en) * | 1970-07-24 | 1972-01-27 | Canon K.K., Tokio | Organic photosensitive material for electrophotography |
US3933914A (en) * | 1972-10-25 | 1976-01-20 | Minnesota Mining And Manufacturing Company | Organic dye having fluoroaliphatic substituent |
US4025347A (en) * | 1973-06-18 | 1977-05-24 | Minnesota Mining And Manufacturing Company | Fogged direct-positive silver halide emulsion containing a cyanine dye having an indole or indolenine nucleus substituted with a benzoyl or a phenylsulfonyl group |
GB1555053A (en) * | 1976-04-07 | 1979-11-07 | Minnesota Mining & Mfg | Cyanine dyes |
-
1982
- 1982-02-01 DE DE8282100686T patent/DE3270544D1/en not_active Expired
- 1982-02-01 EP EP19820100686 patent/EP0058839B1/en not_active Expired
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3110591A (en) * | 1956-12-26 | 1963-11-12 | Eastman Kodak Co | Merocyanine sensitized photoconductive compositions comprising zinc oxide |
US3352670A (en) * | 1964-02-14 | 1967-11-14 | Minnesota Mining & Mfg | Supersensitizers for optically sensitized photoconductive layers |
GB1161797A (en) * | 1966-09-08 | 1969-08-20 | Agfa Gevaert Nv | Optically Sensitized Light-Sensitive Material |
US3597196A (en) * | 1967-04-25 | 1971-08-03 | Eastman Kodak Co | Sensitization of organic photoconductors with cyanine merocyanine,and azocyanine dyes |
DE2054253A1 (en) * | 1969-11-04 | 1971-05-13 | Fuji Photo Film Co Ltd | Electrophotoconductors for electrophography and electrophotographic material |
DE2137325A1 (en) * | 1970-07-24 | 1972-01-27 | Canon K.K., Tokio | Organic photosensitive material for electrophotography |
US3933914A (en) * | 1972-10-25 | 1976-01-20 | Minnesota Mining And Manufacturing Company | Organic dye having fluoroaliphatic substituent |
US4025347A (en) * | 1973-06-18 | 1977-05-24 | Minnesota Mining And Manufacturing Company | Fogged direct-positive silver halide emulsion containing a cyanine dye having an indole or indolenine nucleus substituted with a benzoyl or a phenylsulfonyl group |
GB1555053A (en) * | 1976-04-07 | 1979-11-07 | Minnesota Mining & Mfg | Cyanine dyes |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0147468A1 (en) * | 1983-05-24 | 1985-07-10 | Sony Corporation | Electrophotographic sensitized material |
EP0147468B1 (en) * | 1983-05-24 | 1988-11-30 | Sony Corporation | Electrophotographic sensitized material |
EP0292322A2 (en) * | 1987-05-22 | 1988-11-23 | Minnesota Mining And Manufacturing Company | Dyes suitable for sensitization of photoconductive systems |
EP0292322A3 (en) * | 1987-05-22 | 1990-02-07 | Minnesota Mining And Manufacturing Company | Dyes suitable for sensitization of photoconductive systems |
EP0342810A3 (en) * | 1988-05-20 | 1990-06-06 | Minnesota Mining And Manufacturing Company | Cyanine dyes and preparation thereof |
US5008043A (en) * | 1990-03-16 | 1991-04-16 | Eastman Kodak Company | Optical article exhibiting a high level of second order polarization susceptibility |
Also Published As
Publication number | Publication date |
---|---|
DE3270544D1 (en) | 1986-05-22 |
EP0058839B1 (en) | 1986-04-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH04223473A (en) | Electronic photograph recording material | |
JPS5928903B2 (en) | Multiactive, photoconductive insulating element | |
US3684548A (en) | Method of preparing a homogeneous dye-sensitized electrophotographic element | |
EP0292322B1 (en) | Dyes suitable for sensitization of photoconductive systems | |
US3567439A (en) | Borinium dyes as sensitizers for organic photoconductors | |
JPH038539B2 (en) | ||
EP0058839B1 (en) | Sensitized organic electron donor compounds | |
EP0368276B1 (en) | Electrophotographic photoreceptor | |
US4356244A (en) | Quinoxaline cyanine dye sensitized organic electron donor compounds | |
US4337305A (en) | Sensitized organic electron donor compounds | |
JPH02300756A (en) | Electrophotograhic sensitive body | |
US3560208A (en) | Cyanine dye containing a pyrrole nucleus used as a sensitizer for organic photoconductors | |
US3745160A (en) | Novel borinium cyanine dyes | |
US4943638A (en) | Dyes suitable for sensitization of photoconductive systems | |
JPS61124951A (en) | Electrophotographic sensitive body | |
JPH0415831B2 (en) | ||
US3549362A (en) | Novel cyanine dyes for the sensitization of organic photoconductors | |
JPS61200544A (en) | Electrophotographic sensitive body | |
US4367274A (en) | Sensitized organic electron donor bis-benzocarbazole compounds | |
US3542548A (en) | Novel cyanine dyes for the sensitization of organic photoconductors | |
JPS6389865A (en) | Electrophotographic sensitive body | |
JPS60198550A (en) | Electrophotographic sensitive body | |
JPS61177461A (en) | Electrophotographic sensitive body | |
JPH02304453A (en) | Electrophotographic sensitive body | |
JPH02108061A (en) | Electrophotographic sensitive body |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Designated state(s): DE FR GB IT |
|
17P | Request for examination filed |
Effective date: 19830124 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE FR GB IT |
|
ITF | It: translation for a ep patent filed | ||
REF | Corresponds to: |
Ref document number: 3270544 Country of ref document: DE Date of ref document: 19860522 |
|
ET | Fr: translation filed | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
REG | Reference to a national code |
Ref country code: GB Ref legal event code: 732 |
|
ITTA | It: last paid annual fee | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 19950113 Year of fee payment: 14 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 19950123 Year of fee payment: 14 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 19950126 Year of fee payment: 14 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Effective date: 19960201 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 19960201 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Effective date: 19961031 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Effective date: 19961101 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |