EP0057172B1 - Self-regulating heating element - Google Patents

Self-regulating heating element Download PDF

Info

Publication number
EP0057172B1
EP0057172B1 EP19820890012 EP82890012A EP0057172B1 EP 0057172 B1 EP0057172 B1 EP 0057172B1 EP 19820890012 EP19820890012 EP 19820890012 EP 82890012 A EP82890012 A EP 82890012A EP 0057172 B1 EP0057172 B1 EP 0057172B1
Authority
EP
European Patent Office
Prior art keywords
heating element
heating member
metal shell
insulation
radiator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP19820890012
Other languages
German (de)
French (fr)
Other versions
EP0057172A2 (en
EP0057172A3 (en
Inventor
Walther Dr. Menhardt
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of EP0057172A2 publication Critical patent/EP0057172A2/en
Publication of EP0057172A3 publication Critical patent/EP0057172A3/en
Application granted granted Critical
Publication of EP0057172B1 publication Critical patent/EP0057172B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/40Heating elements having the shape of rods or tubes
    • H05B3/42Heating elements having the shape of rods or tubes non-flexible
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/10Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor
    • H05B3/12Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material
    • H05B3/14Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material the material being non-metallic
    • H05B3/141Conductive ceramics, e.g. metal oxides, metal carbides, barium titanate, ferrites, zirconia, vitrous compounds
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/02Heaters using heating elements having a positive temperature coefficient

Definitions

  • the invention relates to a self-regulating heating element with at least one resistance heater made of electrically conductive ceramic material, which is arranged in an electrically insulated manner in a metal sleeve, with a positive temperature coefficient of electrical resistance, an electrically insulating film and a heat-conducting, electrically insulating one being used to electrically insulate the heater from the metal sleeve Mass is used.
  • the energy consumption of the resistance heater connected to a voltage source is adjusted without further action, that is to say without a switching measure or the like, such that the resistance heater assumes a certain temperature which is essentially dependent on its material composition.
  • This relationship of effects now keeps the temperature of the resistance heater connected to the voltage source itself practically constant, but is not able to achieve the desired temperature in the heating elements of this type which have been disclosed or described so far, in the envelope of the heating element from which the heat generated is taken To keep the extent constant, especially not when the heat dissipation fluctuates from the casing.
  • a heating element is known from FR-A-2165 943 which has a ceramic resistance heating element which carries a metal plate on its underside and which is arranged together with the metal plate in a housing which may be made of metal.
  • the metal plate is separated from the housing by an essentially flat insulating roller, which is coated on both sides with a pressure adhesive, in order to join the metal plate, the film and the housing.
  • the space between the sides of the radiator and the housing that are not in contact with the metal plate is filled with a heat-conducting, electrically insulating compound.
  • the aim of the invention is to provide a self-regulating heating element of the type mentioned in the opening paragraph, in which the above-mentioned disadvantage is eliminated and in which the casing also has a largely constant temperature.
  • the self-regulating heating element of the type mentioned at the outset is characterized in that a wound single or multi-layer insulation made of electrically insulating film material is arranged between the resistance heater and the metal sleeve, said insulation resting on the one hand on the heater and on the other hand on the inner surface of the metal sleeve , Gaps between possibly several layers of the film roll, between the inner surface of the film roll facing the radiator and the outer surface of the radiator and between the outer surface of the film roll and the inner surface of the metal sleeve are filled with the heat-conducting, electrically insulating compound.
  • a very low thermal resistance of the electrical insulation required between the resistance heater and the covering of the heating element can be obtained, which practically does not change even under changing operating conditions.
  • the provision of foil insulation since foils have a sufficient dielectric strength even at very small thicknesses, provides a low thermal resistance, the safety requirements being met well by a multilayer design of this insulation.
  • the thermal resistance of the foils themselves is low and has a good constancy, and it is also ensured that the thermal resistance is also ensured by the heat-conducting mass with which gaps inevitably occur in the course of production in the way of the heat flow from the radiator to the casing is low and largely constant in the area of the transition points.
  • the structure of the insulation according to the invention in relation to the dielectric strength, results in a very favorable and practically constant value of the thermal resistance.
  • the fact that the insulation constructed according to the invention sits in a metal sleeve further contributes to the advantageous properties of the inventive design of a self-regulating heating element of the type mentioned at the beginning. This appears to be explained by the fact that the thermal expansion coefficient of the metals is lower than that of the electrical ones is insulating plastics, whereby in addition to the foils, the heat-conducting mass is particularly important.
  • a particularly advantageous embodiment is obtained if it is provided that the metal sleeve exerts a pressure on the film insulation, at least at operating temperature, and presses it onto the radiator. This can be achieved by a correspondingly coordinated selection of the insulating film material and by a corresponding selection of the starting materials for the heat-conducting mass and by a corresponding production technology when this mass is applied between the radiator and the metal sleeve.
  • the metal sleeve has a mechanical prestress and thereby presses elastically on the foil insulation.
  • a bias can, for. B. be produced very simply by providing a metal sleeve with an approximately circular cylindrical shape of a radiator already surrounded by a single or multilayer film insulation, which has an oval cross-section in the idle state, and this sleeve for inserting this radiator elastically in the sense of a change their cross-section compresses to a circular shape, whereby after the loss of this compressive force, the metal sleeve closely surrounding the radiator surrounded by foil insulation, in an effort to return to its oval cross-sectional shape, exerts pressure on the foil insulation, which presses it onto the radiator.
  • FIGS. 1, 2 and 3 show a first embodiment of the subject of the invention in cross-section and in longitudinal section, the cross-section shown in Figure 1. follows the line I-I in Figure 2 and the longitudinal section shown in Figure 2 follows the line 11-11 in Figure 1;
  • FIGS. 4 and 5 show another exemplary embodiment, likewise in cross-section and in longitudinal section, the cross section shown in FIG. 4 following the line IV-IV in FIG. 5 and the longitudinal section shown in FIG. 5 following the line V-V in FIG. 4;
  • FIGS. 6 to 8 show the application of a metal sleeve having a mechanical prestress on a heating element of a heating element according to the invention already provided with foil insulation.
  • the drawing figures, especially with regard to the film insulation, are schematic and not to scale in the interest of a clearer representation.
  • a resistance heater 1 made of current-conducting ceramic material with a positive temperature coefficient of electrical resistance is provided, which is provided on the surfaces 2 and 3 with power connections 4, 5, to which heat-resistant insulated connecting wires 6 lead.
  • the resistance heating element 1 is surrounded by three layers 7, 8, 9 of electrically insulating foils, the innermost layer 7 resting on the heating element 1 and the outermost layer 9 resting on the inner surface 10 of a cup-shaped metal sleeve 11.
  • the innermost film layer 7 is tightly wrapped around the resistance heating element 1, and the film layers 7, 8, 9 lie firmly against one another, and it is the entire structure formed in this way from the resistance heating element 1 and the film layers 7, 8 surrounding it.
  • the electrical connections of the radiator 1, which is made of current-conducting ceramic material, are designed in the form of two metal blocks 21, 22 which lie laterally on the radiator 1 and have the cylindrical outer surfaces 23.
  • the connecting wires 6 are connected to these metal blocks 21, 22 and in the above and below the radiator 1 between the Metal blocks 21, 22 located space. This design makes it possible to achieve a particularly low thermal resistance between the radiator 1 and the metal sleeve 24 which in the present case forms the envelope of the heating element.
  • good heat transfer from the radiator via the foil insulation to the metal sleeve 24 can be achieved by correspondingly abutting the successive parts in the flow path of the heat, this abutting by a strictly fitting insertion of the radiator with the foil insulation into the Metal sleeve 24 is promoted can be achieved.
  • the metal sleeve 11 or 24 has a mechanical prestress and thereby presses elastically on the foil insulation.
  • FIG. 6 An embodiment of this technique is illustrated in Figures 6 to 8. It is used to encase an essentially circular-cylindrical structure, which consists of a heating element 1 made of electrically conductive ceramic material and an insulation surrounding this heating element consisting of several layers 7, 8, 9 of an electrically insulating film, starting from a metal sleeve 30, which, as Figure 6 shows an oval or elliptical cross section.
  • the initially oval sleeve is elastically deformed into an approximately circular cylindrical sleeve by pressure forces which act on the sleeve 30 opposite one another from the outside and act approximately in the direction of the longer axis of the cross section of the sleeve 30, as is illustrated by the arrows 31, 32 as Figure 7 shows.
  • the heater 1 surrounded by the insulation is then pushed into this sleeve, and the sleeve 30 is relieved of the pressure forces acting according to the arrows 31, 32.
  • the sleeve 30 tries again to assume the oval cross-sectional shape shown in FIG. 6 and, as a result, exerts compressive forces acting on the multilayer film insulation in accordance with the arrows 33, 34, which in this way intimately on the inner surface of the metal sleeve 30 on the one hand and on the metal blocks located on both sides of the radiator 1 21, 22 comes to concern, which in turn are pressed against the radiator 1. This results in very good heat transfer from the radiator 1 to the metal sleeve 30 of the heating element.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Resistance Heating (AREA)

Description

Die Erfindung bezieht sich auf ein selbstregelndes Heizelement mit mindestens einem in einer Metallhülse elektrisch isoliert angeordneten Widerstands-Heizkörper aus stromleitendem Keramikmaterial mit einem positiven Temperaturkoeffizienten des elektrischen Widerstandes, wobei zur elektrischen Isolierung des Heizkörpers von der Metallhülse eine elektrisch isolierende Folie und eine wärmeleitende, elektrisch isolierende Masse verwendet ist.The invention relates to a self-regulating heating element with at least one resistance heater made of electrically conductive ceramic material, which is arranged in an electrically insulated manner in a metal sleeve, with a positive temperature coefficient of electrical resistance, an electrically insulating film and a heat-conducting, electrically insulating one being used to electrically insulate the heater from the metal sleeve Mass is used.

Bei Heizelementen vorgenannter Art stellt sich die Energieaufnahme des an eine Spannungsquelle angeschlossenen Widerstands-Heizkörpers ohne weiteres Zutun, also ohne Schaltmaßnahme od. dgl., so ein, daß der Widerstands-Heizkörper eine bestimmte im wesentlichen von seiner Materialzusammensetzung abhängige Temperatur annimmt. Dies ergibt sich dadurch, daß der elektrische Widerstand des Widerstands-Heizkörpers oberhalb einer bestimmten Temperatur stark zunimmt und demgemäß die Energieaufnahme aus der elektrischen Spannungsquelle sinkt. Dieser Wirkungszusammenhang hält nun zwar die Temperatur des an die Spannungsquelle angeschlossenen Widerstands-Heizkörpers selbst praktisch konstant, vermag aber die Temperatur der Umhüllung des Heizelementes, von der die erzeugte Wärme abgenommen wird, bei den bisher bekannt gewordenen bzw. beschriebenen Heizelementen dieser Art nicht im erwünschten Ausmaß konstant zu halten, und zwar insbesondere dann nicht, wenn die Wärmeabfuhr von der Umhüllung schwankt. Dieser Nachteil rührt daher, daß der Wärmewiderstand, der zwischen dem Widerstands-Heizkörper und der Umhüllung vorliegt, ein Temperaturgefälle verursacht, dessen Größe von der Umhüitung abgeführten Wärmemenge abhängt, wozu vielfach noch kommt, daß sich der Wert des Wärmewiderstandes mit Änderung des Temperaturgefälles gleichfalls ändert. Dementsprechend kommt es zu unerwünschten Schwankungen der Temperatur der Umhüllung des Heizelementes, von der die Wärme abgenommen wird, obwohl der Heizkörper des Heizelementes eine praktisch konstante Temperatur hat.In the case of heating elements of the aforementioned type, the energy consumption of the resistance heater connected to a voltage source is adjusted without further action, that is to say without a switching measure or the like, such that the resistance heater assumes a certain temperature which is essentially dependent on its material composition. This results from the fact that the electrical resistance of the resistance heating element increases sharply above a certain temperature and the energy consumption from the electrical voltage source accordingly decreases. This relationship of effects now keeps the temperature of the resistance heater connected to the voltage source itself practically constant, but is not able to achieve the desired temperature in the heating elements of this type which have been disclosed or described so far, in the envelope of the heating element from which the heat generated is taken To keep the extent constant, especially not when the heat dissipation fluctuates from the casing. This disadvantage arises from the fact that the thermal resistance that exists between the resistance heater and the envelope causes a temperature gradient, the size of which depends on the amount of heat dissipated, which is often compounded by the fact that the value of the thermal resistance also changes as the temperature gradient changes . Accordingly, there are undesirable fluctuations in the temperature of the envelope of the heating element, from which the heat is removed, although the heating element of the heating element has a practically constant temperature.

Es ist aus der FR-A-2165 943 ein Heizelement bekannt, welches einen keramischen Widerstandsheizkörper aufweist, der an seiner Unterseite eine Metallplatte trägt, und der zusammen mit der Metallplatte in einem gegebenenfalls aus Metall bestehenden Gehäuse angeordnet ist. Die Metallplatte ist vom Gehäuse durch eine im wesentlichen ebene Isolierfolle getrennt, die beidseitig mit einem Druckkleber beschichtet ist, um die Metallplatte, die Folie und das Gehäuse zusammenzufügen. Der zwischen den nicht an der Metallplatte anliegenden Seiten des Heizkörpers und dem Gehäuse liegende Raum ist mit einer wärmeleitenden, elektrisch isolierenden Masse gefüllt.A heating element is known from FR-A-2165 943 which has a ceramic resistance heating element which carries a metal plate on its underside and which is arranged together with the metal plate in a housing which may be made of metal. The metal plate is separated from the housing by an essentially flat insulating roller, which is coated on both sides with a pressure adhesive, in order to join the metal plate, the film and the housing. The space between the sides of the radiator and the housing that are not in contact with the metal plate is filled with a heat-conducting, electrically insulating compound.

Es ist weiter aus der US-A-3 492 463 ein Heizelement bekannt, welches einen stabförmigen Heizkörper besitzt, der von einer rohrförmigen Isolierung, welche z. B. aus Bornitrid oder Berylliumoxid besteht, umgeben ist, auf welche ein äußerer Metallmantel folgt. Die rohrförmige Isolierung mit dem Metallmantel ist auf den stabförmigen Heizkörper aufgeschrumpft.It is further known from US-A-3 492 463 a heating element which has a rod-shaped radiator which is covered by a tubular insulation, which, for. B. consists of boron nitride or beryllium oxide, which is followed by an outer metal shell. The tubular insulation with the metal jacket is shrunk onto the rod-shaped radiator.

Ziel der Erfindung ist es, ein selbstregelndes Heizelement eingangs erwähnter Art zu schaffen, bei dem der vorstehend angeführte Nachteil behoben ist und bei dem auch die Umhüllung eine weitgehende konstante Temperatur hat.The aim of the invention is to provide a self-regulating heating element of the type mentioned in the opening paragraph, in which the above-mentioned disadvantage is eliminated and in which the casing also has a largely constant temperature.

Das erfindungsgemäße selbstregelnde Heizelement eingangs erwähnter Art ist dadurch gekennzeichnet, daß zwischen dem Widerstands-Heizkörper und der Metallhülse eine gewickelte, den Heizkörper umgebende ein- oder mehrlagige Isolierung aus elektrisch isolierendem Folienmaterial angeordnet ist, die einerseits am Heizkörper und andererseits an der Innenfläche der Metallhülse anliegt, wobei Zwischenräume zwischen gegebenenfalls mehreren Lagen des Folienwickels, zwischen der dem Heizkörper zugewandten Innenfläche des Folienwickels und der Außenfläche des Heizkörpers und zwischen der Außenfläche des Folienwickels und der Innenfläche der Metallhülse mit der wärmeleitenden, elektrisch isolierenden Masse gefüllt sind.The self-regulating heating element of the type mentioned at the outset is characterized in that a wound single or multi-layer insulation made of electrically insulating film material is arranged between the resistance heater and the metal sleeve, said insulation resting on the one hand on the heater and on the other hand on the inner surface of the metal sleeve , Gaps between possibly several layers of the film roll, between the inner surface of the film roll facing the radiator and the outer surface of the radiator and between the outer surface of the film roll and the inner surface of the metal sleeve are filled with the heat-conducting, electrically insulating compound.

Durch die erfindungsgemäß vorgesehene Ausbildung kann ein sehr geringer Wärmewiderstand der zwischen dem Widerstands-Heizkörper und der Umhüllung des Heizelementes notwendigen elektrischen Isolierung erhalten werden, der sich auch bei wechselnden Betriebsbedingungen praktisch nicht ändert. Hiebei wird durch das Vorsehen einer Folienisolierung, da Folien schon bei sehr geringen Dicken eine ausreichende elektrische Durchschlagsfestigkeit aufweisen, ein kleiner Wärmewiderstand erhalten, wobei durch eine mehrlagige Ausbildung dieser Isolierung den Sicherheitsanforderungen gut entsprochen wird. Der Wärmewiderstand der Folien selbst ist gering und weist eine gute Konstanz auf, und es ist durch die wärmeleitende Masse, mit der im Zuge der Fertigung unvermeidlich auftretende Zwischenräume im Weg des Wärmeflusses vom Heizkörper zur Umhüllung gefüllt sind, auch dafür gesorgt, daß der Wärmewiderstand auch im Bereich der Übergangsstellen gering und weitgehend konstant ist. So ergibt sich durch den erfindungsgemäßen Aufbau der Isolierung ein, in Relation zur Durchschlagsfestigkeit gesetzt, sehr günstiger und praktisch konstanter Wert des Wärmewiderstandes. Der Umstand, daß die erfindungsgemäß aufgebaute Isolierung in einer Metallhülse sitzt, trägt weiter zu den vorteilhaften Eigenschaften der erfindungsgemäßen Ausbildung eines selbstregelnden Heizelementes eingangs erwähnter Art bei. Dies erscheint dadurch erklärbar, daß der thermische Ausdehnungskoeffizient der Metalle geringer als der elektrisch isolierender Kunststoffe ist, wobei hier neben den Folien auch besonders die wärmeleitende Masse von Bedeutung ist.Due to the design provided according to the invention, a very low thermal resistance of the electrical insulation required between the resistance heater and the covering of the heating element can be obtained, which practically does not change even under changing operating conditions. In this way, the provision of foil insulation, since foils have a sufficient dielectric strength even at very small thicknesses, provides a low thermal resistance, the safety requirements being met well by a multilayer design of this insulation. The thermal resistance of the foils themselves is low and has a good constancy, and it is also ensured that the thermal resistance is also ensured by the heat-conducting mass with which gaps inevitably occur in the course of production in the way of the heat flow from the radiator to the casing is low and largely constant in the area of the transition points. The structure of the insulation according to the invention, in relation to the dielectric strength, results in a very favorable and practically constant value of the thermal resistance. The fact that the insulation constructed according to the invention sits in a metal sleeve further contributes to the advantageous properties of the inventive design of a self-regulating heating element of the type mentioned at the beginning. This appears to be explained by the fact that the thermal expansion coefficient of the metals is lower than that of the electrical ones is insulating plastics, whereby in addition to the foils, the heat-conducting mass is particularly important.

Eine besonders vorteilhafte Ausführungsform ergibt sich dabei, wenn man vorsieht, daß die Metallhülse zumindest bei Betriebstemperatur einen Druck auf die Folienisolierung ausübt, und diese an den Heizkörper anpreßt. Dies kann durch entsprechend koordinierte Auswahl des Isolierfolienmaterials und durch entsprechende Auswahl der Ausgangsstoffe für die wärmeleitende Masse und durch eine entsprechende Herstellungstechnologie beim Anbringen dieser Masse zwischen dem Heizkörper und der Metallhülse erreicht werden. Man kann dabei z. B. als wärmeleitende Masse eine vulkanisierbare Masse, z. B. eine Silikon-Kautschuk-Masse, die ein die Wärmeleitung verbesserndes Füllmittel enthält, vorsehen und das Vulkanisieren bei einer wesentlich unter der Curie-Temperatur des Keramikmaterials, aus dem der Heizkörper besteht, liegenden Temperatur vornehmen, woraus sich mit der bei Erwärmung dieser Masse auf Betriebstemperatur einhergehenden Expansion dieser Masse ergibt, daß die Metallhülse einen Druck auf die Folienisolierung ausübt und diese an den Heizkörper anpreßt.A particularly advantageous embodiment is obtained if it is provided that the metal sleeve exerts a pressure on the film insulation, at least at operating temperature, and presses it onto the radiator. This can be achieved by a correspondingly coordinated selection of the insulating film material and by a corresponding selection of the starting materials for the heat-conducting mass and by a corresponding production technology when this mass is applied between the radiator and the metal sleeve. You can z. B. as a heat-conducting mass, a vulcanizable mass, for. B. provide a silicone rubber composition containing a thermal conduction filler, and vulcanize at a temperature below the Curie temperature of the ceramic material of which the radiator is made, resulting in the heating of this composition expansion of this mass accompanying the operating temperature shows that the metal sleeve exerts pressure on the foil insulation and presses it onto the radiator.

Man kann auch vorteilhaft vorsehen, daß die Metallhülse eine mechanische Vorspannung aufweist und dadurch elastisch auf die Folienisolierung drückt. Eine solche Vorspannung kann z. B. sehr einfach dadurch hergestellt werden, daß man bei einer annähernd kreiszylindrischen Form eines bereits mit einer ein- oder mehrlagigen Folienisolierung umgebenen Heizkörpers eine Metallhülse vorsieht, die einen im Ruhezustand ovalen Querschnitt hat, und diese Hülse zum Einführen dieses Heizkörpers elastisch im Sinne einer Veränderung ihres Querschnittes zur Kreisform zusammendrückt, wobei nach dem Wegfall dieser Druckkraft die eng den mit einer Folienisolierung umgebenen Heizkörper umschließende Metallhülse im Bestreben, wieder ihre ovale Querschnittsform anzunehmen, einen Druck auf die Folienisolierung ausübt, der diese an den Heizkörper anpreßt. Analog kann z. B. auch bei einem im wesentlichen ovalen Querschnitt des mit einer Folienisolierung umgebenen Heizkörpers von einer im Ruhezustand kreiszylindrischen Metallhülse ausgegangen werden, die man zum Ermöglichen des Einführens des einen ovalen Querschnitt aufweisenden folienisolierten Heizkörpers elastisch zur ovalen Querschnittsform verformt, wobei sich nach Wegfall dieser Verformungskraft wieder eine Druckausübung von der Metallhülse auf die Folienisolierung ergibt.It can also be advantageously provided that the metal sleeve has a mechanical prestress and thereby presses elastically on the foil insulation. Such a bias can, for. B. be produced very simply by providing a metal sleeve with an approximately circular cylindrical shape of a radiator already surrounded by a single or multilayer film insulation, which has an oval cross-section in the idle state, and this sleeve for inserting this radiator elastically in the sense of a change their cross-section compresses to a circular shape, whereby after the loss of this compressive force, the metal sleeve closely surrounding the radiator surrounded by foil insulation, in an effort to return to its oval cross-sectional shape, exerts pressure on the foil insulation, which presses it onto the radiator. Analog z. B. also with an essentially oval cross-section of the radiator surrounded by foil insulation from a circular cylindrical metal sleeve at rest, which is elastically deformed to enable insertion of the foil-insulated radiator having an oval cross-section to the oval cross-sectional shape, with this deformation force disappearing again exerting pressure from the metal sleeve on the foil insulation.

Die Erfindung wird nun anhand von lediglich einen Ausführungsweg darstellenden Zeichnungen näher erläutert. Es zeigen die Figuren 1, 2 und 3 ein erstes Ausführungsbeispiel des Erfindungsgegenstandes im Quer- und im Längsschnitt, wobei der in Figur 1 dargestellte Querschnitt. der Linie I-I in Figur 2 folgt und der in Figur 2 dargestellte Längsschnitt der Linie 11-11 in Figur 1 folgt ; die Figuren 4 und 5 zeigen ein anderes Ausführungsbeispiel, gleichfalls im Quer- und im Längsschnitt, wobei der in Figur 4 dargestellte Querschnitt der Linie IV-IV in Figur 5 folgt und der in Figur 5 dargestellte Längsschnitt der Linie V-V in Figur 4 folgt ; die Figuren 6 bis 8 zeigen das Aufbringen einer eine mechanische Vorspannung aufweisenden Metallhülse auf einem bereits mit einer Folienisolierung versehenen Heizkörper eines erfindungsgemäßen Heizelementes. Die Zeichnungsfiguren sind, insbesondere hinsichtlich der Folienisolierung, im Interesse einer übersichtlicheren Darstellung schematisch und nicht maßstäblich gehalten.The invention will now be explained in more detail with the aid of drawings showing only one embodiment. Figures 1, 2 and 3 show a first embodiment of the subject of the invention in cross-section and in longitudinal section, the cross-section shown in Figure 1. follows the line I-I in Figure 2 and the longitudinal section shown in Figure 2 follows the line 11-11 in Figure 1; FIGS. 4 and 5 show another exemplary embodiment, likewise in cross-section and in longitudinal section, the cross section shown in FIG. 4 following the line IV-IV in FIG. 5 and the longitudinal section shown in FIG. 5 following the line V-V in FIG. 4; FIGS. 6 to 8 show the application of a metal sleeve having a mechanical prestress on a heating element of a heating element according to the invention already provided with foil insulation. The drawing figures, especially with regard to the film insulation, are schematic and not to scale in the interest of a clearer representation.

Bei dem in den Figuren 1, 2 und 3 dargestellten Ausführungsbeispiel ist ein Widerstands-Heizkörper 1 aus stromleitendem Keramikmaterial mit einem positiven Temperaturkoeffizienten des elektrischen Widerstandes vorgesehen, der an den Flächen 2 und 3 mit Stromanschlüssen 4, 5 versehen ist, zu denen wärmebeständig isolierte Anschlußdrähte 6 führen. Der Widerstands-Heizkörper 1 ist von drei Lagen 7, 8, 9 elektrisch isolierender Folien umgeben, wobei die innerste Lage 7 am Heizkörper 1 und die äußerste Lage 9 an der Innenfläche 10 einer becherförmigen Metallhülse 11 anliegt. Die innerste Folienlage 7 ist fest um den Widerstands-Heizkörper 1 gewickelt, und es liegen die Folienlagen 7, 8, 9 fest aneinander, und es ist das ganze so entstandene Gebilde aus dem Widerstands-Heizkörper 1 und den ihn umgebenden Folienlagen 7, 8, 9 streng passend in die becherförmige Metallhülse 11 eingeschoben. Trotz des engen Anliegens der Folienlagen 7, 8, 9 aneinander und am Widerstands-Heizkörper 1 und an der Innenfläche 10 der Metallhülse 11 ergeben sich dabei zonale Zwischenräume, wie z. B. die Räume 12 beiderseits der Anschlüsse 4, oder Räume 14 an den Enden 15 der Folien jeder Lage, wie dies in größerem Maßstab in Figur 3 verdeutlicht ist. Diese Räume und auch der zwischen dem Stirnende 16 des Heizkörpers 1 und dem Boden 17 der becherförmigen Metallhülse 11 vorliegende Raum 18 sind mit einer wärmeleitenden Masse gefüllt, welche im Zuge des Zusammenfügens des Heizkörpers 1 mit der aus mehreren Folienlagen 7, 8, 9 bestehenden Isolierung und dem Einschieben des so entstandenen Gebildes in die Metallhülse 11 oder nach diesem Einschieben eingebracht werden kann. Es kommt dabei für diesen Zweck eine elektrisch isolierende Masse guter Wärmeleitfähigkeit, wie z. B. ein mit einem wärmeleitenden Füllmittel, wie z. B. Magnesiumoxid, versetzter, vulkanisierbarer Silikonkautschuk, in Betracht.In the embodiment shown in Figures 1, 2 and 3, a resistance heater 1 made of current-conducting ceramic material with a positive temperature coefficient of electrical resistance is provided, which is provided on the surfaces 2 and 3 with power connections 4, 5, to which heat-resistant insulated connecting wires 6 lead. The resistance heating element 1 is surrounded by three layers 7, 8, 9 of electrically insulating foils, the innermost layer 7 resting on the heating element 1 and the outermost layer 9 resting on the inner surface 10 of a cup-shaped metal sleeve 11. The innermost film layer 7 is tightly wrapped around the resistance heating element 1, and the film layers 7, 8, 9 lie firmly against one another, and it is the entire structure formed in this way from the resistance heating element 1 and the film layers 7, 8 surrounding it. 9 inserted strictly into the cup-shaped metal sleeve 11. Despite the tight fit of the film layers 7, 8, 9 to each other and to the resistance heater 1 and to the inner surface 10 of the metal sleeve 11, there are zonal gaps, such as. B. the rooms 12 on both sides of the connections 4, or rooms 14 at the ends 15 of the films of each layer, as is illustrated on a larger scale in FIG. These spaces and also the space 18 present between the front end 16 of the radiator 1 and the bottom 17 of the cup-shaped metal sleeve 11 are filled with a heat-conducting mass which, in the course of joining the radiator 1, with the insulation consisting of a plurality of foil layers 7, 8, 9 and the insertion of the resulting structure into the metal sleeve 11 or after this insertion. It comes for this purpose an electrically insulating mass good thermal conductivity, such as. B. with a thermally conductive filler such. As magnesium oxide, offset, vulcanizable silicone rubber, into consideration.

Bei dem Ausführungsbeispiel nach den Figuren 4 und 5 sind die elektrischen Anschlüsse des aus stromleitendem Keramikmaterial bestehenden Heizkörper 1 in Form zweier Metallklötzchen 21, 22 ausgebildet, die seitlich am Heizkörper 1 anliegen und die zylindrische Außenflächen 23 haben. Die Anschlußdrähte 6 sind an diese Metallklötzchen 21, 22 angeschlossen und in dem oberhalb und unterhalb des Heizkörpers 1 zwischen den Metallklötzchen 21, 22 befindlichen Raum geführt. Diese Ausbildung ermöglicht es, einen besonders niedrigen Wärmewiderstand zwischen dem Heizkörper 1 und der im vorliegenden Fall die Umhüllung des Heizelementes bildenden Metallhülse 24 zu erzielen. Hiezu trägt bei, daß die Wärme vom Heizkörper 1 leicht und unbehindert auf die Metallklötzchen 21, 22 übertritt und daß durch die der Metallhülse 24 konforme Ausbildung der Außenfläche 23 der Metallklötzchen 21, 22 auch eine durch die beiden Lagen 7, 8 gebildete Folienisolierung das Abfließen der Wärme von diesen Metallklötzchen zur Metallhülse 24 kaum behindert. Auch in diesem Fall sind die im Zuge der Fertigung allfällig auftretenden zonalen Zwischenräume zwischen dem Heizkörper 1 und der Lage 7 der Folienisolierung sowie allfällige Zwischenräume in der Folienisolierung und zwischen der Folienisolierung und der Metallhülse 24 mit einer wärmeleitenden Masse gefüllt, die auch die beiden an den Enden der Metallhülse 24 beidseits des Heizkörpers 1 vorliegenden Räume 25, 26 ausfüllt und damit das Heizelement verschließt. Auch bei diesem in den Figuren 4 und 5 dargestellten Ausführungsbeispiel kann ein guter Wärmeübergang vom Heizkörper über die Folienisolierung zur Metallhülse 24 durch entsprechend sattes Aneinanderanliegen der im Fließweg der Wärme aufeinanderfolgenden Teile, wobei dieses Aneinanderanliegen durch ein streng passendes Einschieben des Heizkörpers mit der Folienisolierung in die Metallhülse 24 gefördert wird, erzielt werden.In the exemplary embodiment according to FIGS. 4 and 5, the electrical connections of the radiator 1, which is made of current-conducting ceramic material, are designed in the form of two metal blocks 21, 22 which lie laterally on the radiator 1 and have the cylindrical outer surfaces 23. The connecting wires 6 are connected to these metal blocks 21, 22 and in the above and below the radiator 1 between the Metal blocks 21, 22 located space. This design makes it possible to achieve a particularly low thermal resistance between the radiator 1 and the metal sleeve 24 which in the present case forms the envelope of the heating element. This is due to the fact that the heat from the radiator 1 passes easily and unhindered to the metal blocks 21, 22 and that due to the conformity of the metal sleeve 24 with the outer surface 23 of the metal blocks 21, 22, a foil insulation formed by the two layers 7, 8 also drains off the heat from these metal blocks to the metal sleeve 24 is hardly impeded. Also in this case, the zonal gaps that may occur in the course of production between the radiator 1 and the layer 7 of the foil insulation and any gaps in the foil insulation and between the foil insulation and the metal sleeve 24 are filled with a heat-conducting compound, which also applies to the two Fills the ends of the metal sleeve 24 on both sides of the radiator 1, spaces 25, 26 and thus closes the heating element. Also in this embodiment shown in FIGS. 4 and 5, good heat transfer from the radiator via the foil insulation to the metal sleeve 24 can be achieved by correspondingly abutting the successive parts in the flow path of the heat, this abutting by a strictly fitting insertion of the radiator with the foil insulation into the Metal sleeve 24 is promoted can be achieved.

Man kann dabei auch durch Wahl der Zusammensetzung der wärmeleitenden Masse, welche die zonalen Zwischenräume im Heizelement ausfüllt, erreichen, daß diese bis zur vorgesehenen Betriebstemperatur des Heizelementes bereits merklich expandiert und damit eine Pressung auf die in der Metallhülse des Heizelementes befindlichen Teile ausübt und dadurch den Wärmeübergang verbessert.It can also be achieved by choosing the composition of the heat-conducting mass that fills the zonal spaces in the heating element that it expands noticeably up to the intended operating temperature of the heating element and thus exerts a pressure on the parts located in the metal sleeve of the heating element and thereby exerts the pressure Improved heat transfer.

Zum Erzielen einer Pressung kann man auch vorsehen, daß die Metallhülse 11 bzw. 24 eine mechanische Vorspannung aufweist und dadurch elastisch auf die Folienisolierung drückt.To achieve compression, it can also be provided that the metal sleeve 11 or 24 has a mechanical prestress and thereby presses elastically on the foil insulation.

Eine Ausführungsform dieser Technik ist in den Figuren 6 bis 8 verdeutlicht. Es wird dabei zum Umhüllen eines im wesentlichen kreiszylindrisch geformten Gebildes, das aus einem aus stromleitendem Keramikmaterial bestehenden Heizkörper 1 und einer diesen Heizkörper umgebenden Isolierung aus mehreren Lagen 7, 8, 9 einer elektrisch isolierenden Folie besteht, von einer Metallhülse 30 ausgegangen, welche, wie Figur 6 zeigt, einen ovalen bzw. elliptischen Querschnitt hat. Durch Druckkräfte, welche einander gegenüberliegend an der Hülse 30 von außen angreifen und annähernd in Richtung der längeren Achse des Querschnittes der Hüise 30 wirken, wie dies durch die Pfeile 31, 32 verdeutlicht ist, wird die zunächst ovale Hülse elastisch zu einer annähernd kreiszylindrischen Hülse verformt, wie Figur 7 zeigt. In diese Hülse wird dann, wie Figur 8 zeigt, der von der Isolierung umgebene Heizkörper 1 eingeschoben, und es wird die Hülse 30 von den entsprechend den Pfeilen 31, 32 wirkenden Druckkräften entlastet. Dadurch trachtet die Hülse 30 wieder ihre in Figur 6 dargestellte ovale Querschnittsform anzunehmen und übt dadurch entsprechend den Pfeilen 33, 34 wirkende Druckkräfte auf die mehrlagige Folienisolierung aus, welche dadurch innig an der Innenfläche der Metallhülse 30 einerseits und an den beidseits des Heizkörpers 1 befindlichen Metallklötzchen 21, 22 zum Anliegen kommt, die ihrerseits an den Heizkörper 1 angepreßt werden. Solcherart ergibt sich eine sehr gute Wärmeübertragung vom Heizkörper 1 auf die Metallhülse 30 des Heizelementes.An embodiment of this technique is illustrated in Figures 6 to 8. It is used to encase an essentially circular-cylindrical structure, which consists of a heating element 1 made of electrically conductive ceramic material and an insulation surrounding this heating element consisting of several layers 7, 8, 9 of an electrically insulating film, starting from a metal sleeve 30, which, as Figure 6 shows an oval or elliptical cross section. The initially oval sleeve is elastically deformed into an approximately circular cylindrical sleeve by pressure forces which act on the sleeve 30 opposite one another from the outside and act approximately in the direction of the longer axis of the cross section of the sleeve 30, as is illustrated by the arrows 31, 32 as Figure 7 shows. 8, the heater 1 surrounded by the insulation is then pushed into this sleeve, and the sleeve 30 is relieved of the pressure forces acting according to the arrows 31, 32. As a result, the sleeve 30 tries again to assume the oval cross-sectional shape shown in FIG. 6 and, as a result, exerts compressive forces acting on the multilayer film insulation in accordance with the arrows 33, 34, which in this way intimately on the inner surface of the metal sleeve 30 on the one hand and on the metal blocks located on both sides of the radiator 1 21, 22 comes to concern, which in turn are pressed against the radiator 1. This results in very good heat transfer from the radiator 1 to the metal sleeve 30 of the heating element.

Claims (3)

1. Self-regulating heating element having at least one resistor heating member (1) arranged electrically insulated in a metal shell (11 ; 24 ; 30) and made of an electrically conducting ceramic material having a positive temperature coefficient of electrical resistivity, for the electrical insulation of the heating member against the metal shell (11 ; 24 ; 30) an electrically insulating foil (7, 8, 9) and a heat-conducting electrically insulating mass is used, characterized in that between the resistor heating member and the metal shell there is arranged a single or multiple layer wound insulation (7, 8, 9) surrounding the heating member (1) and made from electrically insulating foil material, which insulation contacts on the one hand the heating member (1) and on the other hand the inner surface (10) of the metal shell (11 ; 24; 30), interstices (12, 14, 18 ; 25, 26) being present between the layers of the foil winding in case there are several layers (7, 8, 9) provided, and interstices being present between the inner surface of the foil winding (7, 8, 9) which faces the heating member and the outer surface of the heating member (1), and interstices being present between the outer surface of the foil winding (7, 8, 9) and the inner surface (10) of the metal shell (11 ; 24 ; 30) are filled by said heat conducting electrically insulating mass.
2. Self regulating heating element according to claim 1, characterized in that the metal shell (24 ; 30) at least at working temperature brings a pressure (33, 34) on the foil winding and presses it against the heating member (1).
3. Self regulating heating element according to claim 2, characterized in that the metal shell (30) exhibits a mechanical bias (33, 34) and bears resiliently on the foil winding (7, 8, 9).
EP19820890012 1981-01-26 1982-01-26 Self-regulating heating element Expired EP0057172B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
AT32081A AT384142B (en) 1981-01-26 1981-01-26 SELF-REGULATING HEATING ELEMENT
AT320/81 1981-01-26

Publications (3)

Publication Number Publication Date
EP0057172A2 EP0057172A2 (en) 1982-08-04
EP0057172A3 EP0057172A3 (en) 1982-09-01
EP0057172B1 true EP0057172B1 (en) 1987-04-15

Family

ID=3487447

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19820890012 Expired EP0057172B1 (en) 1981-01-26 1982-01-26 Self-regulating heating element

Country Status (3)

Country Link
EP (1) EP0057172B1 (en)
AT (1) AT384142B (en)
DE (1) DE3276093D1 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL8600142A (en) * 1986-01-23 1987-08-17 Philips Nv METHOD FOR MANUFACTURING A SELF-REGULATING HEATING ELEMENT
DE3815306A1 (en) * 1988-05-05 1989-11-16 Eichenauer Gmbh & Co Kg F ELECTRIC HEATING ELEMENT WITH PTC ELEMENT
US4998008A (en) * 1989-10-31 1991-03-05 Walther Menhardt Heating element
DE9309071U1 (en) * 1993-06-17 1993-08-19 Eichenauer Gmbh & Co Kg F Electrical resistance heating element
DE4447367A1 (en) * 1994-12-21 1996-06-27 Nanotron Ges Fuer Mikrotechnik Heater for drying shoes
DE59910583D1 (en) 1999-03-18 2004-10-28 David & Baader Dbk Spezfab Heating device for diesel fuel and heated diesel filter system
EP1429084A1 (en) * 2002-12-10 2004-06-16 Behr France S.A.R.L. Radiator with integrated electrical supplementary heater
CN101945505A (en) * 2010-08-31 2011-01-12 上海吉龙经济发展有限公司 Dual-waterway seal positive temperature coefficient (PTC) heater
CN102798218B (en) * 2012-07-23 2015-08-26 余姚德诚科技咨询有限公司 A kind of heater for foot basin
EP3101999B1 (en) 2015-06-02 2021-03-17 Eberspächer catem GmbH & Co. KG Ptc heating element and electric heater for a motor vehicle comprising such a ptc heating element

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE7838558U1 (en) * 1979-03-29 Siemens Ag, 1000 Berlin Und 8000 Muenchen Electric heating element
CH241718A (en) * 1946-02-06 1946-03-31 Oeschger Oskar Electric radiator.
NL153755C (en) * 1966-10-20 1977-11-15 Stichting Reactor Centrum METHOD FOR MANUFACTURING AN ELECTRIC HEATING ELEMENT, AS WELL AS HEATING ELEMENT MANUFACTURED USING THIS METHOD.
US3748439A (en) * 1971-12-27 1973-07-24 Texas Instruments Inc Heating apparatus
NL7504083A (en) * 1975-04-07 1976-10-11 Philips Nv SELF-REGULATING HEATING ELEMENT.
DE2804749C3 (en) * 1978-02-04 1980-07-31 Fa. Fritz Eichenauer, 6744 Kandel Water heater

Also Published As

Publication number Publication date
AT384142B (en) 1987-10-12
EP0057172A2 (en) 1982-08-04
DE3276093D1 (en) 1987-05-21
ATA32081A (en) 1987-02-15
EP0057172A3 (en) 1982-09-01

Similar Documents

Publication Publication Date Title
DE2948592C2 (en) Electric resistance heating element
DE2614433B2 (en) Self-regulating heating element
DE3119302A1 (en) AIR HEATING DEVICE
EP0057172B1 (en) Self-regulating heating element
DE2641894B2 (en)
EP0055350A2 (en) Device for fluidifying a fusible glue
DE2542162B2 (en) Heating torpedo for injection molding machines
DE2845965A1 (en) ELECTRIC RESISTANCE HEATING ELEMENT
DE3042420A1 (en) Electric heater with flat heating elements - has sheet metal contact strips, with resilient fastening tags, as heater terminals
DE3201367A1 (en) Electrical resistance heater comprising PTC resistance elements
DE3132752A1 (en) GLOW PLUGS FOR DIESEL ENGINES
WO2017186527A1 (en) Electronic component for limiting the inrush current, and use of an electronic component
EP0057171B1 (en) Self-regulating heating element
DE2928710C2 (en) Current limiting device
DE3104608C2 (en)
DE202017102073U1 (en) Chopper resistor with load resistor
DE19600069C2 (en) Electric PTC radiator
WO1991007068A1 (en) Self-regulating heating device
DE1465446B2 (en) Bimetal element with radiator
EP0249766B1 (en) Insulating housing for a thermal switch
EP0793399B1 (en) Selfregulating heating element
DE2907763A1 (en) Delayed action timer for electrical appliances - has nonlinear resistor held between wide bimetal strip and narrow conductor
DE2403117C2 (en) High voltage circuit breaker
DE3636737A1 (en) Extruded plastic pipe
DE202017102071U1 (en) Load resistance and chopper resistance with load resistance

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Designated state(s): BE DE FR GB SE

AK Designated contracting states

Designated state(s): BE DE FR GB SE

17P Request for examination filed

Effective date: 19830221

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE DE FR GB SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19870415

Ref country code: BE

Effective date: 19870415

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19870430

REF Corresponds to:

Ref document number: 3276093

Country of ref document: DE

Date of ref document: 19870521

EN Fr: translation not filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
GBPC Gb: european patent ceased through non-payment of renewal fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19881121

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19950317

Year of fee payment: 14

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19961001