EP0058628B1 - Wärmeaustauscher mit einer Kapillarstruktur für Kältemaschinen und/oder für Wärmepumpen - Google Patents

Wärmeaustauscher mit einer Kapillarstruktur für Kältemaschinen und/oder für Wärmepumpen Download PDF

Info

Publication number
EP0058628B1
EP0058628B1 EP82450003A EP82450003A EP0058628B1 EP 0058628 B1 EP0058628 B1 EP 0058628B1 EP 82450003 A EP82450003 A EP 82450003A EP 82450003 A EP82450003 A EP 82450003A EP 0058628 B1 EP0058628 B1 EP 0058628B1
Authority
EP
European Patent Office
Prior art keywords
heat
fibers
tubes
exchanger
wall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP82450003A
Other languages
English (en)
French (fr)
Other versions
EP0058628A3 (en
EP0058628A2 (de
Inventor
Yvan Aragou
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aragou Yvan
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of EP0058628A2 publication Critical patent/EP0058628A2/de
Publication of EP0058628A3 publication Critical patent/EP0058628A3/fr
Application granted granted Critical
Publication of EP0058628B1 publication Critical patent/EP0058628B1/de
Expired legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/18Arrangements for modifying heat-transfer, e.g. increasing, decreasing by applying coatings, e.g. radiation-absorbing, radiation-reflecting; by surface treatment, e.g. polishing
    • F28F13/185Heat-exchange surfaces provided with microstructures or with porous coatings
    • F28F13/187Heat-exchange surfaces provided with microstructures or with porous coatings especially adapted for evaporator surfaces or condenser surfaces, e.g. with nucleation sites
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/10Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically
    • F28D7/12Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically the surrounding tube being closed at one end, e.g. return type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/04Arrangements for modifying heat-transfer, e.g. increasing, decreasing by preventing the formation of continuous films of condensate on heat-exchange surfaces, e.g. by promoting droplet formation

Definitions

  • the present invention relates to heat exchangers using the energy supplied during the change of liquid / vapor or vapor / liquid phase of certain fluids and, more particularly, those used in refrigeration machines and / or heat pumps.
  • the heat exchangers are either constructed and dimensioned with a view to playing a specific predetermined role, either as an evaporator or as a condenser, or else produced so as to serve both as an evaporator and as a condenser.
  • the heat exchanger is designed to be used exclusively as an evaporator, it is underutilized because it is more than half full of liquid in general and 2/3 at most, to '' avoid "liquid blows" to the compressor.
  • a heat exchanger for refrigeration machines and / or heat pumps comprising a tubular heat exchange network which includes exchanger tubes in which, in service, a mixture of refrigerant and lubricating oil enters at one end and exits at the other end, a capillary structure being applied against the internal wall of at least some of these exchanger tubes by permeable means .
  • the purpose of the capillary structure is to completely wet the walls of the tubes, even in the most frequent case where the tubes are not full of liquid.
  • the capillary structure is a metallic cloth applied against the internal wall of the exchanger tube by a strand of piano wire.
  • the purpose of the present invention is to overcome these two major drawbacks simultaneously by proposing a new capillary structure for heat exchangers allowing heat exchanges over the entire useful surface of the exchangers with a significantly increased efficiency, while not impeding the circulation of lubricating oil.
  • this object is achieved as soon as the capillary structure is constituted by a set of free and smooth fibers of suitable material, substantially rectilinear and parallel to the axis of the exchanger tubes concerned, regularly distributed in rings and plated over all the length against the wall of said tubes.
  • the capillary effect along the wall of the tubes is maintained, but, instead of being substantially immobile, the liquid concerned by this capillarity moves longitudinally in the tube between the fibers. Displacement also concerns the oil which finds no obstacle allowing it to park.
  • This movement is allowed on the one hand by the longitudinal arrangement of the fibers, and on the other hand by the permeability of the means applying the fibers against the internal wall of the tubes. Thanks to this permeability, the current in the central part of the tubes has a driving action in the same direction on the capillary fluid.
  • the piano wire certainly provides permeability between the capillary space and the central current, but this permeability does not allow, according to the prior document, any entrainment in the capillary space.
  • a heat pipe In a heat pipe, a refrigerant vaporizes at one end, forms in the tube a central current of vapor towards the other end, condenses and gives up heat at this other end, after which it returns to the first end by the capillary structure arranged in a peripheral manner.
  • a heat pipe is indeed a heat exchanger.
  • the invention relates to a heat exchanger for refrigeration machines in which the fluid enters through one end of the exchanger tubes and exits through the other end instead of performing round-trip cycles in the sealed tube. of a heat pipe.
  • the general direction of the heat exchange is radial, that is to say that heat is exchanged between the interior and the exterior of the tube, and not between two exterior media by l 'through a heat pipe type element.
  • the exchanger of FIG. 1 comprises two manifolds 1 and 2 connected by a network of heat exchange tubes 3, parallel and identical rectilinear, made of a material which is a good thermal conductor such as copper for example.
  • all of the tubes 3 have a capillary annular structure 4 over their entire length, as does the collector of the liquid phase (collector 1 in FIG.) Of the heat transfer fluid (or refrigerant).
  • Figs. 2 and 3 illustrate an embodiment of said capillary annular structure 4 according to which this structure consists of a number of identical individual fibers 5, smooth, straight and of constant diameter. These fibers are free from each other while being in contact with each other and with the internal wall of the tube (1 or 3) and confined in an annular space by any suitable means.
  • the distribution of the fibers 5 is uniform, the thickness of the annular layer being in a proportion determined relative to the diameter of the tube in order to have an appropriate circulation and flow of the fluid in the liquid phase in the conduits 1 and 3.
  • the fibers 5 line the internal wall of the latter over their entire useful length and are applied against the wall of the tubes, for example in known manner, by a helical element 6 (FIG. 3) forming a spring, engaged in the central part of the tubes (3, 1).
  • This helical element 6 could of course be replaced by any other member capable of pressing the fibers 5 against the wall such as rings for example.
  • the fibers 5 and the holding members 6 are made of metallic or plastic material, or the like, compatible with the nature of the fluid circulating in the exchanger.
  • the diameter of the fibers 5 can vary to the extent that the interstitial spaces between the fibers make it possible to obtain the capillary effect sought for the coolant or refrigerant considered.
  • the fibers 5 arranged in the collector 1 ensure a uniform distribution of the liquid towards the exchanger tubes 3, while the fibers 5 of the latter allow the liquid to "wet" absolutely the entire useful surface of the tubes 3 and therefore ensure maximum heat exchange between the liquid phase fluid in contact with the internal wall of the tubes 3 and the external fluid.
  • the exchanger works as an evaporator and cools the fluid (for example air) circulating in 7 between the tubes 3.
  • the fluid circulating in the tubes 3 is then called refrigerant.
  • the working fluid arrives in the gaseous phase at 2 and leaves by 1 in the liquid phase, the fluid is heat-transferable and transfers part of its calories to the fluid circulating in 7.
  • the latter is air
  • the liquid phase is distributed over the tubes 3 as it is formed and is evacuated and the capillary structure 4 thus ensures good distribution of the temperature and therefore improves the heat exchanges.
  • an exchanger such as that of FIG. 1 working in an evaporator has a much higher efficiency than that of traditional evaporators
  • the filling of the exchange tubes in liquid phase is usually of the order of half and at most z / 3 while, thanks to the capillary structure 4 according to the invention in the evaporator arranged according to FIG. 1, the entire internal surface of the exchange tubes 3 is in contact with the liquid phase, uniformly, thanks to the capillary wicking effect.
  • the exchanger shown in FIG. 1 operating either as an evaporator or as a condenser, improves the coefficient of performance of reversible machines in substantial proportions (of the order of 30 to 40%).
  • the invention is not limited to the embodiment shown and described above, but on the contrary covers all variants, in particular those concerning the nature of the material constituting the fibers 5, their sizing, their distribution along the inner wall of the tubular exchange members and collectors of the working phase liquid phase as well as the means for pressing or containing said fibers against the inner wall of said tubular members.
  • the sheet of fibers 5 may comprise only a single layer of fibers more or less parallel to the axis of the tube and contiguous or not.
  • FIG. 4 shows a particularly interesting embodiment by its simplicity and its efficiency.
  • a sheet of fibers 5 is shown, consisting of a single layer of parallel and non-contiguous fibers, said sheet being pressed against the internal wall of the tube 3 by an elastic system constituted by a sheet of wires 17 of spring steel (or material likely to have the same elasticity characteristics).
  • the wires 17 are parallel, non-contiguous and wound in a helix.
  • the fibers 5 are of axis substantially parallel to the axis of the tube 3, while the wires 17 form a more or less significant acute angle with the fibers 5.
  • the propeller produced by the wires 17 does not comprise a single wire but several in parallel, the bundle of wires being wound in a helix. It is therefore possible to easily vary the inclination between the fibers 5 and the wires 17 while having a tight network of wires 17 in contact at numerous points with the sheet of fibers 5.
  • Fig. 5 illustrates a variant according to which the internal wall of the tube 4 is no longer smooth but striated, grooved or grooved.
  • streaks 18 or the like are produced by any suitable means, parallel to the axis of the tube 3 and preferably with a generally flared V-shaped cross section.
  • These recesses 18 are responsible for facilitating the correct positioning of the fibers 5, it being understood that the depth of these ridges or the like is less than the radius of the fibers 5 which are held in place by an elastic system identical to that of FIG. 4 or different.
  • the capillary structure may consist of two layers of fibers 5 with identical or different dimensional characteristics, parallel and not contiguous, the fibers of one of the layers being inclined relative to the fibers of the other layer and the assembly of this structure being pressed against the tube by an elastic system identical or not to that of FIG. 4.
  • one of the layers may comprise fibers parallel to the axis of the tube, this layer being either in contact with the internal wall of the tube, or in contact with said elastic system (vapor side).
  • Fig. 6 illustrates a method for producing a capillary structure according to FIG. 4 and its insertion into an aluminum or light alloy tube produced by extrusion.
  • a cylindrical mandrel 19 On a cylindrical mandrel 19 is helically wound a sheet 20 of spring wires or the like, of steel for example. The wires 21 of this sheet form contiguous turns on the mandrel 19.
  • the ply 20 is wrapped in a ply 22 of free smooth fibers 5 parallel to the axis of the mandrel 19.
  • the fibers 5 are regularly distributed in a single layer around the helical ply 20.
  • the plies 20 and 22 at the outlet of the mandrel 19 are guided and held in shape by a cylindrical sleeve 23 in the extension of the mandrel 19 and integrated in an extrusion head 24 coaxially with the annular orifice 25 for extruding a tube 3 for example made of aluminum, said orifice 25 being delimited between the sleeve 23 and the die 26.
  • the tube 3 As the tube 3 is formed, it is automatically provided internally with the capillary ply 22 and the elastic retaining ply 20, the plies 20 and 22 being formed continuously and introduced into the tube 3 at the same speed. scrolling.
  • the plies 20 and 22 expand radially under the elastic action of the spring wires 21 and press against the internal wall of the tube 3.
  • the tube thus equipped conforms to what is shown in FIG. 4.
  • the tube 3 may internally have grooves such as 18 (Fig. 5) made during the extrusion.
  • the tube 3 can, of course, be obtained in another way, for example by rolling a flat plate then welding or from a strip wound helically on a mandrel, these two techniques being perfectly known.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Springs (AREA)

Claims (7)

1. Wärmetauscher für Kältemaschinen und/oder Wärmepumpen mit einem Wärmetauscher-Rohrleitungsnetz, das Tauscherrohre (3) aufweist, in die im Betrieb eine Mischung aus einem flüssigen Kältemittel und Schmieröl an einem Ende eintritt und aus einem anderen Ende austritt, wobei durchlässige Mittel eine Kapillarstruktur (4) gegen die Innenwand der Tauscherrohre (3) hält, dadurch gekennzeichnet, daß die Kapillarstruktur (4) durch einen Satz freier und glatter Fasern (5) aus einem geeigneten Material gebildet ist, die im wesentlichen gerade und parallel zur Achse der Tauscherrohre (3) verlaufen, gleichmäßig auf einem Kreis verteilt sind und auf ihrer gesamten Länge gegen die Innenwand der Tauscherrohre (3) gedrückt werden.
2. Wärmetauscher nach Anspruch 1, dadurch gekennzeichnet, daß die Fasern (5) in einer einzigen Lage von nicht miteinanderverbundenen Fasern verteilt sind.
3. Wärmetauscher nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Innenwand der Tauscherrohre (3) longitudinale Rillen, Nuten oder Riefen aufweisen, die zur Aufnahme der Fasern der Kapillarstruktur dienen und deren Tiefe deutlich kleiner als der Durchmesser der Fasern ist.
4. Wärmetauscher nach Anspruch 3, dadurch gekennzeichnet, daß die Rillen o.ä. im Schnitt die generelle Form eines sich nach oben verbreiternden V aufweisen.
5. Wärmetauscher nach Anspruch 1, dadurch gekennzeichnet, daß die Fasern (5) in einer ersten Schicht von nicht miteinanderverbundenen und im wesentlichen parallel zur Achse der Tauscherrohre verlaufenden Fasern und in einer zweiten Schicht von parallelen, nicht miteinanderverbundenen und zu einer Schraubenlinie mit einer großen Steigung gewickelten Fasern, die gegen die erste Schicht gedrückt werden, verteilt sind und daß die Innenwand der Tauscherrohre im direkten Kontakt mit der ersten Schicht ist.
6. Wärmetauscher nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß die Mittel zum Halten der Kapillarstruktur gegen die Innenwand der Tauscherrohre durch eine Schicht von parallelen, nicht miteinanderverbundenen und zu einer Schraubenlinie gewickelten Federdrähten o. ä. gebildet sind.
7. Wärmetauscher nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß das Wärmetauschernetzwerk eine Mehrzahl gradliniger, paralleler Rohre enthält, die mit einem gemeinsamen Kollektor (1) für eine flüssige Phase verbunden sind, der gradlinig ausgebildet und innen mit der genannten Kapillarstruktur aus freien Fasern (5) ausgestattet ist, wobei ein derartiger Wärmetauscher sowohl als Verdampfer als auch als Kondensor arbeiten kann.
EP82450003A 1981-02-13 1982-02-12 Wärmeaustauscher mit einer Kapillarstruktur für Kältemaschinen und/oder für Wärmepumpen Expired EP0058628B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8103033A FR2500143A1 (fr) 1981-02-13 1981-02-13 Echangeurs de chaleur a structure capillaire, pour machines frigorifiques et/ou pompes a chaleur
FR8103033 1981-02-13

Publications (3)

Publication Number Publication Date
EP0058628A2 EP0058628A2 (de) 1982-08-25
EP0058628A3 EP0058628A3 (en) 1983-04-13
EP0058628B1 true EP0058628B1 (de) 1989-12-20

Family

ID=9255262

Family Applications (1)

Application Number Title Priority Date Filing Date
EP82450003A Expired EP0058628B1 (de) 1981-02-13 1982-02-12 Wärmeaustauscher mit einer Kapillarstruktur für Kältemaschinen und/oder für Wärmepumpen

Country Status (5)

Country Link
US (1) US4448043A (de)
EP (1) EP0058628B1 (de)
DE (1) DE3280070D1 (de)
ES (1) ES510203A0 (de)
FR (1) FR2500143A1 (de)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8308137D0 (en) * 1983-03-24 1983-05-05 Ici Plc Compression-type heat pumps
FR2591504B1 (fr) * 1985-12-13 1990-04-20 Centre Nat Rech Scient Procede d'evaporation-condensation de films ruisselants, elements pour sa mise en oeuvre et ses applications.
US5184675A (en) * 1991-10-15 1993-02-09 Gardner Ernest A Thermal energy transfer apparatus and method of making same
US20060191355A1 (en) * 2003-12-04 2006-08-31 Mts Systems Corporation Platform balance
EP2313708A4 (de) * 2008-06-13 2014-04-09 Michael J Parrella System und verfahren zur gewinnung von erdwärme aus einem bohrloch zur erzeugung von elektrizität
US20100270002A1 (en) * 2008-08-05 2010-10-28 Parrella Michael J System and method of maximizing performance of a solid-state closed loop well heat exchanger
US8534069B2 (en) * 2008-08-05 2013-09-17 Michael J. Parrella Control system to manage and optimize a geothermal electric generation system from one or more wells that individually produce heat
US20100270001A1 (en) * 2008-08-05 2010-10-28 Parrella Michael J System and method of maximizing grout heat conductibility and increasing caustic resistance
US9423158B2 (en) * 2008-08-05 2016-08-23 Michael J. Parrella System and method of maximizing heat transfer at the bottom of a well using heat conductive components and a predictive model
US20100313589A1 (en) * 2009-06-13 2010-12-16 Brent Alden Junge Tubular element
CN102278904B (zh) * 2011-07-29 2013-03-06 华北电力大学 一种内分液罩式冷凝换热管
JP2013178052A (ja) * 2012-02-29 2013-09-09 Daikin Industries Ltd 熱交換器

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE552459C (de) * 1932-06-13 Aeg Bahnantrieb durch Elektromotoren mit Kardanwellen
FR327078A (fr) * 1902-12-06 1903-06-13 Dubois Henri Aérofrigorifique pour air ou gaz et pour la condensation de vapeurs
FR341536A (fr) * 1904-03-22 1904-08-10 Colomann Von Rimanoczy Senior Disposition destinée à protéger la salle de spectacle quand la scène est en proie aux flammes
FR433166A (fr) * 1911-08-11 1911-12-27 Mills Equipment C Ltd Perfectionnements aux bandes de toiles tissées
US1602890A (en) * 1922-07-25 1926-10-12 James E Keith Refrigerator
GB308966A (en) * 1928-04-02 1930-04-10 Superheater Co Ltd Improvements in or relating to heat exchange apparatus
US2448261A (en) * 1945-04-30 1948-08-31 Gen Motors Corp Capillary heat transfer device for refrigerating apparatus
US2565221A (en) * 1946-04-06 1951-08-21 Gen Motors Corp Refrigerating apparatus
US2517654A (en) * 1946-05-17 1950-08-08 Gen Motors Corp Refrigerating apparatus
FR990531A (fr) * 1949-07-12 1951-09-24 Dispositifs et appareils pour l'amélioration du rendement des machines frigorifiques à absorption et à compression
US2691281A (en) * 1951-01-16 1954-10-12 Servel Inc Heat and material transfer apparatus
US2702460A (en) * 1951-06-23 1955-02-22 Gen Motors Corp Refrigerant evaporating means
AT294148B (de) * 1967-09-06 1971-11-10 Danfoss As Zwangsdurchlauf-Verdampfer für eine Kompressionskälteanlage
US3498369A (en) * 1968-06-21 1970-03-03 Martin Marietta Corp Heat pipes with prefabricated grooved capillaries and method of making
US3554183A (en) * 1968-10-04 1971-01-12 Acf Ind Inc Heat pipe heating system for a railway tank car or the like
US3598177A (en) * 1968-10-29 1971-08-10 Gen Electric Conduit having a zero contact angle with an alkali working fluid and method of forming
US3521708A (en) * 1968-10-30 1970-07-28 Trane Co Heat transfer surface which promotes nucleate ebullition
US3576210A (en) * 1969-12-15 1971-04-27 Donald S Trent Heat pipe
US3789920A (en) * 1970-05-21 1974-02-05 Nasa Heat transfer device
US3786861A (en) * 1971-04-12 1974-01-22 Battelle Memorial Institute Heat pipes
GB1398780A (en) * 1971-07-23 1975-06-25 Thermo Electron Corp Food cooking apparatus
NL7206063A (nl) * 1972-05-04 1973-11-06 N.V. Philips Gloeilampenfabrieken Verwarmingsinrichting
NL7209936A (de) * 1972-07-19 1974-01-22
JPS5443218B2 (de) * 1972-08-23 1979-12-19
US4018269A (en) * 1973-09-12 1977-04-19 Suzuki Metal Industrial Co., Ltd. Heat pipes, process and apparatus for manufacturing same
JPS5545834B2 (de) * 1974-08-02 1980-11-19
US4044797A (en) * 1974-11-25 1977-08-30 Hitachi, Ltd. Heat transfer pipe
AT355260B (de) * 1974-11-28 1980-02-25 Schrammel Hubert Waermepumpenanlage
US4074753A (en) * 1975-01-02 1978-02-21 Borg-Warner Corporation Heat transfer in pool boiling

Also Published As

Publication number Publication date
DE3280070D1 (de) 1990-01-25
ES8306864A1 (es) 1983-06-01
FR2500143A1 (fr) 1982-08-20
FR2500143B1 (de) 1984-03-09
EP0058628A3 (en) 1983-04-13
US4448043A (en) 1984-05-15
EP0058628A2 (de) 1982-08-25
ES510203A0 (es) 1983-06-01

Similar Documents

Publication Publication Date Title
EP0058628B1 (de) Wärmeaustauscher mit einer Kapillarstruktur für Kältemaschinen und/oder für Wärmepumpen
FR2808869A1 (fr) Condenseur de type a sous-refroidissement
WO2010070216A1 (fr) Échangeur de chaleur comprenant des tubes a ailettes rainurées
CH644684A5 (fr) Rechauffeur atmospherique.
EP0117829B2 (de) Rohrbündelwärmetauscher
FR2517044A1 (fr) Tube de transmission de chaleur a indicateur de fuites
FR2494829A3 (fr) Perfectionnements aux echangeurs de temperature du type coaxial
FR2608264A1 (fr) Echangeur coaxial monotubulaire
FR2712966A1 (fr) Echangeur de chaleur à tubes plats, en particulier pour véhicule automobile.
FR2494830A1 (fr) Element d'echange de chaleur forme de tubes en forme de serpentins en matiere plastique et recuperateur de chaleur le mettant en oeuvre
EP1949012B1 (de) Genutetes rohr für wärmetauscher mit besserem ausdehnungswiderstand
FR2776058A1 (fr) Echangeur de chaleur multi-flux comportant des conduits d'entree et de sortie d'agent refrigerant interconnectes par des passages d'un tube en forme de plaque
EP3862715B1 (de) Reversibler wärmetauscher mit doppeltem transportkreislauf
WO2001073366A1 (fr) Echangeur de chaleur a plaques
FR2795168A1 (fr) Element d'echange thermique pourvu de nervures et son procede de fabrication, echangeur de chaleur pourvu d'un tel element
FR2616215A1 (fr) Echangeur de chaleur circulaire
EP3144060A1 (de) Struktur für optimierte auskleidung für eine flüssigkeitskontaktsäule, und herstellungsverfahren
EP0495973A1 (de) Verfahren und vorrichtung zum sichern der aufteilung eines fluidstromes.
EP2963360A1 (de) Kühlervorrichtung nach joule-thomson, und photodetektorgerät, das eine solche vorrichtung umfasst
WO2015052203A1 (fr) Echangeur thermique et système de récupération de la chaleur comprenant un tel échangeur
FR2641066A1 (en) Improvement to fluid condenser tubes with longitudinal fins and condensers using such tubes
WO2014048951A1 (fr) Tube pour un echangeur de chaleur de vehicule automobile
FR2817332A1 (fr) Serpentin tubulaire a deux etages d'enroulements en spirale, echangeur de chaleur mettant en oeuvre un tel serpentin et procede de fabrication du serpentin
EP0176419A1 (de) Vorrichtung zum Reinigen von Rohren
FR2681032A1 (fr) Dispositif de chauffage d'un liquide de lave-glace, en particulier pour vehicule automobile.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): BE DE FR GB IT LU NL

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Designated state(s): BE DE FR GB IT LU NL

17P Request for examination filed

Effective date: 19831011

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ARAGOU, YVAN

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE DE FR GB IT LU NL

ITF It: translation for a ep patent filed

Owner name: BARZANO' E ZANARDO ROMA S.P.A.

REF Corresponds to:

Ref document number: 3280070

Country of ref document: DE

Date of ref document: 19900125

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
ITTA It: last paid annual fee
EPTA Lu: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 19960201

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19960328

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19960404

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19960524

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19970210

Year of fee payment: 16

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19970212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19970228

BERE Be: lapsed

Owner name: ARAGOU YVAN

Effective date: 19970228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19970901

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19971101

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 19970901

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980212

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19980212

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19990224

Year of fee payment: 18

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20001031

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO