EP0053848A1 - Process for injecting gases rich in oxygen into a molten non-ferrous metal bath - Google Patents
Process for injecting gases rich in oxygen into a molten non-ferrous metal bath Download PDFInfo
- Publication number
- EP0053848A1 EP0053848A1 EP81201257A EP81201257A EP0053848A1 EP 0053848 A1 EP0053848 A1 EP 0053848A1 EP 81201257 A EP81201257 A EP 81201257A EP 81201257 A EP81201257 A EP 81201257A EP 0053848 A1 EP0053848 A1 EP 0053848A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- slag
- nozzles
- protective fluid
- approaches
- pressure
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000007789 gas Substances 0.000 title claims description 20
- 239000002184 metal Substances 0.000 title claims description 18
- 229910052751 metal Inorganic materials 0.000 title claims description 18
- 239000001301 oxygen Substances 0.000 title claims description 16
- 229910052760 oxygen Inorganic materials 0.000 title claims description 16
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 title claims description 15
- 238000000034 method Methods 0.000 title claims description 14
- 230000008569 process Effects 0.000 title claims description 5
- CWYNVVGOOAEACU-UHFFFAOYSA-N Fe2+ Chemical compound [Fe+2] CWYNVVGOOAEACU-UHFFFAOYSA-N 0.000 title description 2
- 239000002893 slag Substances 0.000 claims abstract description 38
- 230000001681 protective effect Effects 0.000 claims abstract description 28
- 239000012530 fluid Substances 0.000 claims abstract description 27
- 238000013459 approach Methods 0.000 claims abstract description 18
- 239000000203 mixture Substances 0.000 claims abstract description 18
- 239000000155 melt Substances 0.000 claims abstract description 8
- 238000007664 blowing Methods 0.000 claims abstract description 6
- 238000007711 solidification Methods 0.000 claims abstract description 5
- 230000008023 solidification Effects 0.000 claims abstract description 5
- 239000002826 coolant Substances 0.000 claims abstract description 3
- 238000002844 melting Methods 0.000 claims description 9
- -1 ferrous metals Chemical class 0.000 claims description 8
- 230000001105 regulatory effect Effects 0.000 claims description 7
- 238000003756 stirring Methods 0.000 claims description 3
- 238000001816 cooling Methods 0.000 claims description 2
- 238000002425 crystallisation Methods 0.000 claims description 2
- 230000008025 crystallization Effects 0.000 claims description 2
- 230000000694 effects Effects 0.000 claims description 2
- 239000000839 emulsion Substances 0.000 claims description 2
- 230000001419 dependent effect Effects 0.000 claims 1
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 16
- 238000002474 experimental method Methods 0.000 description 12
- 239000011133 lead Substances 0.000 description 8
- 229910052757 nitrogen Inorganic materials 0.000 description 8
- 239000012141 concentrate Substances 0.000 description 7
- 238000012360 testing method Methods 0.000 description 7
- SZVJSHCCFOBDDC-UHFFFAOYSA-N iron(II,III) oxide Inorganic materials O=[Fe]O[Fe]O[Fe]=O SZVJSHCCFOBDDC-UHFFFAOYSA-N 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 4
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 description 4
- 230000003647 oxidation Effects 0.000 description 4
- 238000007254 oxidation reaction Methods 0.000 description 4
- 239000000654 additive Substances 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 229910052717 sulfur Inorganic materials 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 229910004298 SiO 2 Inorganic materials 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 230000003628 erosive effect Effects 0.000 description 2
- 229910000464 lead oxide Inorganic materials 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- YEXPOXQUZXUXJW-UHFFFAOYSA-N oxolead Chemical compound [Pb]=O YEXPOXQUZXUXJW-UHFFFAOYSA-N 0.000 description 2
- 150000004760 silicates Chemical class 0.000 description 2
- 239000004575 stone Substances 0.000 description 2
- 229910052725 zinc Inorganic materials 0.000 description 2
- 239000011701 zinc Substances 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 1
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 description 1
- 235000012241 calcium silicate Nutrition 0.000 description 1
- 229910010293 ceramic material Inorganic materials 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000010924 continuous production Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 239000000543 intermediate Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N iron oxide Inorganic materials [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 229910052976 metal sulfide Inorganic materials 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 238000009856 non-ferrous metallurgy Methods 0.000 description 1
- 238000013021 overheating Methods 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000010079 rubber tapping Methods 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 239000002689 soil Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 239000011135 tin Substances 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B5/00—General methods of reducing to metals
- C22B5/02—Dry methods smelting of sulfides or formation of mattes
- C22B5/12—Dry methods smelting of sulfides or formation of mattes by gases
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B5/00—General methods of reducing to metals
- C22B5/02—Dry methods smelting of sulfides or formation of mattes
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B13/00—Obtaining lead
- C22B13/02—Obtaining lead by dry processes
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B15/00—Obtaining copper
- C22B15/0026—Pyrometallurgy
- C22B15/0028—Smelting or converting
- C22B15/003—Bath smelting or converting
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B15/00—Obtaining copper
- C22B15/0026—Pyrometallurgy
- C22B15/0028—Smelting or converting
- C22B15/003—Bath smelting or converting
- C22B15/0041—Bath smelting or converting in converters
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B9/00—General processes of refining or remelting of metals; Apparatus for electroslag or arc remelting of metals
- C22B9/05—Refining by treating with gases, e.g. gas flushing also refining by means of a material generating gas in situ
Definitions
- the invention relates to a method for blowing in highly oxygen-containing gases into a molten bath containing non-ferrous metals by means of double tube nozzles immersed in the melt through the reactor wall, a protective fluid being blown in as coolant through a nozzle of each double tube nozzle.
- highly oxygen-containing gases - technically pure oxygen or gases enriched with oxygen - are blown into a melt.
- the highly oxygen-containing gases by means of nozzles from the bottom or from the side through the wall of a Rea - blown k gate in the melt.
- a protective fluid is blown in to protect the nozzles and the surrounding masonry against the high temperatures occurring at the nozzles. This is done using double tube nozzles.
- the inner tube is generally used to inject the highly oxygen-containing gas and the protective fluid that cools through the annular space between the inner and outer tube.
- Such methods are e.g. B. from DE-OS 24 17 979 and DE-OS 28 07 964 known.
- the invention is based, to reduce or avoid the wear of the double pipe nozzles and the surrounding masonry when blowing highly oxygen-containing gases with protective fluids in melt baths containing non-ferrous metals.
- the amount of protective fluid is adjusted depending on the composition of the slag and the temperature difference of the slag from the solidification point in such a way that approaches are formed on the nozzles on the one hand, and on the other hand the approaches do not exceed a desired thickness.
- the thickness of the approaches on the nozzles and the surrounding masonry is chosen so that the desired protection is achieved on the one hand, but on the other hand good gas permeability of the batches and gas distribution through the batches is achieved. The thickness depends on the operating conditions of the process and is determined empirically. In the case of continuous processes, the required amount of protective fluid remains largely constant, while in batch-operated processes it has to be regulated in larger areas.
- Flammable and non-flammable gases or liquids such as e.g. As nitrogen, SO 2 , CO 2 , water vapor, hydrocarbons can be used. Your selection depends on the procedural conditions.
- the amount of the protective fluid required for the production of the batches depends on the solidification temperature of the slag or high-melting components of the slag and the temperature difference of the slag from this solidification temperature before it comes into contact with the protective fluid.
- the outlet cross section for the protective fluid should be as small as possible and the protective fluid should be blown in under high pressure, for example above 6 bar, so that the required amount of protective fluid can be kept as small as possible.
- a preferred embodiment consists in that the composition and temperature of the slag is adjusted so that even with a slight local cooling of the slag at the nozzles, the crystallization temperature of high-melting constituents - originally dissolved in the slag - is not reached.
- the composition of the slag is adjusted so that it is almost saturated with high-melting compounds such as magnetite, calcium silicates or similar compounds. This is achieved through a corresponding chemical composition of the slag, a corresponding oxidation potential, which depends on the desired. Equilibrium metal sulfide oxide of the non-ferrous metal to be recovered, and by an appropriate temperature of the slag, which is just above the saturation temperature for the high-melting compounds. This creates a good build-up with small amounts of protective fluids.
- a preferred embodiment consists in that the stirring action of the gases blown in through the nozzles is adjusted such that an emulsion of slag and metal reaches the nozzles regardless of the layer height of a metal bath on the bottom of the reactor.
- the stirring effect of the injected gases can be regulated by adjusting their pressure or quantity accordingly and / or by adjusting the thickness of the metal layer above the nozzles. This also creates a good approach.
- a preferred embodiment consists in that the thickness of the lugs takes place by regulating the pressure rise of the flowing protective fluid and / or gas containing high oxygen compared to the original pressure to a desired value.
- the value of the pressure increase depends on the thickness and the shape of the approaches.
- the value of the pressure rise which corresponds to the desired thickness of the approaches, is determined empirically and adhered to. In most cases, a pressure increase of around 0.1 to 0.5 bar is sufficient. This allows the thickness of the approaches to be regulated in a simple manner, although direct observation is not possible.
- a preferred embodiment of the invention is that the desired value of the pressure is regulated by keeping the pressure constant. Only the pressure is kept constant and the volume adjusts to the corresponding value. A particularly simple and effective regulation of the thickness of the approaches is thereby achieved.
- a preferred embodiment is that the reactor is bricked up depending on the composition of the slag and temperature so that a constant film of high-melting components forms on the masonry.
- the lining is chosen so that the heat radiation cools the slag on the inside in such a way that a thin starting film is formed. This also protects the masonry in the vicinity of the nozzles, on which no deposits form due to the direct action of the protective fluid.
- the examples relate to the continuous oxidation of sulfidic concentrates in a refractory-lined reactor in the form of a horizontal cylinder with a length of 4.50 m and a diameter of 1.80 m.
- Additives were added to the sulfidic concentrate in order to produce slags of a certain chemical composition suitable for carrying out the method according to the invention.
- the reactor was equipped with 3 double tube nozzles with inner tube diameters of 10 mm and a propane-oxygen auxiliary burner in order to be able to influence the temperature of the melt independently of the chemical-metallurgical reactions taking place.
- the examples are limited to the oxidation of sulfidic lead concentrates, the slags formed here are particularly aggressive towards all metallic and ceramic materials known in the art because of their lead oxide content.
- the measures for protecting nozzles and masonry of the reactor described in the examples can therefore be analogously applied to the melting of a number of other non-ferrous metals and intermediates, including those Transfer concentrates, stones, food, slags, dusts and sludges containing copper, nickel, cobalt, zinc, lead, tin, antimony or bismuth.
- the mouthpiece of the third nozzle with a porous, conical approach of approx. 30 mm in height and 50 mm in base diameter, which consisted of 70% magnetite and 30% different silicates.
- the masonry in the vicinity of the other two nozzle mouthpieces showed funnel-shaped traces of corrosion of approx. 50 or 100 mm in diameter, the depth of which corresponded to the nozzle burnup.
- the masonry was in the area the third nozzle is completely preserved.
- Example 1 To test the influence of overheating of the slag, three tests were carried out at different temperatures of the slag.
- the flow rates of the protective fluid (6.9 bar nitrogen pressure) used in Example 1 for the second nozzle were set here. At the end of the tests, the nozzles were again drawn and measured:
- the reactor was successively filled with a pure lead oxide slag (Pb0) and a lead silicate slag with the approximate composition 2PbO ⁇ SiO 2 .
- a slag temperature of 930 ° C was set, while the nozzles with oxygen and a Nitrogen pressure of 6.9 bar were operated.
- no mixture of concentrate and additives was added in order not to change the composition of the slag. It was therefore no me - present tallisches lead as bottom phase.
- neither of the two experiments could a firm approach be created in front of the nozzle mouthpieces.
- the nozzles and the surrounding masonry were almost destroyed:
- the reactor was used in an experiment (No. 8) exclusively with the magnetite-containing one. Filled slag into which oxygen and nitrogen (6.9 bar pressure) were blown at a temperature of 930 ° C. The concentrate and additives were not charged in order to suppress the formation of a bottom phase of metallic lead.
- experiment 2 the conditions of experiment 2 (temperature 930 ° C., nitrogen pressure 6.9 bar) were otherwise set.
- the nozzles and the surrounding masonry were completely preserved, but approaches of different sizes had again formed: If approaches of a certain shape and size are to be created, the thickness of the metallic soil phase must be taken into account, provided that it consists of a low-melting metal.
- the advantages of the invention are that the nozzles and the surrounding masonry are protected from chemical attack and erosion by the molten phase with simple means, the amount of protective fluid is kept to a minimum and nevertheless a good gas distribution in the melt is achieved.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Manufacture And Refinement Of Metals (AREA)
- Carbon Steel Or Casting Steel Manufacturing (AREA)
- Furnace Charging Or Discharging (AREA)
- Treatment Of Steel In Its Molten State (AREA)
- Furnace Details (AREA)
Abstract
Das Einblasen geschieht mittels durch die Reaktorwand in die Schmelze eingetauchten Doppelrohrdüsen, wobei durch eine Düse jeder Doppelrohrdüse ein Schutzfluid als Kühlmittel eingeblasen wird. Zur Verringerung oder Vermeidung des Verschleißes der Doppelrohrdüsen und des umgebenden Mauerwerks wird die Menge des Schutzfluids in Abhängigkeit von der Zusammensetzung der Schlacke und der Temperaturdifferenz der Schlacke vom Erstarrungspunkt so eingestellt, daß einerseits auf den Düsen Ansätze gebildet werden, andererseits die Ansätze eine gewünschte Dicke nicht überschreiten.The blowing is carried out by means of double tube nozzles immersed in the melt through the reactor wall, a protective fluid being blown in as coolant through a nozzle of each double tube nozzle. To reduce or avoid the wear of the double pipe nozzles and the surrounding masonry, the amount of protective fluid is adjusted depending on the composition of the slag and the temperature difference of the slag from the solidification point so that approaches are formed on the nozzles on the one hand, and the approaches do not have a desired thickness exceed.
Description
Die Erfindung betrifft ein Verfahren zum Einblasen von hochsauerstoffhaltigen Gasen in ein NE-Metalle enthaltendes Schmelzbad mittels durch die Reaktorwand in die Schmelze eingetauchten Doppelrohrdüsen, wobei durch eine Düse jeder Doppelrohrdüse ein Schutzfluid als Kühlmittel eingeblasen wird.The invention relates to a method for blowing in highly oxygen-containing gases into a molten bath containing non-ferrous metals by means of double tube nozzles immersed in the melt through the reactor wall, a protective fluid being blown in as coolant through a nozzle of each double tube nozzle.
Bei manchen pyrometallischen Verfahren zur Erzeugung von NE-Metallen werden hochsauerstoffhaltige Gase - technisch reiner Sauerstoff oder mit Sauerstoff angereicherte Gase - in eine Schmelze eingeblasen. Durch solche Verfahren werden z. B. NE-Metalle oder mit NE-Metallen angereicherte- Steinphasen aus sulfidischen Erzen erzeugt oder NE-Metalle enthaltende Schmelzen raffiniert. Die hochsauerstoffhaltigen Gase werden mittels Düsen vom Boden oder von der Seite durch das Mauerwerk eines Rea-k-tors in die Schmelze eingeblasen. Zum Schutze der Düsen und des umgebenden Mauerwerks gegen die an den Düsen auftretenden hohen Temperaturen wird ein Schutzfluid eingeblasen. Dies geschieht mittels Doppelrohrdüsen. Durch das innere Rohr wird dabei im allgemeinen das hochsauerstoffhaltige Gas und durch den ringförmigen Raum zwischen innerem und äußerem Rohr das Schutzfluid eingeblasen, das eine Kühlung bewirkt. Solche Verfahren sind z. B. aus der DE-OS 24 17 979 und DE-OS 28 07 964 bekannt.In some pyrometallic processes for the production of N E metals, highly oxygen-containing gases - technically pure oxygen or gases enriched with oxygen - are blown into a melt. By such methods such. B. non-ferrous metals or enriched with non-ferrous metals - stone phases from sulfidic ores or refined melts containing non-ferrous metals. The highly oxygen-containing gases by means of nozzles from the bottom or from the side through the wall of a Rea - blown k gate in the melt. A protective fluid is blown in to protect the nozzles and the surrounding masonry against the high temperatures occurring at the nozzles. This is done using double tube nozzles. The inner tube is generally used to inject the highly oxygen-containing gas and the protective fluid that cools through the annular space between the inner and outer tube. Such methods are e.g. B. from DE-OS 24 17 979 and DE-OS 28 07 964 known.
Diese Doppelrohrdüsen und das Einblasen von hochsauerstoffhaltigen Gasen mit einem Schutzfluid wurden zuerst in der Stahlindustrie angewendet (DE-AS 15 83 968, DE-AS 17 83 149, DE-AS 17 58 816, DE-OS 20 52 988, DE-AS 22 59 276, GB-PS 12 53 581, DE-AS 14 33 398, AT-PS 265 341), wobei immer dahin gearbeitet wurde, eine Ansatzbildung an den Düsen zu vermeiden, da diese negative Einflüsse auf die Badbewegung, die Erosion des Mauerwerks und der Betriebssicherheit ausüben. Lediglich bei wassergekühlten Einfachdüsen soll die Düsenspitze auf dem gekühlten Teil durch eine Schicht erstarrten Eisens oder Metalls vor einer Zerstörung geschützt werden.These double tube nozzles and the blowing in of highly oxygen-containing gases with a protective fluid were first used in the steel industry (DE-AS 15 83 968, DE-AS 17 83 149, DE-AS 17 58 816, DE-OS 20 52 988, DE-AS 22 59 276, GB-PS 12 53 581, DE-AS 14 33 398, AT-PS 265 341), whereby efforts have always been made to avoid formation of deposits on the nozzles, since these have negative influences on the bath movement, the erosion of the masonry and exercise operational security. Only with water-cooled single nozzles should the nozzle tip on the cooled part be protected from destruction by a layer of solidified iron or metal.
Bei der Verwendung von Doppelrohrdüsen und dem Einblasen von hochsauerstoffhaltigen Gasen mit einem Schutzfluid in der NE-Metallurgie (DE-OS 24 17 979, DE-OS 28 07 964, GB-PS 14 14 769) ging man bisher offensichtlich von den gleichen Voraussetzungen aus. Dabei tritt jedoch ein erheblicher Verschleiß der Düsen und des umgebenden Mauerwerks auf.When using double-tube nozzles and blowing in highly oxygen-containing gases with a protective fluid in non-ferrous metallurgy (DE-OS 24 17 979, DE-OS 28 07 964, GB-PS 14 14 769), obviously the same prerequisites were previously assumed . However, there is considerable wear on the nozzles and the surrounding masonry.
Der Erfindung liegt die Aufgabe zugrunde, beim Einblasen von hochsauerstoffhaitigen Gasen mit Schutzfluiden in NE-Metalle enthaltende Schmelzbäder den Verschleiß der Doppelrohrdüsen und des umgebenden Mauerwerks zu verringern oder zu vermeiden.The invention is based, to reduce or avoid the wear of the double pipe nozzles and the surrounding masonry when blowing highly oxygen-containing gases with protective fluids in melt baths containing non-ferrous metals.
Die Lösung dieser Aufgabe erfolgt erfindungsgemäß dadurch, daß die Menge des Schutzfluids in Abhängigkeit von der Zusammensetzung der Schlacke und der Temperaturdifferenz der Schlacke vom Erstarrungspunkt so eingestellt wird, daß einerseits auf den Düsen Ansätze gebildet'werden, andererseits die Ansätze eine gewünschte Dicke nicht überschreiten. Die Dicke der Ansätze auf den Düsen und dem umgebenden Mauerwerk wird so gewählt, daß einerseits der gewünschte Schutz erzielt wird, andererseits aber auch eine gute Gasdurchlässigkeit der Ansätze und Gasverteilung durch die Ansätze erzielt wird. Die Dicke ist abhängig von den Betriebsbedingungen des Verfahrens und wird empirisch ermittelt. Bei kontinuierlichen Verfahren bleibt die erforderliche Menge des Schutzfluids weitgehend konstant, während sie bei chargenweise betriebenen Verfahren in größeren Bereichen geregelt werden muß. Als Schutzfluide können brennbare und nichtbrennbare Gase oder Flüssigkeiten, wie z. B. Stickstoff, SO2, CO2, Wasserdampf, Kohlenwasserstoffe, verwendet werden. Ihre Auswahl richtet sich nach den verfahrenstechnischen Bedingungen. Die Menge des zur.Erzeugung der Ansätze erforderlichen Schutzfluids ist abhängig von der Erstarrungstemperatur der Schlacke oder hochschmelzender Bestandteile der Schlacke und der Temperaturdifferenz der Schlacke von dieser Erstarrungstemperatur vor ihrem Kontakt mit dem Schutzfluid. Der Austrittsquerschnitt für das Schutzfluid soll möglichst klein sein und das Schutzfluid soll unter hohem Drück, etwa über 6 bar, eingeblasen werden, damit die erforderliche Menge des Schutzfluids möglichst gering gehalten werden kann.This object is achieved according to the invention in that the amount of protective fluid is adjusted depending on the composition of the slag and the temperature difference of the slag from the solidification point in such a way that approaches are formed on the nozzles on the one hand, and on the other hand the approaches do not exceed a desired thickness. The thickness of the approaches on the nozzles and the surrounding masonry is chosen so that the desired protection is achieved on the one hand, but on the other hand good gas permeability of the batches and gas distribution through the batches is achieved. The thickness depends on the operating conditions of the process and is determined empirically. In the case of continuous processes, the required amount of protective fluid remains largely constant, while in batch-operated processes it has to be regulated in larger areas. Flammable and non-flammable gases or liquids, such as e.g. As nitrogen, SO 2 , CO 2 , water vapor, hydrocarbons can be used. Your selection depends on the procedural conditions. The amount of the protective fluid required for the production of the batches depends on the solidification temperature of the slag or high-melting components of the slag and the temperature difference of the slag from this solidification temperature before it comes into contact with the protective fluid. The outlet cross section for the protective fluid should be as small as possible and the protective fluid should be blown in under high pressure, for example above 6 bar, so that the required amount of protective fluid can be kept as small as possible.
Eine vorzugsweise Ausgestaltung besteht darin, daß die Zusammensetzung und Temperatur der Schlacke so eingestellt wird, daß bereits bei einer geringfügigen örtlichen Abkühlung der Schlacke an den Düsen die Kristallisationstemperatur hochschmelzender - ursprünglich in der Schlacke gelöster - Bestandteile unterschritten wird. Die Zusammensetzung der Schlacke wird so eingestellt, daß sie an hochschmelzenden Verbindungen, wie Magnetit, Kalziumsilikaten oder ähnlichen Verbindungen, nahezu gesättigt ist. Dies wird erreicht durch eine entsurechende chemische Zusammensetzung der Schlacke, ein entsprechendes Oxidationspotential, welches sich nach dem gewünschten. Gleichgewicht Metall-Sulfid-Oxid des zu gewinnenden NE-Metalls richtet, und durch eine entsprechende Temperatur der Schlacke, die dicht oberhalb der Sättigungstemperatur für die hochschmelzenden Verbindungen liegt. Dadurch wird eine gute Ansatzbildung mit geringen Mengen an Schutzfluiden erzielt.A preferred embodiment consists in that the composition and temperature of the slag is adjusted so that even with a slight local cooling of the slag at the nozzles, the crystallization temperature of high-melting constituents - originally dissolved in the slag - is not reached. The composition of the slag is adjusted so that it is almost saturated with high-melting compounds such as magnetite, calcium silicates or similar compounds. This is achieved through a corresponding chemical composition of the slag, a corresponding oxidation potential, which depends on the desired. Equilibrium metal sulfide oxide of the non-ferrous metal to be recovered, and by an appropriate temperature of the slag, which is just above the saturation temperature for the high-melting compounds. This creates a good build-up with small amounts of protective fluids.
Eine vorzugsweise Ausgestaltung besteht darin-, daß die Rührwirkung der durch die Düsen eingeblasenen Gase so eingestellt wird, daß unabhängig von der Schichthöhe eines Metallbades auf dem Boden des Reaktors eine Emulsion aus Schlacke und Metall die Düsen erreicht. Die Rührwirkung der eingeblasenen Gase kann durch entsprechende Einstellung ihres Druckes oder ihrer.Menge geregelt werden und/ oder durch die Einstellung der Dicke der Metallschicht über den Düsen. Dadurch wird ebenfalls eine gute Ansatzbildung erzielt.A preferred embodiment consists in that the stirring action of the gases blown in through the nozzles is adjusted such that an emulsion of slag and metal reaches the nozzles regardless of the layer height of a metal bath on the bottom of the reactor. The stirring effect of the injected gases can be regulated by adjusting their pressure or quantity accordingly and / or by adjusting the thickness of the metal layer above the nozzles. This also creates a good approach.
Eine vorzugsweise Ausgestaltung besteht darin, daß die Dicke der Ansätze durch Regelung des Druckanstiegs des strömenden Schutzfluids und/oder hochsauerstoffhaltigen Gases gegenüber dem ursprünglichen Druck auf einen gewünschten Wert erfolgt. Durch die Ansatzbildung erfolgt ein Druckanstieg gegenüber dem Druck, der vor der Ansatzbildung vorliegt. Der Wert des Druckanstiegs ist abhängig von der Dicke und der Form der Ansätze. Der Wert des Druckanstiegs, der der gewünschten Dicke der Ansätze entspricht, wird empirisch ermittelt und eingehalten. In den meisten Fällen ist ein Druckanstieg von etwa 0,1 bis 0,5 bar ausreichend. Dadurch kann die Dicke der Ansätze in einfacher Weise geregelt werden, obwohl eine direkte Beobachtung nicht möglich ist.A preferred embodiment consists in that the thickness of the lugs takes place by regulating the pressure rise of the flowing protective fluid and / or gas containing high oxygen compared to the original pressure to a desired value. As a result of the build-up, there is an increase in pressure compared to the pressure that is present before the build-up. The value of the pressure increase depends on the thickness and the shape of the approaches. The value of the pressure rise, which corresponds to the desired thickness of the approaches, is determined empirically and adhered to. In most cases, a pressure increase of around 0.1 to 0.5 bar is sufficient. This allows the thickness of the approaches to be regulated in a simple manner, although direct observation is not possible.
Eine vorzugsweise Ausgestaltung der Erfindung besteht darin, daß der gewünschte Wert des Druckes durch Konstandhaltung des Druckes geregelt wird. Es wird lediglich der Druck konstant gehalten und das Volumen stellt sich auf den entsprechenden Wert ein. Dadurch wird eine besonders einfache und wirksame Regelung der Dicke der Ansätze erzielt.A preferred embodiment of the invention is that the desired value of the pressure is regulated by keeping the pressure constant. Only the pressure is kept constant and the volume adjusts to the corresponding value. A particularly simple and effective regulation of the thickness of the approaches is thereby achieved.
Eine vorzugsweise Ausgestaltung besteht darin, daß der Reaktor in Abhängigkeit von der Zusammensetzung der Schlacke und Temperatur so ausgemauert wird, daß sich ein konstanter Film von hochschmelzenden Bestandteilen auf dem Mauerwerk bildet. Die Ausmauerung wird so gewählt, daß durch die Wärmeabstrahlung eine Abkühlung der Schlacke an der Innenseite so erfolgt, daß sich ein dünner Ansatz- film bildet. Dadurch wird auch das- Mauerwerk in der Umgebung der Düsen geschützt, auf dem sich keine Ansätze durch die direkte Einwirkung des Schutzfluids bilden.A preferred embodiment is that the reactor is bricked up depending on the composition of the slag and temperature so that a constant film of high-melting components forms on the masonry. The lining is chosen so that the heat radiation cools the slag on the inside in such a way that a thin starting film is formed. This also protects the masonry in the vicinity of the nozzles, on which no deposits form due to the direct action of the protective fluid.
Die Erfindung wird an Hand von Beispielen näher erläutert.The invention is explained in more detail by means of examples.
Die Beispiele beziehen sich auf die kontinuierliche Oxidation sulfidischer Konzentrate in einem feuerfest ausgekleideten Reaktor von der Form eines liegenden Zylinders mit 4,50 m Länge und 1,80 m Durchmesser. Den sulfidischen Konzentrater waren Zuschlagstoffe beigemischt, um Schlacken von bestimmter, zur Durchführung des erfindungsgemäßen Verfahrens geeigneter chemischer Zusammensetzung zu erzeugen. Der Reaktor war mit 3 Doppelrohrdüsen mit Innenrohrdurchmessern von 10 mm und einem Propan-Sauerstoff-Hilfsbrenner ausgerüstet, um die Temperatur der Schmelze unabhängig von den ablaufenden chemisch-metallurgischen Reaktionen beeinflussen zu können.The examples relate to the continuous oxidation of sulfidic concentrates in a refractory-lined reactor in the form of a horizontal cylinder with a length of 4.50 m and a diameter of 1.80 m. Additives were added to the sulfidic concentrate in order to produce slags of a certain chemical composition suitable for carrying out the method according to the invention. The reactor was equipped with 3 double tube nozzles with inner tube diameters of 10 mm and a propane-oxygen auxiliary burner in order to be able to influence the temperature of the melt independently of the chemical-metallurgical reactions taking place.
Die Beispiele sind zwar auf die Oxidation sulfidischer Bleikonzentrate beschränkt, doch verhalten sich die hierbei entstehenden Schlacken wegen ihres Bleioxidgehaltes gegenüber allen in der Technik bekannten metallischen und keramischen Werkstoffen besonders agressiv. Die in den Beispielen beschriebenen Maßnahmen zum Schutz von Düsen und Mauerwerk des Reaktors lassen sich daher sinngemäß ohne weiteres auf das Verschmelzen einer Reihe anderer NE-Metall-haltiger Vorstoffe und Zwischenprodukte, darunter Konzentrate, Steine, Speisen, Schlacken, Stäube und Schlämme mit Gehalten an Kupfer, Nickel, Kobalt, Zink, Blei, Zinn, Antimon oder Wismut übertragen.Although the examples are limited to the oxidation of sulfidic lead concentrates, the slags formed here are particularly aggressive towards all metallic and ceramic materials known in the art because of their lead oxide content. The measures for protecting nozzles and masonry of the reactor described in the examples can therefore be analogously applied to the melting of a number of other non-ferrous metals and intermediates, including those Transfer concentrates, stones, food, slags, dusts and sludges containing copper, nickel, cobalt, zinc, lead, tin, antimony or bismuth.
Zum Einsatz gelangten i.a. Mischungen folgender Zusammensetzung: 56,1 Pb, 3,2 % Zn, 7,2 % FeO, 3,9 % CaO, 0.6 % MgO, 0,7 % A1203, 10,3 % SiO2 und 11,2 % S. Die Mischungen wurden in der Regel bei einem solchen Oxidationspotential verschmolzen, daß neben schwefelarmem, metallischem Blei (< 1 % S) eine magnetithaltige Schlacke mit Bleigehalten zwischen 63 und 66 % entstand. Das gebildete metallische Blei sammelte sich am Boden des Reaktors in einer 200 mm starken Schicht und wurde periodisch abgestochen, während die Schlacke kontinuierlich ablief.Mixtures of the following composition were generally used: 56.1 Pb, 3.2% Zn, 7.2% FeO, 3.9% CaO, 0.6% MgO, 0.7% A1 2 03, 10.3% SiO 2 and 11.2% S. The mixtures were usually melted at such an oxidation potential that, in addition to low-sulfur, metallic lead (<1% S), a magnetite-containing slag with lead contents between 63 and 66% was formed. The metallic lead formed collected in a 200 mm thick layer at the bottom of the reactor and was periodically tapped while the slag was continuously running off.
Bei einer Schlackentemperatur von 1000 °C wurden die vorhandenen Doppelrohrdüsen bei gleicher Sauerstoffbeaufschlagung mit unterschiedlichen Mengen Stickstoff als Schutzfluid betrieben. Am Ende des Versuches (Nr. 1) wurden die Düsen gezogen und vermessen:
Es zeigte sich, daß das Mundstück der dritten Düse mit einem porösen, kegelförmigen Ansatz von-ca. 30 mm Höhe und 50 mm Basisdurchmesser bedeckt gewesen war, der zu 70 % aus Magnetit und zu 30.% aus verschiedenen Silikaten bestand. Das Mauerwerk in der Umgebung der beiden anderen Düsenmundstücke wies trichterförmige Korrosionsspuren von ca. 50 bzw. 100 mm Durchmesser auf, deren Tiefe dem Düsenabbrand entsprach. Dagegen war das Mauerwerk in der Umgebung der dritten Düse vollständig erhalten.It was found that the mouthpiece of the third nozzle with a porous, conical approach of approx. 30 mm in height and 50 mm in base diameter, which consisted of 70% magnetite and 30% different silicates. The masonry in the vicinity of the other two nozzle mouthpieces showed funnel-shaped traces of corrosion of approx. 50 or 100 mm in diameter, the depth of which corresponded to the nozzle burnup. In contrast, the masonry was in the area the third nozzle is completely preserved.
Zur Untersuchung des Einflusses einer Überhitzung der Schlacke wurden drei Versuche bei unterschiedlichen Temperaturen der Schlacke durchgeführt. Hierbei wurden die in Beispiel 1 für die zweite Düse verwendeten Strömungsgeschwindigkeiten des Schutzfluides (6,9 bar Stickstoffdruck) eingestellt. Am Ende der Versuche wurden die Düsen wiederum gezogen und vermessen:
Es zeigte sich, daß nach Versuch 2 weder eine der drei Düsen noch das umgebende Mauerwerk korrodiert waren. Vor den Düsenmundstücken hatten sich wiederum poröse, kegelförmige Ansätze aus Magnetit und Silikaten gebildet, deren Höhen zwischen 30 und 35 mm und deren Basisdurchmesser zwischen 50 und 60 mm lagen. Das Mauerwerk in der Umgebung der Düsen der Versuche 3 und 4 wies die bereits in Beispiel 1 beschriebenen Korrosionsspuren auf.It was found that after trial 2, neither one of the three nozzles nor the surrounding masonry were corroded. In front of the nozzle mouthpieces, in turn, porous, conical approaches made of magnetite and silicates had formed, the heights of which were between 30 and 35 mm and the base diameter of between 50 and 60 mm. The masonry in the vicinity of the nozzles of tests 3 and 4 had the traces of corrosion already described in example 1.
In zwei weiteren Versuchen wurde demonstriert, daß der zuvor erläuterte Schutzmechanismus für Düsen und umgebendes Mauerwerk nur gegeben ist, wenn die verwendete Schlacke eine geeignete Zusammensetzung aufweist.In two further experiments it was demonstrated that the protection mechanism for nozzles and surrounding masonry explained above is only given if the slag used has a suitable composition.
Dazu wurde der Reaktor nacheinander mit einer reinen Bleioxidschlacke (Pb0) und einer Bleisilikatschlacke der ungefähren Zusammensetzung 2PbO · SiO2 gefüllt. In beiden Versuchen wurde eine Schlackentemperatur von 930 °C eingestellt, während die Düsen mit Sauerstoff und einem Stickstoffdruck von 6,9 bar betrieben wurden. Bei diesen Versuchen wurde jedoch keine Mischung aus Konzentrat und Zuschlagstoffen aufgegeben, um die Schlackenzusammensetzung nicht zu verändern. Es war daher auch kein me- tallisches Blei als Bodenphase zugegen. In keinem der beiden Versuche konnte ein fester Ansatz vor den Düsenmundstücken erzeugt werden. Dagegen waren nach Versuchsende die Düsen und das umgebende Mauerwerk nahezu zerstört:
In einem weiteren Versuch (Nr. 7) wurde gezeigt, daß die Größe der auf den Düsenmundstücken gebildeten Ansätze leicht mit Hilfe einer Druckregelung des Schutzfluids beeinflußt werden kann. Dazu wurde im wesentlichen unter den Bedingungen des Versuches 2 (Temperatur 930 °C) gearbeitet, jedoch wurden die drei Düsen mit geringfügig verschiedenen Schutzgasdrucken betrieben: Während der Stickstoffdruck an Düse 1 auf 6,7 bar und an Düse 2 auf 7,1 bar konstant gehalten wurde, wurde Düse 3 mit in Zehnminutenabständen innerhalb der Grenzen 6,7 bis 7,1 bar periodisch wechselndem Stickstoffdruck betrieben. Nach dem Versuch waren weder Düsen noch umgebendes Mauerwerk korrodiert, doch hatten sich auf den Düsenmündungen poröse Ansätze sehr unterschiedlicher Größe gebildet:
In einer letzten Versuchsreihe wurde gezeigt, daß die Stärke der metallischen Bodenphase von Einfluß auf die Ansatzbildung auf den Mündungen der Düsen ist. Dazu wurde in einem Versuch (Nr. 8) der Reaktor ausschließlich mit der magnetithaltigen. Schlacke gefüllt, in die bei einer Temperatur von 930 °C Sauerstoff und Stickstoff (6,9 bar Druck) geblasen wurden. Eine Chargierung von Konzentrat und Zuschlagstoffen fand nicht statt, um die Bildung einer Bodenphase von metallischem Blei zu unterdrücken.In a last series of experiments it was shown that the strength of the metallic bottom phase influences the formation of deposits on the mouths of the nozzles. For this purpose, the reactor was used in an experiment (No. 8) exclusively with the magnetite-containing one. Filled slag into which oxygen and nitrogen (6.9 bar pressure) were blown at a temperature of 930 ° C. The concentrate and additives were not charged in order to suppress the formation of a bottom phase of metallic lead.
In einem weiteren Versuch (Nr. 9) wurde eine Stärke der Bleischicht von 400 mm durch Vorgabe von metallischem Blei aufgebaut und durch Chargierung von Konzentrat und Zuschlägen bei periodischem Metallabstich konstant gehalten.In another experiment (No. 9), a lead layer thickness of 400 mm was established by specifying metallic lead and kept constant by charging concentrate and aggregates with periodic metal tapping.
Bei diesem Versuch wurden ansonsten die Bedingungen des Versuches 2 (Temperatur 930 °C, Stickstoffdruck 6,9 bar) eingestellt.In this experiment, the conditions of experiment 2 (temperature 930 ° C., nitrogen pressure 6.9 bar) were otherwise set.
Nach den Versuchen waren die Düsen und das umgebende Mauerwerk zwar vollständig erhalten, doch hatten sich wiederum Ansätze unterschiedlicher Größe gebildet:
In Analogie zu Beispiel 4, in dem eine Bleischicht von 200 mm aufrecht erhalten wurde, kann der an sich für die Ausbildung von Ansätzen auf den Mündungen der Düsen negative Einfluß der metallischen Bodenphase jedoch durch eine Steigerung des Schutzfluiddruckes kompensiert werden.In analogy to Example 4, in which a lead layer of 200 mm was maintained, the influence of the metallic bottom phase, which is inherently negative for the formation of deposits on the mouths of the nozzles, can be compensated for by increasing the protective fluid pressure.
Die Vorteile der Erfindung bestehen darin, daß die Düsen und das umgebende Mauerwerk mit einfachen Mitteln vor dem chemischen Angriff sowie der Erosion durch die schmelzflüssige Phase geschützt werden, die-Menge an Schutzfluid minimal gehalten und trotzdem eine gute Gasverteilung in der Schmelze erzielt werden.The advantages of the invention are that the nozzles and the surrounding masonry are protected from chemical attack and erosion by the molten phase with simple means, the amount of protective fluid is kept to a minimum and nevertheless a good gas distribution in the melt is achieved.
Claims (6)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19803045992 DE3045992A1 (en) | 1980-12-05 | 1980-12-05 | METHOD FOR INJECTING HIGH OXYGEN-CONTAINING GAS IN A MELTING BATH CONTAINING NON-METALS |
DE3045992 | 1980-12-05 |
Publications (3)
Publication Number | Publication Date |
---|---|
EP0053848A1 true EP0053848A1 (en) | 1982-06-16 |
EP0053848B1 EP0053848B1 (en) | 1984-10-24 |
EP0053848B2 EP0053848B2 (en) | 1987-10-14 |
Family
ID=6118459
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP81201257A Expired EP0053848B2 (en) | 1980-12-05 | 1981-11-11 | Process for injecting gases rich in oxygen into a molten non-ferrous metal bath |
Country Status (17)
Country | Link |
---|---|
US (1) | US4435211A (en) |
EP (1) | EP0053848B2 (en) |
JP (1) | JPS57120626A (en) |
KR (1) | KR890002800B1 (en) |
AU (1) | AU542613B2 (en) |
BR (1) | BR8107861A (en) |
CA (1) | CA1180194A (en) |
DE (2) | DE3045992A1 (en) |
ES (1) | ES507717A0 (en) |
FI (1) | FI68659C (en) |
IN (1) | IN152960B (en) |
MA (1) | MA19349A1 (en) |
MX (1) | MX156287A (en) |
PH (1) | PH19449A (en) |
PL (1) | PL234079A1 (en) |
YU (1) | YU42003B (en) |
ZA (1) | ZA817664B (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0339644A1 (en) * | 1988-04-28 | 1989-11-02 | Messer Griesheim Gmbh | Method for refining silicon metal and ferrosilicon alloys |
WO1995009250A1 (en) * | 1993-09-30 | 1995-04-06 | L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | Process to convert non-ferrous metal such as copper or nickel by oxygen enrichment |
WO1996006195A1 (en) * | 1994-08-24 | 1996-02-29 | Metallgesellschaft Aktiengesellschaft | Process for blowing non-ferrous metal scrap and intermediate products from smelting works |
EP0832987A1 (en) * | 1996-09-18 | 1998-04-01 | Linde Aktiengesellschaft | Lance for blowing oxygen onto liquid metal |
EP2302082A1 (en) * | 2009-09-03 | 2011-03-30 | Linde AG | Method for operating of a converter and apparatus for carrying out the method |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4661153A (en) * | 1983-07-01 | 1987-04-28 | Southwire Company | Refractory porous plug |
FR2646789B1 (en) * | 1989-05-12 | 1994-02-04 | Air Liquide | PROCESS FOR THE TREATMENT OF OXIDATION OF A LIQUID BATH |
CA2041297C (en) * | 1991-04-26 | 2001-07-10 | Samuel Walton Marcuson | Converter and method for top blowing nonferrous metal |
US5814126A (en) * | 1994-01-12 | 1998-09-29 | Cook; Thomas H. | Method and apparatus for producing bright and smooth galvanized coatings |
DE10253535A1 (en) * | 2002-11-16 | 2004-05-27 | Sms Demag Ag | Gas feed system for a converter in the production of carbon steels or stainless steels comprises a feed throttle unit assigned to a nozzle for periodically reducing or interrupting the gas supply into the inside of an oven |
FR2856631B1 (en) * | 2003-06-26 | 2005-09-23 | Jean Noel Claveau | METHOD FOR DECORATING AN ARTICLE AND EQUIPMENT FOR IMPLEMENTING SAID METHOD |
FR2856630B1 (en) * | 2003-06-26 | 2006-09-29 | Jean Noel Claveau | METHOD FOR DECORATING AN ARTICLE AND EQUIPMENT FOR IMPLEMENTING SAID METHOD |
FR2881988B1 (en) * | 2005-02-15 | 2007-06-29 | Jean Noel Claveau | METHOD FOR DECORATING AN ARTICLE AND EQUIPMENT FOR IMPLEMENTING SAID METHOD |
DE102010020179A1 (en) * | 2009-06-09 | 2010-12-16 | Sms Siemag Ag | Method for operating a floor flushing system of a BOF converter |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2085619A1 (en) * | 1970-03-26 | 1971-12-24 | Centre Nat Rech Metall | Steel belt refining |
LU62933A1 (en) * | 1971-04-06 | 1973-05-16 | ||
FR2219235A2 (en) * | 1973-02-26 | 1974-09-20 | Creusot Loire | |
DE2417978A1 (en) * | 1973-05-03 | 1974-11-21 | Qs Oxygen Processes | PROCESS FOR THE RECOVERY OF METALS FROM NON-FERROUS METAL SULPHIDE CONCENTRATES |
GB1414769A (en) * | 1973-02-07 | 1975-11-19 | Centre Rech Metallurgique | Converting copper materials |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US443758A (en) | 1890-12-30 | Process of converting copper matte to copper | ||
US3892559A (en) | 1969-09-18 | 1975-07-01 | Bechtel Int Corp | Submerged smelting |
DE2504946C2 (en) | 1975-02-06 | 1980-04-30 | Kloeckner-Werke Ag, 4100 Duisburg | Method and device for melting down scrap, sponge iron, pellets or the like |
-
1980
- 1980-12-05 DE DE19803045992 patent/DE3045992A1/en not_active Withdrawn
-
1981
- 1981-03-17 IN IN290/CAL/81A patent/IN152960B/en unknown
- 1981-11-05 ZA ZA817664A patent/ZA817664B/en unknown
- 1981-11-11 DE DE8181201257T patent/DE3166865D1/en not_active Expired
- 1981-11-11 EP EP81201257A patent/EP0053848B2/en not_active Expired
- 1981-11-24 FI FI813743A patent/FI68659C/en not_active IP Right Cessation
- 1981-11-25 KR KR1019810004557A patent/KR890002800B1/en active
- 1981-12-01 US US06/326,297 patent/US4435211A/en not_active Expired - Lifetime
- 1981-12-02 MA MA19553A patent/MA19349A1/en unknown
- 1981-12-03 BR BR8107861A patent/BR8107861A/en unknown
- 1981-12-03 PL PL23407981A patent/PL234079A1/xx unknown
- 1981-12-04 CA CA000391522A patent/CA1180194A/en not_active Expired
- 1981-12-04 JP JP56196185A patent/JPS57120626A/en active Granted
- 1981-12-04 ES ES507717A patent/ES507717A0/en active Granted
- 1981-12-04 MX MX190421A patent/MX156287A/en unknown
- 1981-12-04 AU AU78279/81A patent/AU542613B2/en not_active Ceased
- 1981-12-04 PH PH26577A patent/PH19449A/en unknown
- 1981-12-04 YU YU2836/81A patent/YU42003B/en unknown
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2085619A1 (en) * | 1970-03-26 | 1971-12-24 | Centre Nat Rech Metall | Steel belt refining |
LU62933A1 (en) * | 1971-04-06 | 1973-05-16 | ||
GB1414769A (en) * | 1973-02-07 | 1975-11-19 | Centre Rech Metallurgique | Converting copper materials |
FR2219235A2 (en) * | 1973-02-26 | 1974-09-20 | Creusot Loire | |
DE2417978A1 (en) * | 1973-05-03 | 1974-11-21 | Qs Oxygen Processes | PROCESS FOR THE RECOVERY OF METALS FROM NON-FERROUS METAL SULPHIDE CONCENTRATES |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0339644A1 (en) * | 1988-04-28 | 1989-11-02 | Messer Griesheim Gmbh | Method for refining silicon metal and ferrosilicon alloys |
WO1995009250A1 (en) * | 1993-09-30 | 1995-04-06 | L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | Process to convert non-ferrous metal such as copper or nickel by oxygen enrichment |
WO1996006195A1 (en) * | 1994-08-24 | 1996-02-29 | Metallgesellschaft Aktiengesellschaft | Process for blowing non-ferrous metal scrap and intermediate products from smelting works |
EP0832987A1 (en) * | 1996-09-18 | 1998-04-01 | Linde Aktiengesellschaft | Lance for blowing oxygen onto liquid metal |
EP2302082A1 (en) * | 2009-09-03 | 2011-03-30 | Linde AG | Method for operating of a converter and apparatus for carrying out the method |
Also Published As
Publication number | Publication date |
---|---|
KR830007855A (en) | 1983-11-07 |
YU283681A (en) | 1984-04-30 |
MX156287A (en) | 1988-08-08 |
BR8107861A (en) | 1982-09-08 |
FI813743L (en) | 1982-06-06 |
YU42003B (en) | 1988-04-30 |
EP0053848B1 (en) | 1984-10-24 |
DE3166865D1 (en) | 1984-11-29 |
ZA817664B (en) | 1982-10-27 |
PL234079A1 (en) | 1982-07-19 |
FI68659B (en) | 1985-06-28 |
IN152960B (en) | 1984-05-12 |
JPS57120626A (en) | 1982-07-27 |
CA1180194A (en) | 1985-01-02 |
EP0053848B2 (en) | 1987-10-14 |
AU542613B2 (en) | 1985-02-28 |
KR890002800B1 (en) | 1989-07-31 |
ES8300871A1 (en) | 1982-11-01 |
MA19349A1 (en) | 1982-07-01 |
US4435211A (en) | 1984-03-06 |
AU7827981A (en) | 1982-06-10 |
FI68659C (en) | 1985-10-10 |
PH19449A (en) | 1986-04-18 |
DE3045992A1 (en) | 1982-07-22 |
ES507717A0 (en) | 1982-11-01 |
JPH0147532B2 (en) | 1989-10-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0053848B1 (en) | Process for injecting gases rich in oxygen into a molten non-ferrous metal bath | |
DE3042222C2 (en) | Process for the reduction of fine-grained metal oxides containing, inter alia, iron oxides, with the recovery of metals that are volatile at the temperature of the iron melt | |
DE1941282A1 (en) | Process for refining steel by remelting it in a plasma arc | |
DE1941760A1 (en) | Method and device for adding additives to a melt | |
DE3220609C2 (en) | ||
EP0118412A2 (en) | Method of carrying out melting, melt-metallurgical and/or reduction-metallurgical processes in a plasma melting furnace as well as an arrangement for carrying out the method | |
DE2521830A1 (en) | METHOD AND DEVICE FOR THERMAL REFINING OF HIGHLY POLLUTED COPPER IN THE MELTED PHASE | |
DE112007001820B4 (en) | Lead slag reduction | |
DE2900676C2 (en) | ||
DE1533891B1 (en) | Method and device for spray refining of carbon-containing metal melts, in particular pig iron melts | |
DE69004054T2 (en) | Method and device for the continuous tapping of metal and slag in the molten state. | |
DE3212100C2 (en) | Method and device for performing pyrometallurgical processes | |
DE860554C (en) | Process for the condensation of zinc | |
DE1026079B (en) | Nozzle for introducing liquids into a reaction chamber | |
DE2645585C3 (en) | Process for the continuous or discontinuous treatment of molten slag containing heavy metal oxide to release valuable metals and / or their compounds | |
EP0045532B1 (en) | Process for the continuous direct smelting of metallic lead from lead materials that contain sulfur | |
EP0012226A1 (en) | Method for treating boron-containing steel | |
DE3920522A1 (en) | Plant for extracting metallic lead from sulphidic concentrate - has divided chamber with ratio of electrothermic section area to that of vessel, to increase extraction and reduce energy use | |
DE69124350T2 (en) | Method for controlling the evolution of metal oxide smoke during the oxygen-induced division of a body containing metal components | |
EP0276032B1 (en) | Instant smelting process for sulfidic ores | |
DE1282867B (en) | Process for the production of ferrophosphorus powder | |
DE1758455C3 (en) | Process for refining alloyed carbonaceous iron melts | |
DE3207024C2 (en) | Process for the concentration of antimony and tin oxides from ores or secondary starting materials and a device suitable therefor | |
DE491625C (en) | Extraction of volatile metals from slag and the like like | |
DE2149407C (en) | Process for melting down metal floated by gas plasmas in a cooled metal gel |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Designated state(s): BE DE FR GB IT SE |
|
17P | Request for examination filed |
Effective date: 19820525 |
|
ITF | It: translation for a ep patent filed | ||
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Designated state(s): BE DE FR GB IT SE |
|
REF | Corresponds to: |
Ref document number: 3166865 Country of ref document: DE Date of ref document: 19841129 |
|
ET | Fr: translation filed | ||
PLBI | Opposition filed |
Free format text: ORIGINAL CODE: 0009260 |
|
26 | Opposition filed |
Opponent name: UNION CARBIDE CORPORATION Effective date: 19850724 |
|
PUAH | Patent maintained in amended form |
Free format text: ORIGINAL CODE: 0009272 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: PATENT MAINTAINED AS AMENDED |
|
27A | Patent maintained in amended form |
Effective date: 19871014 |
|
AK | Designated contracting states |
Kind code of ref document: B2 Designated state(s): BE DE FR GB IT SE |
|
ET3 | Fr: translation filed ** decision concerning opposition | ||
ITF | It: translation for a ep patent filed | ||
ITTA | It: last paid annual fee | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 19930914 Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 19930917 Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 19931025 Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 19931202 Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 19931209 Year of fee payment: 13 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Effective date: 19941111 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Effective date: 19941112 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Effective date: 19941130 |
|
EAL | Se: european patent in force in sweden |
Ref document number: 81201257.3 |
|
BERE | Be: lapsed |
Owner name: METALLGESELLSCHAFT A.G. Effective date: 19941130 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 19941111 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Effective date: 19950731 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Effective date: 19950801 |
|
EUG | Se: european patent has lapsed |
Ref document number: 81201257.3 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |