EP0058628B1 - Heat exchanger with capillary structure for refrigerating machines and/or heat pumps - Google Patents

Heat exchanger with capillary structure for refrigerating machines and/or heat pumps Download PDF

Info

Publication number
EP0058628B1
EP0058628B1 EP82450003A EP82450003A EP0058628B1 EP 0058628 B1 EP0058628 B1 EP 0058628B1 EP 82450003 A EP82450003 A EP 82450003A EP 82450003 A EP82450003 A EP 82450003A EP 0058628 B1 EP0058628 B1 EP 0058628B1
Authority
EP
European Patent Office
Prior art keywords
heat
fibers
tubes
exchanger
wall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP82450003A
Other languages
German (de)
French (fr)
Other versions
EP0058628A3 (en
EP0058628A2 (en
Inventor
Yvan Aragou
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aragou Yvan
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of EP0058628A2 publication Critical patent/EP0058628A2/en
Publication of EP0058628A3 publication Critical patent/EP0058628A3/en
Application granted granted Critical
Publication of EP0058628B1 publication Critical patent/EP0058628B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/18Arrangements for modifying heat-transfer, e.g. increasing, decreasing by applying coatings, e.g. radiation-absorbing, radiation-reflecting; by surface treatment, e.g. polishing
    • F28F13/185Heat-exchange surfaces provided with microstructures or with porous coatings
    • F28F13/187Heat-exchange surfaces provided with microstructures or with porous coatings especially adapted for evaporator surfaces or condenser surfaces, e.g. with nucleation sites
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/10Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically
    • F28D7/12Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically the surrounding tube being closed at one end, e.g. return type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/04Arrangements for modifying heat-transfer, e.g. increasing, decreasing by preventing the formation of continuous films of condensate on heat-exchange surfaces, e.g. by promoting droplet formation

Definitions

  • the present invention relates to heat exchangers using the energy supplied during the change of liquid / vapor or vapor / liquid phase of certain fluids and, more particularly, those used in refrigeration machines and / or heat pumps.
  • the heat exchangers are either constructed and dimensioned with a view to playing a specific predetermined role, either as an evaporator or as a condenser, or else produced so as to serve both as an evaporator and as a condenser.
  • the heat exchanger is designed to be used exclusively as an evaporator, it is underutilized because it is more than half full of liquid in general and 2/3 at most, to '' avoid "liquid blows" to the compressor.
  • a heat exchanger for refrigeration machines and / or heat pumps comprising a tubular heat exchange network which includes exchanger tubes in which, in service, a mixture of refrigerant and lubricating oil enters at one end and exits at the other end, a capillary structure being applied against the internal wall of at least some of these exchanger tubes by permeable means .
  • the purpose of the capillary structure is to completely wet the walls of the tubes, even in the most frequent case where the tubes are not full of liquid.
  • the capillary structure is a metallic cloth applied against the internal wall of the exchanger tube by a strand of piano wire.
  • the purpose of the present invention is to overcome these two major drawbacks simultaneously by proposing a new capillary structure for heat exchangers allowing heat exchanges over the entire useful surface of the exchangers with a significantly increased efficiency, while not impeding the circulation of lubricating oil.
  • this object is achieved as soon as the capillary structure is constituted by a set of free and smooth fibers of suitable material, substantially rectilinear and parallel to the axis of the exchanger tubes concerned, regularly distributed in rings and plated over all the length against the wall of said tubes.
  • the capillary effect along the wall of the tubes is maintained, but, instead of being substantially immobile, the liquid concerned by this capillarity moves longitudinally in the tube between the fibers. Displacement also concerns the oil which finds no obstacle allowing it to park.
  • This movement is allowed on the one hand by the longitudinal arrangement of the fibers, and on the other hand by the permeability of the means applying the fibers against the internal wall of the tubes. Thanks to this permeability, the current in the central part of the tubes has a driving action in the same direction on the capillary fluid.
  • the piano wire certainly provides permeability between the capillary space and the central current, but this permeability does not allow, according to the prior document, any entrainment in the capillary space.
  • a heat pipe In a heat pipe, a refrigerant vaporizes at one end, forms in the tube a central current of vapor towards the other end, condenses and gives up heat at this other end, after which it returns to the first end by the capillary structure arranged in a peripheral manner.
  • a heat pipe is indeed a heat exchanger.
  • the invention relates to a heat exchanger for refrigeration machines in which the fluid enters through one end of the exchanger tubes and exits through the other end instead of performing round-trip cycles in the sealed tube. of a heat pipe.
  • the general direction of the heat exchange is radial, that is to say that heat is exchanged between the interior and the exterior of the tube, and not between two exterior media by l 'through a heat pipe type element.
  • the exchanger of FIG. 1 comprises two manifolds 1 and 2 connected by a network of heat exchange tubes 3, parallel and identical rectilinear, made of a material which is a good thermal conductor such as copper for example.
  • all of the tubes 3 have a capillary annular structure 4 over their entire length, as does the collector of the liquid phase (collector 1 in FIG.) Of the heat transfer fluid (or refrigerant).
  • Figs. 2 and 3 illustrate an embodiment of said capillary annular structure 4 according to which this structure consists of a number of identical individual fibers 5, smooth, straight and of constant diameter. These fibers are free from each other while being in contact with each other and with the internal wall of the tube (1 or 3) and confined in an annular space by any suitable means.
  • the distribution of the fibers 5 is uniform, the thickness of the annular layer being in a proportion determined relative to the diameter of the tube in order to have an appropriate circulation and flow of the fluid in the liquid phase in the conduits 1 and 3.
  • the fibers 5 line the internal wall of the latter over their entire useful length and are applied against the wall of the tubes, for example in known manner, by a helical element 6 (FIG. 3) forming a spring, engaged in the central part of the tubes (3, 1).
  • This helical element 6 could of course be replaced by any other member capable of pressing the fibers 5 against the wall such as rings for example.
  • the fibers 5 and the holding members 6 are made of metallic or plastic material, or the like, compatible with the nature of the fluid circulating in the exchanger.
  • the diameter of the fibers 5 can vary to the extent that the interstitial spaces between the fibers make it possible to obtain the capillary effect sought for the coolant or refrigerant considered.
  • the fibers 5 arranged in the collector 1 ensure a uniform distribution of the liquid towards the exchanger tubes 3, while the fibers 5 of the latter allow the liquid to "wet" absolutely the entire useful surface of the tubes 3 and therefore ensure maximum heat exchange between the liquid phase fluid in contact with the internal wall of the tubes 3 and the external fluid.
  • the exchanger works as an evaporator and cools the fluid (for example air) circulating in 7 between the tubes 3.
  • the fluid circulating in the tubes 3 is then called refrigerant.
  • the working fluid arrives in the gaseous phase at 2 and leaves by 1 in the liquid phase, the fluid is heat-transferable and transfers part of its calories to the fluid circulating in 7.
  • the latter is air
  • the liquid phase is distributed over the tubes 3 as it is formed and is evacuated and the capillary structure 4 thus ensures good distribution of the temperature and therefore improves the heat exchanges.
  • an exchanger such as that of FIG. 1 working in an evaporator has a much higher efficiency than that of traditional evaporators
  • the filling of the exchange tubes in liquid phase is usually of the order of half and at most z / 3 while, thanks to the capillary structure 4 according to the invention in the evaporator arranged according to FIG. 1, the entire internal surface of the exchange tubes 3 is in contact with the liquid phase, uniformly, thanks to the capillary wicking effect.
  • the exchanger shown in FIG. 1 operating either as an evaporator or as a condenser, improves the coefficient of performance of reversible machines in substantial proportions (of the order of 30 to 40%).
  • the invention is not limited to the embodiment shown and described above, but on the contrary covers all variants, in particular those concerning the nature of the material constituting the fibers 5, their sizing, their distribution along the inner wall of the tubular exchange members and collectors of the working phase liquid phase as well as the means for pressing or containing said fibers against the inner wall of said tubular members.
  • the sheet of fibers 5 may comprise only a single layer of fibers more or less parallel to the axis of the tube and contiguous or not.
  • FIG. 4 shows a particularly interesting embodiment by its simplicity and its efficiency.
  • a sheet of fibers 5 is shown, consisting of a single layer of parallel and non-contiguous fibers, said sheet being pressed against the internal wall of the tube 3 by an elastic system constituted by a sheet of wires 17 of spring steel (or material likely to have the same elasticity characteristics).
  • the wires 17 are parallel, non-contiguous and wound in a helix.
  • the fibers 5 are of axis substantially parallel to the axis of the tube 3, while the wires 17 form a more or less significant acute angle with the fibers 5.
  • the propeller produced by the wires 17 does not comprise a single wire but several in parallel, the bundle of wires being wound in a helix. It is therefore possible to easily vary the inclination between the fibers 5 and the wires 17 while having a tight network of wires 17 in contact at numerous points with the sheet of fibers 5.
  • Fig. 5 illustrates a variant according to which the internal wall of the tube 4 is no longer smooth but striated, grooved or grooved.
  • streaks 18 or the like are produced by any suitable means, parallel to the axis of the tube 3 and preferably with a generally flared V-shaped cross section.
  • These recesses 18 are responsible for facilitating the correct positioning of the fibers 5, it being understood that the depth of these ridges or the like is less than the radius of the fibers 5 which are held in place by an elastic system identical to that of FIG. 4 or different.
  • the capillary structure may consist of two layers of fibers 5 with identical or different dimensional characteristics, parallel and not contiguous, the fibers of one of the layers being inclined relative to the fibers of the other layer and the assembly of this structure being pressed against the tube by an elastic system identical or not to that of FIG. 4.
  • one of the layers may comprise fibers parallel to the axis of the tube, this layer being either in contact with the internal wall of the tube, or in contact with said elastic system (vapor side).
  • Fig. 6 illustrates a method for producing a capillary structure according to FIG. 4 and its insertion into an aluminum or light alloy tube produced by extrusion.
  • a cylindrical mandrel 19 On a cylindrical mandrel 19 is helically wound a sheet 20 of spring wires or the like, of steel for example. The wires 21 of this sheet form contiguous turns on the mandrel 19.
  • the ply 20 is wrapped in a ply 22 of free smooth fibers 5 parallel to the axis of the mandrel 19.
  • the fibers 5 are regularly distributed in a single layer around the helical ply 20.
  • the plies 20 and 22 at the outlet of the mandrel 19 are guided and held in shape by a cylindrical sleeve 23 in the extension of the mandrel 19 and integrated in an extrusion head 24 coaxially with the annular orifice 25 for extruding a tube 3 for example made of aluminum, said orifice 25 being delimited between the sleeve 23 and the die 26.
  • the tube 3 As the tube 3 is formed, it is automatically provided internally with the capillary ply 22 and the elastic retaining ply 20, the plies 20 and 22 being formed continuously and introduced into the tube 3 at the same speed. scrolling.
  • the plies 20 and 22 expand radially under the elastic action of the spring wires 21 and press against the internal wall of the tube 3.
  • the tube thus equipped conforms to what is shown in FIG. 4.
  • the tube 3 may internally have grooves such as 18 (Fig. 5) made during the extrusion.
  • the tube 3 can, of course, be obtained in another way, for example by rolling a flat plate then welding or from a strip wound helically on a mandrel, these two techniques being perfectly known.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Springs (AREA)

Description

La présente invention concerne les échangeurs de chaleur utilisant l'énergie fournie lors du changement de phase liquide/vapeur ou vapeur/ liquide de certains fluides et, plus particulièrement, ceux utilisés dans les machines frigorifiques et/ou pompes à chaleur.The present invention relates to heat exchangers using the energy supplied during the change of liquid / vapor or vapor / liquid phase of certain fluids and, more particularly, those used in refrigeration machines and / or heat pumps.

Dans les machines de ce type, les échangeurs de chaleur sont ou bien construits et dimensionnés en vue de jouer un rôle spécifique prédéterminé, soit comme évaporateur, soit comme condenseur, ou bien réalisés de façon à servir aussi bien d'évaporateur que de condenseur.In machines of this type, the heat exchangers are either constructed and dimensioned with a view to playing a specific predetermined role, either as an evaporator or as a condenser, or else produced so as to serve both as an evaporator and as a condenser.

Dans le cas où l'échangeur de chaleur est conçu pour être employé exclusivement comme évaporateur, il est sous-utilisé du fait qu'il n'est rempli qu'à moitié de liquide en général et aux 2/3 au maximum, afin d'éviter des «coups de liquide» au compresseur.If the heat exchanger is designed to be used exclusively as an evaporator, it is underutilized because it is more than half full of liquid in general and 2/3 at most, to '' avoid "liquid blows" to the compressor.

Les Z/3 seulement, voire la moitié, de la surface d'échange de l'évaporateur lorsque le débit de fluide diminue, sont donc utilisés. En outre, du fait que l'échange se fait au niveau de surfaces froides réduites, la formation de givre est favorisée dans le cas des évaporateurs à air ce qui nuit bien entendu au rendement. Z / 3 only, or even half, of the evaporator exchange surface when the fluid flow decreases, are therefore used. In addition, since the exchange takes place at reduced cold surfaces, the formation of frost is favored in the case of air evaporators, which obviously affects performance.

Dans le cas des condenseurs conçus essentiellement comme tels, il faut, pour des raisons technologiques, que les vapeurs arrivant au condenseur soient complètement condensées à la sortie. Il en résulte un surdimensionnement augmentant des coûts de revient de ces échangeurs.In the case of condensers designed essentially as such, it is necessary, for technological reasons, that the vapors arriving at the condenser are completely condensed at the outlet. This results in oversizing increasing the production costs of these exchangers.

Enfin, actuellement, l'utilisation de machines frigorifiques réversibles oblige à réaliser des échangeurs qui soient un compromis entre évaporateur et condenseur, puisque devant fonctionner aussi bien en évaporateur qu'en condenseur, et qui, de ce fait, outre les inconvénients des échangeurs spécifiques rappelés ci-dessus, ont un mauvais rendement.Finally, currently, the use of reversible refrigeration machines requires the production of exchangers which are a compromise between evaporator and condenser, since they have to operate both in evaporator and in condenser, and which, therefore, in addition to the drawbacks of specific exchangers recalled above, have poor performance.

Afin d'améliorer les rendements d'échange thermique, on a déjà imaginé de tapisser d'une structure capillaire la paroi interne des tubes échangeurs en vue d'améliorer la répartition de la phase liquide sur la paroi interne des tubes.In order to improve the heat exchange yields, it has already been imagined to line the internal wall of the exchanger tubes with a capillary structure in order to improve the distribution of the liquid phase on the internal wall of the tubes.

On connaît en particulier d'après le FR-A 990 531, conformément au préambule de la revendication 1, un échangeur de chaleur pour machines frigorifiques et/ou pompes à chaleur, comprenant un réseau tubulaire d'échange de chaleur qui comprend des tubes échangeurs dans lesquels, en service, un mélange de fluide frigorigène et d'huile de lubrification entre par une extrémité et sort par l'autre extrémité, une structure capillaire étant appliquée contre la paroi interne de certains au moins de ces tubes échangeurs par des moyens perméables.According to FR-A 990 531, in particular, according to the preamble of claim 1, a heat exchanger for refrigeration machines and / or heat pumps, comprising a tubular heat exchange network which includes exchanger tubes in which, in service, a mixture of refrigerant and lubricating oil enters at one end and exits at the other end, a capillary structure being applied against the internal wall of at least some of these exchanger tubes by permeable means .

La structure capillaire a pour but de mouiller complètement les parois des tubes même dans le cas le plus fréquent où les tubes ne sont pas pleins de liquide.The purpose of the capillary structure is to completely wet the walls of the tubes, even in the most frequent case where the tubes are not full of liquid.

Selon le FR-A 990 531 la structure capillaire est une toile métallique appliquée contre la paroi interne du tube échangeur par une boudin de corde à piano.According to FR-A 990 531 the capillary structure is a metallic cloth applied against the internal wall of the exchanger tube by a strand of piano wire.

Il a été constaté selon l'invention qu'une telle structure piège l'huile de lubrification contenue dans le mélange. Ceci a le double inconvénient de priver le compresseur de cette huile et de réduire l'efficacité des échangeurs thermiques.It has been found according to the invention that such a structure traps the lubricating oil contained in the mixture. This has the double disadvantage of depriving the compressor of this oil and of reducing the efficiency of the heat exchangers.

Le but de la présente invention est de pallier simultanément ces deux inconvénients majeurs en proposant une nouvelle structure capillaire pour échangeurs de chaleur permettant les échanges thermiques sur toute la surface utile des échangeurs avec un rendement sensiblement accru, tout en n'entravant pas la circulation d'huile de lubrification.The purpose of the present invention is to overcome these two major drawbacks simultaneously by proposing a new capillary structure for heat exchangers allowing heat exchanges over the entire useful surface of the exchangers with a significantly increased efficiency, while not impeding the circulation of lubricating oil.

Suivant l'invention, ce but est atteint dès lors que la structure capillaire est constituée par un jeu de fibres libres et lisses en matériau approprié, sensiblement rectilignes et parallèles à l'axe des tubes échangeurs concernés, réparties régulièrement en anneaux et plaquées sur toute la longueur contre la paroi desdits tubes.According to the invention, this object is achieved as soon as the capillary structure is constituted by a set of free and smooth fibers of suitable material, substantially rectilinear and parallel to the axis of the exchanger tubes concerned, regularly distributed in rings and plated over all the length against the wall of said tubes.

Grâce à cette disposition, l'effet de capillarité de long de la paroi des tubes est maintenu, mais, au lieu d'être sensiblement immobile, le liquide concerné par cette capillarité se déplace longitudinalement dans le tube entre les fibres. De déplacement concerne également l'huile qui ne trouve aucun obstacle lui permettant de stationner. Ce déplacement est permis d'une part par la disposition longitudinale des fibres, et d'autre part par la perméabilité des moyens appliquant les fibres contre la paroi interne des tubes. Grâce à cette perméabilité, le courant dans la partie centrale des tubes a une action d'entraînement dans le même sens sur le fluide capillaire. Selon le FR-A 990 531, la corde à piano assure certes une perméabilité entre l'espace capillaire et le courant central, mais cette perméabilité ne permet selon le document antérieur aucun entraînement dans l'espace capillaire.Thanks to this arrangement, the capillary effect along the wall of the tubes is maintained, but, instead of being substantially immobile, the liquid concerned by this capillarity moves longitudinally in the tube between the fibers. Displacement also concerns the oil which finds no obstacle allowing it to park. This movement is allowed on the one hand by the longitudinal arrangement of the fibers, and on the other hand by the permeability of the means applying the fibers against the internal wall of the tubes. Thanks to this permeability, the current in the central part of the tubes has a driving action in the same direction on the capillary fluid. According to FR-A 990 531, the piano wire certainly provides permeability between the capillary space and the central current, but this permeability does not allow, according to the prior document, any entrainment in the capillary space.

On connaît certes d'après le US-A 4 018 269 un appareil appelé «caloduc», à propos duquel il est signalé que les fibres longitudinales sont des moyens de capillarité plus avantageux que les tissus car permettant un écoulement plus facile. Dans un caloduc, un fluide frigorigène se vaporise à une extrémité, forme dans le tube un courant central de vapeur vers l'autre extrémité, se condense et cède de la chaleur à cette autre extrémité, après quoi il retourne à la première extrémité par la structure capillaire disposée de manière périphérique.Certainly from US-A 4,018,269, an apparatus known as a “heat pipe” is known, in connection with which it is pointed out that the longitudinal fibers are more advantageous means of capillary action than the tissues because they allow easier flow. In a heat pipe, a refrigerant vaporizes at one end, forms in the tube a central current of vapor towards the other end, condenses and gives up heat at this other end, after which it returns to the first end by the capillary structure arranged in a peripheral manner.

Ainsi, la chaleur latente de vaporisation emmagasinée par le fluide à l'une des extrémités est restituée par celui-ci à l'autre extrémité. En ce sens, un caloduc est bien un échangeur de chaleur.Thus, the latent heat of vaporization stored by the fluid at one of the ends is returned by the latter at the other end. In this sense, a heat pipe is indeed a heat exchanger.

Cependant, l'échange de chaleur a lieu dans le sens longitudinal, c'est-à-dire d'une extrémité à l'autre du tube. Entre ses deux extrémités, le caloduc est essentiellement adiabatique. En d'autres termes, les fibres prévues selon le US-A 4 018 269 ont purement et simplement un rôle de transport du fluide et n'assurent aucun échange. S'agissant de transporter un fluide, il est tout à fait clair que la structure capillaire doit offrir la plus petite résistance possible au déplacement du liquide. Dès lors, il est naturel que le US-A 4 018 269 préconise des fibres longitudinales plutôt qu'un tissu.However, the heat exchange takes place in the longitudinal direction, that is to say from one end to the other of the tube. Between its two ends, the heat pipe is essentially adiabatic. In other words, the fibers provided according to US-A 4,018,269 purely and simply have a role in transporting the fluid and do not provide any exchange. Regarding to transport a fluid, it is quite clear that the capillary structure must offer the smallest possible resistance to the displacement of the liquid. It is therefore natural that US-A 4,018,269 recommends longitudinal fibers rather than a fabric.

Contrairement à tout cela, l'invention vise un échangeur de chaleur pour machines frigorifiques dans lequel le fluide entre par une extrémité des tubes échangeurs et sort par l'autre extrémité au lieu d'effectuer des cycles d'aller et retour dans le tube étanche d'un caloduc.Contrary to all this, the invention relates to a heat exchanger for refrigeration machines in which the fluid enters through one end of the exchanger tubes and exits through the other end instead of performing round-trip cycles in the sealed tube. of a heat pipe.

Dans de tels tubes échangeurs, la direction générale de l'échange thermique est radiale, c'est-à-dire que de la chaleur est échangée entre l'intérieur et l'extérieur du tube, et non pas entre deux milieux extérieurs par l'intermédiaire d'un élément de type caloduc.In such exchanger tubes, the general direction of the heat exchange is radial, that is to say that heat is exchanged between the interior and the exterior of the tube, and not between two exterior media by l 'through a heat pipe type element.

Selon l'invention, les fibres permettent non seulement la circulation du fluide mais doivent en même temps assurer l'échange, c'est-à-dire:

  • - permettre au fluide de rester contre la paroi du tube;
  • - malgré cela permettre que le fluide ainsi retenu contre la paroi soit en communication avec le courant central pour qu'il puisse y avoir changement de phase entre le courant central et le courant capillaire; et
  • - ne pas entraîner le fluide trop rapidement de façon que l'échange avec le milieu extérieur puisse avoir lieu.
According to the invention, the fibers not only allow the circulation of the fluid but must at the same time ensure exchange, that is to say:
  • - allow the fluid to remain against the wall of the tube;
  • - despite this allowing the fluid thus retained against the wall to be in communication with the central current so that there can be a change of phase between the central current and the capillary current; and
  • - do not drive the fluid too quickly so that the exchange with the external environment can take place.

D'autres particularités et avantages ressortiront encore de la description ci-après.Other features and advantages will emerge from the description below.

Aus dessins annexés, donnés à titre d'exemples non limitatifs:

  • - la figure 1 est une vue schématique en coupe d'un échangeur conforme à l'invention, pouvant fonctionner en évaporateur ou en condenseur;
  • - La figure 2 est une vue en coupe transversale d'un élément tubulaire de l'échangeur de la Fig. 1;
  • - La figure 3 représente une coupe longitudinale partielle d'un élément tubulaire de l'échangeur de la Fig. 1;
  • - La figure 4 est une vue en coupe partielle d'un mode de réalisation préféré d'une structure capillaire selon l'invention;
  • - La figure 5 représente une variante de réalisation du dispositif de la Fig. 4; et
  • - La figure 6 est une vue en coupe axiale d'un dispositif permettant la réalisation et la mise en place d'une structure capillaire suivant la Fig. 4 ou 5 associé à une tête d'extrusion du tubes dans laquelle est intégré ledit dispositif.
Aus attached drawings, given by way of non-limiting examples:
  • - Figure 1 is a schematic sectional view of an exchanger according to the invention, which can operate as an evaporator or a condenser;
  • - Figure 2 is a cross-sectional view of a tubular element of the exchanger of FIG. 1;
  • FIG. 3 represents a partial longitudinal section of a tubular element of the exchanger of FIG. 1;
  • - Figure 4 is a partial sectional view of a preferred embodiment of a capillary structure according to the invention;
  • - Figure 5 shows an alternative embodiment of the device of FIG. 4; and
  • - Figure 6 is an axial sectional view of a device allowing the production and installation of a capillary structure according to FIG. 4 or 5 associated with an extrusion head of the tubes in which said device is integrated.

L'échangeur de la Fig. 1 comporte deux collecteur 1 et 2 reliés par un réseau de tubes 3 d'échange de chaleur, rectilignes parallèles et identiques, en matériau bon conducteur thermique tel que le cuivre par exemple.The exchanger of FIG. 1 comprises two manifolds 1 and 2 connected by a network of heat exchange tubes 3, parallel and identical rectilinear, made of a material which is a good thermal conductor such as copper for example.

Conformément à l'invention, tous les tubes 3 comportent une structure annulaire capillaire 4 sur toute leur longueur, de même que le collecteur de la phase liquide (collecteur 1 sur la Fig.) du fluide caloporteur (ou frigorigène).According to the invention, all of the tubes 3 have a capillary annular structure 4 over their entire length, as does the collector of the liquid phase (collector 1 in FIG.) Of the heat transfer fluid (or refrigerant).

Les Fig. 2 et 3 illustrent un mode de réalisation de ladite structure annulaire capillaire 4 suivant lequel cette structure est constituée par un certain nombre de fibres individuelles 5 identiques, lisses, rectilignes et de diamètre constant. Ces fibres sont libres entre elles tout en étant en contact les unes les autres et avec la paroi interne du tube (1 ou 3) et confinées dans un espace annulaire par tous moyens appropriés. La répartition des fibres 5 est uniforme, l'épaisseur de la couche annulaire étant dans une proportion déterminée par rapport au diamètre du tube afin d'avoir une circulation et un débit appropriés du fluide en phase liquide dans les conduits 1 et 3.Figs. 2 and 3 illustrate an embodiment of said capillary annular structure 4 according to which this structure consists of a number of identical individual fibers 5, smooth, straight and of constant diameter. These fibers are free from each other while being in contact with each other and with the internal wall of the tube (1 or 3) and confined in an annular space by any suitable means. The distribution of the fibers 5 is uniform, the thickness of the annular layer being in a proportion determined relative to the diameter of the tube in order to have an appropriate circulation and flow of the fluid in the liquid phase in the conduits 1 and 3.

Les fibres 5 tapissent la paroi interne de ces derniers sur toute leur longueur utile et sont appliquées contre la paroi des tubes, par exemple à la manière connue, par un élément hélicoïdal 6 (Fig.3) formant ressort, engagé dans la partie centrale des tubes (3, 1).The fibers 5 line the internal wall of the latter over their entire useful length and are applied against the wall of the tubes, for example in known manner, by a helical element 6 (FIG. 3) forming a spring, engaged in the central part of the tubes (3, 1).

Cet élément hélicoïdal 6 pourrait bien entendu être remplacé par tous autres organes susceptibles de plaquer les fibres 5 contre la paroi tels que des anneaux par exemple.This helical element 6 could of course be replaced by any other member capable of pressing the fibers 5 against the wall such as rings for example.

Les fibres 5 et les organes de maintien 6 sont en matériau métallique ou plastique, ou autre, compatible avec la nature du fluide circulant dans l'échangeur.The fibers 5 and the holding members 6 are made of metallic or plastic material, or the like, compatible with the nature of the fluid circulating in the exchanger.

Le diamètre des fibres 5 peut varier dans la mesure où les espaces interstitiels entre fibres permettent d'obtenir l'effet de capillarité recherché pour le fluide caloporteur ou frigorigène considéré.The diameter of the fibers 5 can vary to the extent that the interstitial spaces between the fibers make it possible to obtain the capillary effect sought for the coolant or refrigerant considered.

Les fibres 5 disposées dans le collecteur 1 assurent une répartition uniforme du liquide vers les tubes échangeurs 3 cependant que les fibres 5 de ces derniers permettent au liquide de «mouiller» absolument toute la surface utile des tubes 3 et assurent donc un échange thermique maximal entre le fluide en phase liquide en contact avec la paroi interne des tubes 3 et le fluide extérieur.The fibers 5 arranged in the collector 1 ensure a uniform distribution of the liquid towards the exchanger tubes 3, while the fibers 5 of the latter allow the liquid to "wet" absolutely the entire useful surface of the tubes 3 and therefore ensure maximum heat exchange between the liquid phase fluid in contact with the internal wall of the tubes 3 and the external fluid.

D'autre part, du fait de la géométrie des espaces interstitiels aussi bien entre fibres 5 qu'entre celles-ci et la paroi interne des tubes 3 et de l'absence d'obstacle transversal à l'écoulement axial de l'huile de lubrification celle-ci n'est pas retenue et peut s'écouler librement.On the other hand, due to the geometry of the interstitial spaces both between fibers 5 and between these and the internal wall of the tubes 3 and the absence of any obstacle transverse to the axial flow of the oil of lubrication is not retained and can flow freely.

Le compresseur du système ne risque donc pas de manquer d'huile.There is therefore no risk of the system compressor running out of oil.

Lorsque le fluide de travail arrive en phase liquide en 1 et repart en phase gazeuse en 2, l'échangeur travaille en évaporateur et refroidit le fluide (par exemple de l'air) circulant en 7 entre les tubes 3.When the working fluid arrives in the liquid phase at 1 and leaves again in the gas phase at 2, the exchanger works as an evaporator and cools the fluid (for example air) circulating in 7 between the tubes 3.

Le fluide circulant dans les tubes 3 est alors appelé frigorigène.The fluid circulating in the tubes 3 is then called refrigerant.

Si, au contraire, le fluide de travail arrive en phase gazeuse en 2 et repart par 1 en phase liquide, le fluide est caloporteur et cède une partie de ses calories au fluide circulant en 7. Lorsque ce dernier est de l'air, on peut avantageusement munir extérieurement les tubes 3 d'ailettes en aluminium ou autre matériau bon conducteur de la chaleur. L'échangeur travaille alors en condenseur.If, on the contrary, the working fluid arrives in the gaseous phase at 2 and leaves by 1 in the liquid phase, the fluid is heat-transferable and transfers part of its calories to the fluid circulating in 7. When the latter is air, we can advantageously provide the tubes 3 externally with fins of aluminum or other material that is a good conductor of heat. The exchanger then works as a condenser.

La phase liquide se répartit sur les tubes 3 au fur et à mesure qu'elle se forme et est évacuée et la structure capillaire 4 assure ainsi une bonne répartition de la température et améliore d'autant les échanges thermiques.The liquid phase is distributed over the tubes 3 as it is formed and is evacuated and the capillary structure 4 thus ensures good distribution of the temperature and therefore improves the heat exchanges.

Ainsi, un échangeur tel que celui de la Fig. 1 travaillant en évaporateur a une efficacité bien supérieure à celle des évaporateurs traditionnels dont le remplissage des tubes d'échange en phase liquide est de l'ordre habituellement de la moitié et au maximum des z/3 alors que, grâce à la structure capillaire 4 selon l'invention dans l'évaporateur agencé suivant la Fig. 1, toute la surface interne des tubes d'échange 3 est en contact avec la phase liquide, de manière uniforme, grâce à l'effet de mèche capillaire.Thus, an exchanger such as that of FIG. 1 working in an evaporator has a much higher efficiency than that of traditional evaporators, the filling of the exchange tubes in liquid phase is usually of the order of half and at most z / 3 while, thanks to the capillary structure 4 according to the invention in the evaporator arranged according to FIG. 1, the entire internal surface of the exchange tubes 3 is in contact with the liquid phase, uniformly, thanks to the capillary wicking effect.

On supprime donc, en outre, dans le cas où le fluide circulant en 7 est de l'air, l'apparition prématurée de points froids engendrant la formation de givre sur les tubes 3. Il a été ainsi constaté qu'avec un évaporateur selon l'invention, la formation de givre n'apparaissait que pour une température de l'air circulant en 7 inférieure de 4 à 5°C à celle à laquelle apparaît le givre habituellement sur les évaporateurs classiques.It therefore therefore eliminates, in the case where the fluid flowing at 7 is air, the premature appearance of cold spots causing the formation of frost on the tubes 3. It has thus been found that with an evaporator according to In the invention, the formation of frost only appeared for a temperature of the air flowing in 7 4 to 5 ° C. lower than that at which frost usually appears on conventional evaporators.

L'échangeur représenté sur la Fig. 1 fonctionnant indifféremment en évaporateur ou en condenseur, améliore le coefficient de performance des machines réversibles dans des proportions substantielles (de l'ordre de 30 à 40%).The exchanger shown in FIG. 1 operating either as an evaporator or as a condenser, improves the coefficient of performance of reversible machines in substantial proportions (of the order of 30 to 40%).

Bien entendu, l'invention n'est pas limitée au mode de réalisation représenté et décrit ci-dessus mais en couvre au contraire toutes les variantes, notamment celles concernant la nature du matériau constitutif des fibres 5, leur dimensionnement, leur distribution le long de la paroi interne des organes tubulaires d'échange et collecteurs de la phase liquide de fluide de travail ainsi que les moyens pour plaquer ou contenir lesdites fibres contre la paroi interne desdits organes tubulaires.Of course, the invention is not limited to the embodiment shown and described above, but on the contrary covers all variants, in particular those concerning the nature of the material constituting the fibers 5, their sizing, their distribution along the inner wall of the tubular exchange members and collectors of the working phase liquid phase as well as the means for pressing or containing said fibers against the inner wall of said tubular members.

La nappe de fibres 5 peut ne comporter qu'une seule couche de fibres plus ou moins parallèles à l'axe du tube et jointive ou non.The sheet of fibers 5 may comprise only a single layer of fibers more or less parallel to the axis of the tube and contiguous or not.

La Fig. 4 représente un mode de réalisation particulièrement intéressant par sa simplicité et son efficacité. Sur cette Fig., on a représenté une nappe de fibres 5 constituée d'une seule couche de fibres parallèles et non jointives, ladite nappe étant plaquée contre la paroi interne du tube 3 par un système élastique constitué par une nappe de fils 17 d'acier à ressort (ou matériau susceptible de présenter les mêmes caractéristiques d'élasticité). Les fils 17 sont parallèles, non jointifs et enroulés en hélice.Fig. 4 shows a particularly interesting embodiment by its simplicity and its efficiency. In this FIG., A sheet of fibers 5 is shown, consisting of a single layer of parallel and non-contiguous fibers, said sheet being pressed against the internal wall of the tube 3 by an elastic system constituted by a sheet of wires 17 of spring steel (or material likely to have the same elasticity characteristics). The wires 17 are parallel, non-contiguous and wound in a helix.

Les fibres 5 sont d'axe sensiblement parallèle à l'axe du tube 3 cependant que les fils 17 forment avec les fibres 5 un angle aigu plus ou moins important.The fibers 5 are of axis substantially parallel to the axis of the tube 3, while the wires 17 form a more or less significant acute angle with the fibers 5.

L'hélice réalisée par les fils 17 ne comporte pas un fil unique mais plusieurs en parallèle, le faisceau de fils étant enroulé en hélice. On peut donc faire varier facilement l'inclinaison entre les fibres 5 et les fils 17 tout en ayant un réseau serré de fils 17 en contact en de nombreux points avec la nappe de fibres 5.The propeller produced by the wires 17 does not comprise a single wire but several in parallel, the bundle of wires being wound in a helix. It is therefore possible to easily vary the inclination between the fibers 5 and the wires 17 while having a tight network of wires 17 in contact at numerous points with the sheet of fibers 5.

Il est à noter que par un dimensionnement et une distribution appropriés des fils 17, la nappe élastique constituée de ces fils augmente les effets de capillarité procurés par la structure capillaire 5.It should be noted that by appropriate dimensioning and distribution of the wires 17, the elastic sheet made up of these wires increases the capillarity effects provided by the capillary structure 5.

La Fig. 5 illustre une variante suivant laquelle la paroi interne du tube 4 n'est plus lisse mais striée, rainurée ou cannelée. A cet effet, on réalise par tous moyens appropriés des stries 18 ou analogues, parallèles à l'axe du tube 3 et de préférence à section en forme générale de V largement évasé. Ces creux 18 sont chargés de faciliter le positionnement correct des fibres 5 étant entendu que la profondeur de ces stries ou analogues est inférieure au rayon des fibres 5 lesquelles sont maintenues en place par un système élastique identique à celui de la Fig. 4 ou différent.Fig. 5 illustrates a variant according to which the internal wall of the tube 4 is no longer smooth but striated, grooved or grooved. To this end, streaks 18 or the like are produced by any suitable means, parallel to the axis of the tube 3 and preferably with a generally flared V-shaped cross section. These recesses 18 are responsible for facilitating the correct positioning of the fibers 5, it being understood that the depth of these ridges or the like is less than the radius of the fibers 5 which are held in place by an elastic system identical to that of FIG. 4 or different.

Par ailleurs, la structure capillaire peut être constituée de deux couches de fibres 5 de caractéristiques dimensionnelles identiques ou non, parallèles et non jointives, les fibres de l'une des couches étant inclinées par rapport aux fibres de l'autre couche et l'ensemble de cette structure étant plaqué contre le tube par un système élastique identique ou non à celui de la Fig. 4.Furthermore, the capillary structure may consist of two layers of fibers 5 with identical or different dimensional characteristics, parallel and not contiguous, the fibers of one of the layers being inclined relative to the fibers of the other layer and the assembly of this structure being pressed against the tube by an elastic system identical or not to that of FIG. 4.

Il est à noter que l'une des couches peut comporter des fibres parallèles à l'axe du tube, cette couche étant, soit en contact avec la paroi interne du tube, soit en contact avec ledit système élastique (côté vapeur).It should be noted that one of the layers may comprise fibers parallel to the axis of the tube, this layer being either in contact with the internal wall of the tube, or in contact with said elastic system (vapor side).

La Fig. 6 illustre un procédé pour la réalisation d'une structure capillaire suivant la Fig. 4 et son insertion dans un tube en aluminium ou alliage léger réalisé par extrusion. Sur un mandrin cylindrique 19 est enroulé en hélice une nappe 20 de fils à ressort ou analogue, en acier par exemple. Les fils 21 de cette nappe forment des spires jointives sur le mandrin 19.Fig. 6 illustrates a method for producing a capillary structure according to FIG. 4 and its insertion into an aluminum or light alloy tube produced by extrusion. On a cylindrical mandrel 19 is helically wound a sheet 20 of spring wires or the like, of steel for example. The wires 21 of this sheet form contiguous turns on the mandrel 19.

La nappe 20 est enveloppée d'une nappe 22 de fibres lisses libres 5 parallèles à l'axe du mandrin 19. Les fibres 5 sont régulièrement réparties en une seule couche autour de la nappe en hélice 20.The ply 20 is wrapped in a ply 22 of free smooth fibers 5 parallel to the axis of the mandrel 19. The fibers 5 are regularly distributed in a single layer around the helical ply 20.

Les nappes 20 et 22 au débouché du mandrin 19 sont guidées et maintenues en forme par un manchon cylindrique 23 dans le prolongement du mandrin 19 et intégré dans une tête d'extrusion 24 coaxialement à l'orifice annulaire 25 d'extrusion d'un tube 3 par exemple en aluminium, ledit orifice 25 étant délimité entre le manchon 23 et la filière 26.The plies 20 and 22 at the outlet of the mandrel 19 are guided and held in shape by a cylindrical sleeve 23 in the extension of the mandrel 19 and integrated in an extrusion head 24 coaxially with the annular orifice 25 for extruding a tube 3 for example made of aluminum, said orifice 25 being delimited between the sleeve 23 and the die 26.

Au fur et à mesure que se forme le tube 3 il est muni intérieurement automatiquement de la nappe capillaire 22 et de la nappe élastique de maintien 20, les nappes 20 et 22 étant formées en continu et introduites dans le tube 3 à la même vitesse de défilement.As the tube 3 is formed, it is automatically provided internally with the capillary ply 22 and the elastic retaining ply 20, the plies 20 and 22 being formed continuously and introduced into the tube 3 at the same speed. scrolling.

A la sortie du manchon 23, les nappes 20 et 22 se dilatent radialement sous l'action élastique des fils à ressort 21 et se plaquenf contre la paroi interne du tube 3.At the outlet of the sleeve 23, the plies 20 and 22 expand radially under the elastic action of the spring wires 21 and press against the internal wall of the tube 3.

Le tube ainsi équipé est conforme à ce qui est représenté à la Fig. 4.The tube thus equipped conforms to what is shown in FIG. 4.

La tube 3 peut comporter intérieurement des stries telles que 18 (Fig. 5) réalisées au cours de l'extrusion.The tube 3 may internally have grooves such as 18 (Fig. 5) made during the extrusion.

Le tube 3 peut, bien entendu, être obtenu d'une autre manière, par exemple par roulage d'une plaque plane puis soudage ou à partir d'une bande enroulée en hélice sur un mandrin, ces deux techniques étant parfaitement connues.The tube 3 can, of course, be obtained in another way, for example by rolling a flat plate then welding or from a strip wound helically on a mandrel, these two techniques being perfectly known.

Claims (7)

1. A heat-exchanger for refrigerating machines and/or heat pumps, comprising a heat-exchanging tubular network which comprises heat-exchanging tubes (3) in which, in use, a mixture of refrigerant fluid and lubricating oil is taken in through one end and discharged through the other end, a capillar structure (4) being applied against the inner wall of said heat-exchanging tubes (3) by permeable means (6), characterized in that said capillar structure (4) is comprised of a series of substantially rectilinear free and smooth fibers (5) of a suitable material, arranged substantially parallel to the axis of the heat-exchanging tubes (3), said fibers being regularly distributed in an annular array and applied along their whole length against the wall of said tubes (3).
2. A heat-exchanger according to claim 1, characterized in that said fibers (5) are arranged in a single layer of non-adjoining fibers.
3. A heat-exchanger according to claim 1 or 2, characterized in that the inner wall of the heat-exchanging tubes (3) is provided with longitudinal grooves or splines or the like accomodating the fibers of said capillar structure, the depth of said grooves or the like being substantially less than the radius of said fibers.
4. A heat-exchanger according to claim 3, characterized in that said grooves or the like are of spread V-shaped section.
5. A heat-exchanger according to claim 1, characterized in that said fibers (5) are arranged in a first layer of non-adjoining fibers extending substantially parallel to the axis of the heat-exchanging tubes and in a second layer of parallel non-adjoining fibers which are wound into a large pitch coil and pressed against the first layer, the inner wall of the heat-exchanging tubes being in direct contact with the first layer.
6. A heat-exchanger according to one of claims 1-5, characterized in that said means for urging the capillar structure against the inner wall of said heat-exchanging tubes are comprised of a layer of spring wires or the like which are parallel, non-adjoining and wound into a coil.
7. A heat-exchanger according to one of claims 1-6, characterized in that the heat-exchanging network comprises a plurality of parallel rectilinear tubes connected to a common header (1) for the liquid phase, said header being rectilinear and also provided therein with said capillar structure having free fibers (5), such an exchanger being operable as an evaporator and as a condenser.
EP82450003A 1981-02-13 1982-02-12 Heat exchanger with capillary structure for refrigerating machines and/or heat pumps Expired EP0058628B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8103033A FR2500143A1 (en) 1981-02-13 1981-02-13 HEAT EXCHANGERS WITH CAPILLARY STRUCTURE FOR REFRIGERATING MACHINES AND / OR HEAT PUMPS
FR8103033 1981-02-13

Publications (3)

Publication Number Publication Date
EP0058628A2 EP0058628A2 (en) 1982-08-25
EP0058628A3 EP0058628A3 (en) 1983-04-13
EP0058628B1 true EP0058628B1 (en) 1989-12-20

Family

ID=9255262

Family Applications (1)

Application Number Title Priority Date Filing Date
EP82450003A Expired EP0058628B1 (en) 1981-02-13 1982-02-12 Heat exchanger with capillary structure for refrigerating machines and/or heat pumps

Country Status (5)

Country Link
US (1) US4448043A (en)
EP (1) EP0058628B1 (en)
DE (1) DE3280070D1 (en)
ES (1) ES8306864A1 (en)
FR (1) FR2500143A1 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8308137D0 (en) * 1983-03-24 1983-05-05 Ici Plc Compression-type heat pumps
FR2591504B1 (en) * 1985-12-13 1990-04-20 Centre Nat Rech Scient PROCESS OF EVAPORATION-CONDENSATION OF RUNOFF FILMS, ELEMENTS FOR ITS IMPLEMENTATION AND ITS APPLICATIONS.
US5184675A (en) * 1991-10-15 1993-02-09 Gardner Ernest A Thermal energy transfer apparatus and method of making same
US20060191355A1 (en) * 2003-12-04 2006-08-31 Mts Systems Corporation Platform balance
US20100270002A1 (en) * 2008-08-05 2010-10-28 Parrella Michael J System and method of maximizing performance of a solid-state closed loop well heat exchanger
CA2730151A1 (en) 2008-06-13 2009-12-17 Michael J. Parrella System and method of capturing geothermal heat from within a drilled well to generate electricity
US9423158B2 (en) * 2008-08-05 2016-08-23 Michael J. Parrella System and method of maximizing heat transfer at the bottom of a well using heat conductive components and a predictive model
US20100270001A1 (en) * 2008-08-05 2010-10-28 Parrella Michael J System and method of maximizing grout heat conductibility and increasing caustic resistance
US8534069B2 (en) * 2008-08-05 2013-09-17 Michael J. Parrella Control system to manage and optimize a geothermal electric generation system from one or more wells that individually produce heat
US20100313589A1 (en) * 2009-06-13 2010-12-16 Brent Alden Junge Tubular element
CN102278904B (en) * 2011-07-29 2013-03-06 华北电力大学 Internal liquid-dividing hood-type condensed heat-exchanging pipe
JP2013178052A (en) * 2012-02-29 2013-09-09 Daikin Industries Ltd Heat exchanger

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE552459C (en) * 1932-06-13 Aeg Railway drive by electric motors with cardan shafts
FR327078A (en) * 1902-12-06 1903-06-13 Dubois Henri Air cooler for air or gas and for vapor condensation
FR341536A (en) * 1904-03-22 1904-08-10 Colomann Von Rimanoczy Senior Arrangement intended to protect the performance hall when the stage is engulfed in flames
FR433166A (en) * 1911-08-11 1911-12-27 Mills Equipment C Ltd Improvements to woven fabric bands
US1602890A (en) * 1922-07-25 1926-10-12 James E Keith Refrigerator
GB308966A (en) * 1928-04-02 1930-04-10 Superheater Co Ltd Improvements in or relating to heat exchange apparatus
US2448261A (en) * 1945-04-30 1948-08-31 Gen Motors Corp Capillary heat transfer device for refrigerating apparatus
US2565221A (en) * 1946-04-06 1951-08-21 Gen Motors Corp Refrigerating apparatus
US2517654A (en) * 1946-05-17 1950-08-08 Gen Motors Corp Refrigerating apparatus
FR990531A (en) * 1949-07-12 1951-09-24 Devices and apparatus for improving the efficiency of absorption and compression refrigerating machines
US2691281A (en) * 1951-01-16 1954-10-12 Servel Inc Heat and material transfer apparatus
US2702460A (en) * 1951-06-23 1955-02-22 Gen Motors Corp Refrigerant evaporating means
AT294148B (en) * 1967-09-06 1971-11-10 Danfoss As Forced through evaporator for a compression refrigeration system
US3498369A (en) * 1968-06-21 1970-03-03 Martin Marietta Corp Heat pipes with prefabricated grooved capillaries and method of making
US3554183A (en) * 1968-10-04 1971-01-12 Acf Ind Inc Heat pipe heating system for a railway tank car or the like
US3598177A (en) * 1968-10-29 1971-08-10 Gen Electric Conduit having a zero contact angle with an alkali working fluid and method of forming
US3521708A (en) * 1968-10-30 1970-07-28 Trane Co Heat transfer surface which promotes nucleate ebullition
US3576210A (en) * 1969-12-15 1971-04-27 Donald S Trent Heat pipe
US3789920A (en) * 1970-05-21 1974-02-05 Nasa Heat transfer device
US3786861A (en) * 1971-04-12 1974-01-22 Battelle Memorial Institute Heat pipes
GB1398780A (en) * 1971-07-23 1975-06-25 Thermo Electron Corp Food cooking apparatus
NL7206063A (en) * 1972-05-04 1973-11-06 N.V. Philips Gloeilampenfabrieken HEATING DEVICE
NL7209936A (en) * 1972-07-19 1974-01-22
JPS5443218B2 (en) * 1972-08-23 1979-12-19
US4018269A (en) * 1973-09-12 1977-04-19 Suzuki Metal Industrial Co., Ltd. Heat pipes, process and apparatus for manufacturing same
JPS5545834B2 (en) * 1974-08-02 1980-11-19
US4044797A (en) * 1974-11-25 1977-08-30 Hitachi, Ltd. Heat transfer pipe
AT355260B (en) * 1974-11-28 1980-02-25 Schrammel Hubert HEAT PUMP SYSTEM
US4074753A (en) * 1975-01-02 1978-02-21 Borg-Warner Corporation Heat transfer in pool boiling

Also Published As

Publication number Publication date
EP0058628A3 (en) 1983-04-13
DE3280070D1 (en) 1990-01-25
US4448043A (en) 1984-05-15
FR2500143B1 (en) 1984-03-09
FR2500143A1 (en) 1982-08-20
ES510203A0 (en) 1983-06-01
EP0058628A2 (en) 1982-08-25
ES8306864A1 (en) 1983-06-01

Similar Documents

Publication Publication Date Title
EP0058628B1 (en) Heat exchanger with capillary structure for refrigerating machines and/or heat pumps
CA2747353C (en) Heat exchanger comprising tubes with grooved fins
FR2808869A1 (en) CONDENSER TYPE A SUB-COOLING
CH644684A5 (en) ATMOSPHERIC HEATER.
EP0117829B2 (en) Tubular heat exchanger
FR2517044A1 (en) HEAT TRANSMISSION TUBE WITH LEAK INDICATOR
WO2001024958A1 (en) Continuous casting roll for metal strip comprising a cooling circuit
FR2494829A3 (en) Coaxial fluid heat exchanger - has container with helicoidally waved pipes for liquid flowing in opposing directions
FR2712966A1 (en) Flat tube heat exchanger for motor vehicle
FR2608264A1 (en) Monotubular coaxial heat-exchanger
BE561245A (en)
FR2494830A1 (en) Shell and tube heat exchanger using tubes of plastic - each formed in coils overlapping those of its neighbour(s)
EP1949012B1 (en) Grooved tubes for heat exchangers with better resistance to expansion
FR2776058A1 (en) MULTI-FLOW HEAT EXCHANGER COMPRISING INLET AND OUTLET CONDUITS OF REFRIGERANT AGENT INTERCONNECTED THROUGH PLATE-TUBE PASSAGES
EP3862715B1 (en) Reversible heat exchanger with double transport circuit
EP1061318B1 (en) Finned heat exchanger tube and method of production
WO2001073366A1 (en) Plate heat exchanger
FR2616215A1 (en) Circular heat exchanger
EP0495973A1 (en) Method and device for splitting a stream of fluid.
FR2483591A1 (en) Gas and liquid heat exchanger - has liquid tubes with external spiral fins either smooth or non continuous
EP2963360A1 (en) Joule-thomson cooler and photodetector apparatus comprising such a device
EP3055634A1 (en) Heat exchanger and heat recovery system comprising such an exchanger
FR2641066A1 (en) Improvement to fluid condenser tubes with longitudinal fins and condensers using such tubes
WO2014048951A1 (en) Tube for a motor vehicle heat exchanger
FR2817332A1 (en) Tubular coil for heat exchanger consists of two horizontal spirals, each connected to its own vertical connecting pipe and linked by connecting section, coils being connected to vertical pipes on their outside or inside surface

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): BE DE FR GB IT LU NL

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Designated state(s): BE DE FR GB IT LU NL

17P Request for examination filed

Effective date: 19831011

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ARAGOU, YVAN

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE DE FR GB IT LU NL

ITF It: translation for a ep patent filed

Owner name: BARZANO' E ZANARDO ROMA S.P.A.

REF Corresponds to:

Ref document number: 3280070

Country of ref document: DE

Date of ref document: 19900125

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
ITTA It: last paid annual fee
EPTA Lu: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 19960201

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19960328

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19960404

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19960524

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19970210

Year of fee payment: 16

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19970212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19970228

BERE Be: lapsed

Owner name: ARAGOU YVAN

Effective date: 19970228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19970901

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19971101

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 19970901

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980212

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19980212

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19990224

Year of fee payment: 18

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20001031

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO