EP0276032B1 - Instant smelting process for sulfidic ores - Google Patents

Instant smelting process for sulfidic ores Download PDF

Info

Publication number
EP0276032B1
EP0276032B1 EP88200025A EP88200025A EP0276032B1 EP 0276032 B1 EP0276032 B1 EP 0276032B1 EP 88200025 A EP88200025 A EP 88200025A EP 88200025 A EP88200025 A EP 88200025A EP 0276032 B1 EP0276032 B1 EP 0276032B1
Authority
EP
European Patent Office
Prior art keywords
slag
zone
reduction zone
oxidation
oxidation zone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP88200025A
Other languages
German (de)
French (fr)
Other versions
EP0276032A1 (en
Inventor
Peter Dr. Fischer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GEA Group AG
Original Assignee
Metallgesellschaft AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Metallgesellschaft AG filed Critical Metallgesellschaft AG
Priority to AT88200025T priority Critical patent/ATE64760T1/en
Publication of EP0276032A1 publication Critical patent/EP0276032A1/en
Application granted granted Critical
Publication of EP0276032B1 publication Critical patent/EP0276032B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B23/00Obtaining nickel or cobalt
    • C22B23/02Obtaining nickel or cobalt by dry processes
    • C22B23/025Obtaining nickel or cobalt by dry processes with formation of a matte or by matte refining or converting into nickel or cobalt, e.g. by the Oxford process
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B13/00Obtaining lead
    • C22B13/02Obtaining lead by dry processes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B15/00Obtaining copper
    • C22B15/0026Pyrometallurgy
    • C22B15/0028Smelting or converting
    • C22B15/003Bath smelting or converting
    • C22B15/0036Bath smelting or converting in reverberatory furnaces
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B15/00Obtaining copper
    • C22B15/0026Pyrometallurgy
    • C22B15/0028Smelting or converting
    • C22B15/003Bath smelting or converting
    • C22B15/0041Bath smelting or converting in converters
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B15/00Obtaining copper
    • C22B15/0026Pyrometallurgy
    • C22B15/0028Smelting or converting
    • C22B15/0052Reduction smelting or converting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B19/00Obtaining zinc or zinc oxide
    • C22B19/20Obtaining zinc otherwise than by distilling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B5/00General methods of reducing to metals
    • C22B5/02Dry methods smelting of sulfides or formation of mattes

Definitions

  • the invention relates to a process for the continuous direct melting of materials containing sulfidic non-ferrous metals.
  • a melt consisting of a slag phase and a phase rich in non-ferrous metals is located in an oblong lying reactor.
  • the reactor contains an oxidation zone and a reduction zone with nozzles that blow oxygen-containing gases into the melt.
  • the feed is charged to the weld pool and oxidized by the oxygen blown in.
  • the generated non-ferrous metal oxide-rich slag flows into the reduction zone, where carbon-containing reducing agents are blown into the melt.
  • the reduced metal then flows into the oxidation zone in the non-ferrous metal-rich phase.
  • the non-ferrous metal-poor slag phase is drawn off at the end of the reduction zone and the non-ferrous metal-rich phase at the beginning of the oxidation zone. If no metal is to be produced, but a stone, a sulfur-containing substance, eg SO2, is introduced into the melt in the reduction zone. The exhaust will end up deducted from the reduction zone. Before the tapping, the slag can be blown off by blowing in carbon-containing material, non-ferrous metals such as zinc and lead being volatilized, removed in the exhaust gas from the reactor and then separated from the exhaust gas.
  • CA-PS 893 624 discloses a direct method for melting lead sulfides, in which a gradual oxidation of the lead sulfides to molten lead takes place in the oxidation zone.
  • the slag which is already relatively low in lead, is blown in the reduction zone by blowing in hydrocarbons, the zinc content being largely volatilized and removed from the reactor with the exhaust gas.
  • the metallic lead is tapped from a central zone of the reactor between the oxidation zone and the reduction zone. The exhaust gas is drawn off at about the end of the oxidation zone.
  • a slag with a low non-ferrous metal content is extracted from the reduction zone.
  • the exhaust gas is withdrawn from the reduction zone. It is also described that the gas space above the slag phase in the oxidation zone can be separated from the gas space above the slag phase in the reduction zone by a closed partition wall, the partition wall being immersed in the slag phase and leaving underneath free.
  • the oxidation zone is equipped with its own exhaust for the exhaust gas.
  • the SO2-containing gas is withdrawn from the oxidation zone separately from the SO2-free gas from the reduction zone.
  • the partition does not allow the gas to be drawn from one zone through the other zone. As a result, it is not possible to repair or inspect the gas exhaust or downstream units in a zone without cooling this zone.
  • the partition also prevents the slag from flowing out of the oxidation zone into the reduction zone if the passage under the partition is obstructed.
  • the partition also prevents the transfer of volatilized metals from the adjacent part of one zone to the other zone.
  • the invention is the task, in this method of direct smelting of sulfidic materials, a largely separate discharge of the exhaust gases from the oxidation zone and the reduction zone with the possibility of a gas-side connection of the adjacent parts of the oxidation and reduction zone and the emergency outflow of the slag from the To allow oxidation zone and the extraction of flue gases from one zone through the other zone.
  • the oxidation zone can be operated so that only one slag phase is formed, which contains the entire non-ferrous metal content in the form of oxides. It can also be operated in such a way that a slag phase and a phase rich in non-ferrous metals are formed. The slag then contains only part of the non-ferrous metal content in oxidic form.
  • the non-ferrous metal-rich phase can consist of metal, such as lead, or stone, such as copper stone. Oxygen-enriched air or technically pure oxygen are used as the oxygen-containing gases.
  • the reducing agents used in the reduction zone can be solid, gaseous or liquid.
  • the non-ferrous metal-rich phase formed in the reduction zone can be in vapor form, such as zinc and lead vapor, or it can also be molten, such as metallic lead, copper or copper stone.
  • a vaporous phase can also be present in addition to a molten phase.
  • the molten non-ferrous metal-rich phase can be drawn off at any point in the oxidation zone from the beginning to the end or at the beginning of the reduction zone.
  • the slag is withdrawn at the end of the reduction zone.
  • the oxygen-containing gases and the reducing agents are preferably blown into the melt in a known manner through nozzles with several concentric tubes from below, a coolant being blown into the melt to protect the nozzles against erosion.
  • the exhaust gases are suctioned out of the two zones in general at the beginning of the oxidation zone and at the end of the reduction zone, but in principle can also take place at other points. If, for metallurgical reasons, a gas-side connection of the adjacent parts of the two zones is to take place, the zero point of the differential pressure is shifted accordingly. In this way, for example, a non-ferrous metal that is reduced and volatilized at a higher oxidation potential can be separated from a non-ferrous metal that is reduced and volatilized at a lower oxidation potential.
  • the slag at the beginning of the reduction zone can initially be selectively reduced to lead, a part of the lead content of the slag being obtained in vapor form and being drawn into the oxidation zone by means of a corresponding vacuum control.
  • the slag can then be reduced to zinc in the reduction zone, the zinc being produced in vapor form and being sucked off separately from the reduction zone with a minimum lead content.
  • Several oxidation and reduction zones can also be arranged side by side. If a stone, such as copper stone, is produced as the non-ferrous metal-rich phase, then a sulfide or SO2 with a further reducing agent is used as the reducing agent in the reduction zone.
  • the reactor can be rotated about its axis so that the nozzles can be rotated out of the melt.
  • constricted is intended to encompass any narrowing of the cross section of the gas space which leaves an opening in the gas space above the surface of the melt open.
  • the opening can be arranged in the middle of the cross section or laterally. Generally only one opening is provided, but in principle several openings can also be provided.
  • the constriction preferably consists of a wall with a gas passage opening, the wall being immersed in the melt and leaving a step underneath for the melt. The restriction of the position of the zero point of the differential pressure can be carried out particularly well by the constriction.
  • the dam preferably consists of a partition wall which has an opening at the bottom or in the middle of a slot. The dam is expediently designed as a unit with the partition in the gas space.
  • the dam facilitates the metallurgical work in the oxidation and reduction zone.
  • a common opening for the metal phase and the slag phase has the advantage that the metal phase melting at a lower temperature always keeps the opening open and thus also enables the flow of slag through the opening.
  • the primary metal phase generated in the oxidation zone can be subtracted together with a secondary metal phase generated in the reduction zone.
  • a preferred embodiment consists in that the gas passage opening of the constriction lies closely above the surface of the slag bath. This causes the slag to overflow from the oxidation zone into the reduction zone as soon as there is a disturbance in the slag flow under the constriction. This soon overflow prevents a noticeably increased static pressure due to a higher slag layer from occurring in the oxidation zone.
  • a preferred embodiment consists in that at least part of the reduction zone of the reactor is designed with a smaller diameter than the oxidation zone. This ensures good flow of the slag from the oxidation zone into the reduction zone and the molten non-ferrous metal-rich phase from the reduction zone into the oxidation zone without the thickness of the refractory lining having to be different in the two zones.
  • the beginning of the reduction zone is still in the final part of the part of the reactor with a larger diameter when a dam is arranged in the slag bath because this always results in a metal bath in the underflow opening of the dam.
  • a preferred embodiment consists in that the size of the gas passage opening of the constriction has a gas velocity of when sucking in smoke gases below 15 m / sec, preferably 4 to 8 m / sec. If a repair or an inspection has to be carried out on one of the two gas fume cupboards or downstream units, the melt is kept liquid by heating and the resulting flue gases are discharged through the other gas fume cupboard, so that emptying of the reactor and cooling of the lining is not necessary. With this gas velocity, keeping warm is very possible.
  • a wall (3) with a gas passage opening (4) is constricted in the gas space at the boundary between the oxidation zone (1) and the reduction zone (2).
  • the wall (3) also serves as a dam (5) in the slag layer (6).
  • the lower edge of the gas passage opening (4) is just above the surface of the slag layer (6).
  • the dam (5) has a passage opening (7) on the bottom, the upper edge of which lies in the slag layer (6), so that the slag can flow through the passage opening (7).
  • the batch is charged onto the melt via a plurality of loading points (8).
  • Oxygen (9) is blown in from below.
  • a slag phase (6) with a high proportion of non-ferrous metal oxide and a primary non-ferrous metal-rich phase (10) are formed.
  • the slag phase (6) flows through the passage opening (7) into the reduction zone (2).
  • oxygen and reducing agent (11) are blown in from below, the non-ferrous metal oxide content of the slag is reduced and a liquid secondary non-ferrous metal-rich phase (12) is formed, which flows in the direction of the oxidation zone (1).
  • the primary (10) and secondary (11) non-ferrous metal-rich phases are subtracted together at (13).
  • a second non-ferrous metal-rich phase can be formed in the form of volatilized non-ferrous metals, which is drawn off with the SO2-free exhaust gas (14).
  • the non-ferrous metal slag is removed at (15).
  • the SO2-containing exhaust gas from the oxidation zone (1) is drawn off at (16).
  • the advantages of the invention are that, despite the separate withdrawal of the gases from the oxidation zone and reduction zone, a gas-side connection of the adjacent parts of the two zones is possible and, if necessary, vaporized metals can be transferred from the adjacent part of one zone to the other zone. This keeps the process flexible.
  • flue gases from one zone can be led through the other zone. This makes it possible to repair or inspect the gas outlet of one of the two zones or downstream units without cooling the masonry and the melt.
  • the slag from the oxidation zone can always flow into the reduction zone even in the event of faults.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Continuous Casting (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)

Abstract

The smelting is carried out in a reactor with adjacent oxidation and reduction zones, the slag baths of both zones communicating with one another, the materials being charged to the slag bath in the oxidation zone and oxygen-containing gases being blown into the slag bath, a slag having a high content of non-ferrous metal oxides being passed from the oxidation zone into the reduction zone, reducing agents and oxygen-containing gases being blown in the reduction zone into the slag in such quantities that the non-ferrous metal oxides are almost completely reduced and a phase rich in non-ferrous metals is formed, a slag low in non-ferrous metals being taken off from the reduction zone, the gases from the oxidation zone and from the reduction zone being extracted separately, and the reduced pressures in the extraction lines from the oxidation zone and from the reduction zone being adjusted such that the differential pressure is zero approximately at the boundary between the oxidation zone and reduction zone. <IMAGE>

Description

Die Erfindung betrifft ein Verfahren zum kontinuierlichen direkten Schmelzen von sulfidische NE-Metalle enthaltenden Materialien.The invention relates to a process for the continuous direct melting of materials containing sulfidic non-ferrous metals.

Beim direkten Schmelzen von sulfidische NE-Metalle enthaltenden Materialien, wie Konzentrate oder Erze von Blei, Kupfer, Zink, Nickel, Kobalt oder deren Mischungen, erfolgen Röstung, Reduktion und Einschmelzen gleichzeitig in einem Reaktor. Dabei wird entweder das Metall oder ein Stein erzeugt.When materials containing sulfidic nonferrous metals are melted directly, such as concentrates or ores of lead, copper, zinc, nickel, cobalt or mixtures thereof, roasting, reduction and melting take place simultaneously in one reactor. Either the metal or a stone is created.

Ein solches Verfahren ist aus der US-PS 3 941 587 bekannt. In einem länglichen liegenden Reaktor befindet sich eine Schmelze aus einer Schlackenphase und einer NE-Metall-reichen Phase. Der Reaktor enthält eine Oxidationszone und eine Reduktionszone mit Düsen, die sauerstoffhaltige Gase in die Schmelze blasen. In der Oxidationszone wird die Beschickung auf das Schmelzbad chargiert und durch den eingeblasenen Sauerstoff oxidiert. Die erzeugte NE-Metalloxid-reiche Schlacke fließt in die Reduktionszone, wo kohlenstoffhaltige Reduktionsmittel in die Schmelze eingeblasen werden. Das reduzierte Metall fließt dann in der NE-Metall-reichen Phase in die Oxidationszone. Die NE-Metall-arme Schlackenphase wird am Ende der Reduktionszone und die NE-Metall-reiche Phase am Anfang der Oxidationszone abgezogen. Falls kein Metall erzeugt werden soll, sondern ein Stein, wird in der Reduktionszone ein Schwefel enthaltender Stoff, z.B. SO₂, in die Schmelze eingebracht. Das Abgas wird am Ende der Reduktionszone abgezogen. Die Schlacke kann vor dem Abstich durch das Einblasen von kohlenstoffhaltigem Material verblasen werden, wobei NE-Metalle, wie Zink und Blei, verflüchtigt werden, im Abgas aus dem Reaktor abgeführt und dann aus dem Abgas abgeschieden werden.Such a method is known from US Pat. No. 3,941,587. A melt consisting of a slag phase and a phase rich in non-ferrous metals is located in an oblong lying reactor. The reactor contains an oxidation zone and a reduction zone with nozzles that blow oxygen-containing gases into the melt. In the oxidation zone, the feed is charged to the weld pool and oxidized by the oxygen blown in. The generated non-ferrous metal oxide-rich slag flows into the reduction zone, where carbon-containing reducing agents are blown into the melt. The reduced metal then flows into the oxidation zone in the non-ferrous metal-rich phase. The non-ferrous metal-poor slag phase is drawn off at the end of the reduction zone and the non-ferrous metal-rich phase at the beginning of the oxidation zone. If no metal is to be produced, but a stone, a sulfur-containing substance, eg SO₂, is introduced into the melt in the reduction zone. The exhaust will end up deducted from the reduction zone. Before the tapping, the slag can be blown off by blowing in carbon-containing material, non-ferrous metals such as zinc and lead being volatilized, removed in the exhaust gas from the reactor and then separated from the exhaust gas.

Aus der US-PS 4 266 971 ist eine Modifikation dieses Verfahrens bekannt, bei der das Abgas im Gegenstrom zur Strömungsrichtung der Schlackenphase geführt und am Anfang der Oxidationszone abgezogen wird.A modification of this method is known from US Pat. No. 4,266,971, in which the exhaust gas is conducted in countercurrent to the direction of flow of the slag phase and is drawn off at the beginning of the oxidation zone.

Aus der CA-PS 893 624 ist ein direktes Verfahren zum Schmelzen von Bleisulfiden bekannt, bei dem eine graduelle Oxidation der Bleisulfide zu geschmolzenem Blei in der Oxidationszone erfolgt. Die bereits relativ bleiarme Schlacke wird in der Reduktionszone durch Einblasen von Kohlenwasserstoffen verblasen, wobei der Zinkgehalt weitgehend verflüchtigt und mit dem Abgas aus dem Reaktor entfernt wird. Das metallische Blei wird aus einer mittleren Zone des Reaktors zwischen Oxidationszone und Reduktionszone abgestochen. Das Abgas wird etwa am Ende der Oxidationszone abgezogen.CA-PS 893 624 discloses a direct method for melting lead sulfides, in which a gradual oxidation of the lead sulfides to molten lead takes place in the oxidation zone. The slag, which is already relatively low in lead, is blown in the reduction zone by blowing in hydrocarbons, the zinc content being largely volatilized and removed from the reactor with the exhaust gas. The metallic lead is tapped from a central zone of the reactor between the oxidation zone and the reduction zone. The exhaust gas is drawn off at about the end of the oxidation zone.

Bei diesen Verfahren werden die Abgase aus der Oxidationszone und der Reduktionszone gemeinsam abgezogen.In these processes, the exhaust gases from the oxidation zone and the reduction zone are drawn off together.

Aus der GB-PS 1 351 999 ist ein Verfahren zur Gewinnung von Metallen in hoher Reinheit bekannt, dessen Schritte entweder in separaten Reaktoren durchgeführt werden, die schmelzseitig miteinander verbunden sind, oder in einem länglichen Reaktor, dessen Gasraum über der Schmelze durch Trennwände in verschiedene Zonen geteilt wird, aus denen die Abgase getrennt abgezogen werden. Bei der Verarbeitung von sulfidischen Erzen werden die SO₂-haltigen Gase der oxidierenden Einschmelzzone getrennt von den Gasen der weiteren Behandlungszone abgezogen.From GB-PS 1 351 999 a process for the extraction of metals in high purity is known, the steps of which are carried out either in separate reactors which are connected on the melt side, or in an elongated reactor, the gas space above the melt of which is separated by partition walls Zones is divided from the exhaust gases are extracted separately. When processing sulfidic ores, the SO₂-containing gases in the oxidizing melting zone are removed separately from the gases in the further treatment zone.

Aus der DE-OS 36 11 159 ist es bekannt, insbesondere Zinksulfidkonzentrate in einem liegenden Reaktor zu verarbeiten, dessen Gasraum zwischen Oxidationszone und Reduktionszone durch eine Trennwand unterteilt ist. Das Abgas aus der Oxidationszone wird am Anfang der Oxidationszone und das Abgas aus der Reduktionszone wird aus dem ersten Teil der Reduktionszone abgezogen. In der Oxidationszone wird ein Schlackenbad erzeugt, das den Metallinhalt der Charge als Metalloxide enthält. Die Schlacke fließt dann unter der Trennwand her in die Reduktionszone, wo Kohle in das Schlackenbad eingeführt und die Metalloxide reduziert werden. Zink und Blei werden verdampft und aus dem Abgas abgeschieden.From DE-OS 36 11 159 it is known to process zinc sulfide concentrates in particular in a horizontal reactor, the gas space of which is divided between the oxidation zone and the reduction zone by a partition. The exhaust gas from the oxidation zone is withdrawn at the beginning of the oxidation zone and the exhaust gas from the reduction zone is withdrawn from the first part of the reduction zone. A slag bath is generated in the oxidation zone, which contains the metal content of the batch as metal oxides. The slag then flows under the partition into the reduction zone, where coal is introduced into the slag bath and the metal oxides are reduced. Zinc and lead are evaporated and separated from the exhaust gas.

Aus der US-PS 4 414 022 ist ein Verfahren zum Schmelzen von sulfidischen Erzkonzentraten bekannt, bei dem das Schmelzen in einem Reaktor mit nebeneinanderliegender Oxidationszone und Reduktionszone erfolgt, wobei die Schlackenbäder beider Zonen miteinander in Verbindung stehen. In der Oxidationszone ist über dem Schlackenbad ein Schmelzzyklon angeordnet. In dem Schmelzzyklon wird das Erz unter Sauerstoffzufuhr geschmolzen und fällt dann auf das Schlackenbad in der Oxidationszone. Die Schlackenphase fließt aus der Oxidationszone in die Reduktionszone. Dort werden gasförmige Reduktionsmittel und Sauerstoff durch Lanzen auf die Oberfläche des Schlackenbades geblasen. Die entstandene Stein-Phase fließt aus der Reduktionszone in die Oxidationszone und wird dort abgezogen. Aus der Reduktionszone wird eine NE-Metall-arme Schlacke abgezogen. Das Abgas wird aus der Reduktionszone abgezogen. Es wird auch beschrieben, daß der Gasraum über der Schlackenphase in der Oxidationszone durch eine geschlossene Trennwand von dem Gasraum über der Schlackenphase in der Reduktionszone getrennt werden kann, wobei die Trennwand in die Schlackenphase eintaucht und einen Untertritt freiläßt. In diesem Fall wird die Oxidationszone mit einem eigenen Abzug für das Abgas ausgerüstet.From US Pat. No. 4,414,022 a process for melting sulfidic ore concentrates is known, in which the melting takes place in a reactor with an adjacent oxidation zone and reduction zone, the slag baths of both zones being connected to one another. A melting cyclone is arranged in the oxidation zone above the slag bath. In the melting cyclone, the ore is melted with the addition of oxygen and then falls on the slag bath in the oxidation zone. The slag phase flows from the oxidation zone into the reduction zone. There gaseous reducing agents and oxygen are blown onto the surface of the slag bath by lances. The resulting stone phase flows from the reduction zone into the oxidation zone and is drawn off there. A slag with a low non-ferrous metal content is extracted from the reduction zone. The exhaust gas is withdrawn from the reduction zone. It is also described that the gas space above the slag phase in the oxidation zone can be separated from the gas space above the slag phase in the reduction zone by a closed partition wall, the partition wall being immersed in the slag phase and leaving underneath free. In this case, the oxidation zone is equipped with its own exhaust for the exhaust gas.

Bei den beiden letzten Verfahren wird das SO₂-haltige Gas aus der Oxidationszone getrennt von dem SO₂-freien Gas aus der Reduktionszone abgezogen. Die Trennwand erlaubt aber keinen Abzug des Gases aus einer Zone durch die andere Zone. Dadurch ist eine Reparatur oder Inspektion des Gasabzuges oder nachgeschalteter Aggregate einer Zone ohne Abkühlung dieser Zone nicht möglich. Außerdem verhindert die Trennwand auch einen Abfluß der Schlacke aus der Oxidationszone in die Reduktionszone, wenn der Durchtritt unter der Trennwand gestört ist. Die Trennwand verhindert außerdem die Überführung verflüchtigter Metalle aus dem benachbarten Teil der einen Zone in die andere Zone.In the last two processes, the SO₂-containing gas is withdrawn from the oxidation zone separately from the SO₂-free gas from the reduction zone. The partition does not allow the gas to be drawn from one zone through the other zone. As a result, it is not possible to repair or inspect the gas exhaust or downstream units in a zone without cooling this zone. In addition, the partition also prevents the slag from flowing out of the oxidation zone into the reduction zone if the passage under the partition is obstructed. The partition also prevents the transfer of volatilized metals from the adjacent part of one zone to the other zone.

Der erfindung liegt die Aufgabe zungronde, bei die sem Verfahren des direkten Schmelzens von sulfidischen Materialien einen weitgehend getrennten Abzug der Abgase aus der Oxidationszone und der Reduktionszone mit der Möglichkeit einer gasseitigen Verbindung der benachbarten Teile der Oxidations- und Reduktionszone sowie des Notabflusses der Schlacke aus der Oxidationszone und des Abzuges von Rauchgasen aus einer Zone durch die andere Zone zu ermöglichen.The invention is the task, in this method of direct smelting of sulfidic materials, a largely separate discharge of the exhaust gases from the oxidation zone and the reduction zone with the possibility of a gas-side connection of the adjacent parts of the oxidation and reduction zone and the emergency outflow of the slag from the To allow oxidation zone and the extraction of flue gases from one zone through the other zone.

Die Lösung dieser Aufgabe erfolgt erfindungsgemäß dadurch, daß

  • a) das Schmelzen in einem Reaktor mit nebeneinander liegender Oxidationszone und Reduktionszone erfolgt, welche Zonen je ein Schlackenbad mit oberhalb desselben befindlichem Gasraum und einer die Gasräume beider Zonen verbindenden Öffnung aufweisen,
  • b) das Schlackenbad beider Zonen miteinander in Verbindung steht,
  • c) die Materialien in der Oxidationszone auf das Schlackenbad chargiert und in das Schlackenbad sauerstoffhaltige Gase eingeblasen werden,
  • d) eine Schlacke mit hohem Gehalt an NE-Metalloxiden aus der Oxidationszone in die Reduktionszone geleitet wird,
  • e) in der Reduktionszone Reduktionsmittel und sauerstoffhaltige Gase in die Schlacke in solchen Mengen eingeblasen werden, daß die NE-Metalloxide weitestgehend reduziert werden und eine flüssige und/oder dampfförmige NE-Metall-reiche Phase sowie eine NE-Metall-arme Schlacke gebildet werden,
  • f) die NE-Metall-arme Schlacke aus der Reduktionszone abgezogen wird,
  • g) die flüssige und/oder dampf-bzw. gasförmige NE-Metall-reiche Phase aus dem Reaktor entfernt wird,
  • h) die Gase aus der Oxidationszone und aus der Reduktionszone separat abgesaugt werden,
  • i) die Unterdrücke in den Absaugleitungen aus der Oxidationszone und aus der Reduktionszone so eingestellt werden, daß bei Vermeidung eines Gasflusses zwischen den beiden Zonen an der die beiden Zonen verbindenden Öffnung im Gasraum ein Differenzdruck Null herrscht,
  • j) die die Gasräume der Zonen verbindende Öffnung den Querschnitt der Gasräume einschnürt und
  • k) im Schlackenbad zwischen der Oxidationszone und der Reduktionszone ein über das Niveau des Schlackenbades herausreichender Damm mit einer unterhalb dieses Niveaus befindlichen Durchtrittsöffnung für Schlacke und gegebenenfalls flüssige NE-Metall-reiche Phase angeordnet ist.
This object is achieved in that
  • a) the melting takes place in a reactor with an adjacent oxidation zone and a reduction zone, which zones each have a slag bath with a gas space above it and an opening connecting the gas spaces of both zones,
  • b) the slag bath of both zones is connected to one another,
  • c) the materials in the oxidation zone are charged onto the slag bath and oxygen-containing gases are blown into the slag bath,
  • d) a slag with a high content of non-ferrous metal oxides is passed from the oxidation zone into the reduction zone,
  • e) reducing agents and oxygen-containing gases are blown into the slag in such quantities in the reduction zone that the non-ferrous metal oxides are largely reduced and a liquid and / or vaporous non-ferrous metal-rich phase and a non-ferrous metal slag are formed,
  • f) the non-ferrous metal slag is withdrawn from the reduction zone,
  • g) the liquid and / or steam or. gaseous non-ferrous metal-rich phase is removed from the reactor,
  • h) the gases are extracted separately from the oxidation zone and from the reduction zone,
  • i) the negative pressures in the suction lines from the oxidation zone and from the reduction zone are set such that when there is no gas flow between the two zones there is a differential pressure of zero at the opening in the gas space connecting the two zones,
  • j) the opening connecting the gas spaces of the zones constricts the cross section of the gas spaces and
  • k) in the slag bath between the oxidation zone and the reduction zone, a dam extending above the level of the slag bath is arranged with a passage opening for slag and, if appropriate, liquid non-ferrous metal-rich phase located below this level.

Die Oxidationszone kann so betrieben werden, daß nur eine Schlackenphase entsteht, welche den gesamten NE-Metallgehalt in Form von Oxiden enthält. Sie kann auch so betrieben werden, daß eine Schlackenphase und eine NE-Metall-reiche Phase entstehen. Die Schlacke enthält dann nur einen Teil des NE-Metallgehalts in oxidischer Form. Die NE-Metall-reiche Phase kann aus Metall, wie Blei, oder Stein, wie Kupferstein, bestehen. Als sauerstoffhaltige Gase werden sauerstoffangereicherte Luft oder technisch reiner Sauerstoff verwendet. Die in die Reduktionszone eingesetzten Reduktionsmittel können fest, gasförmig oder flüssig sein. Die in der Reduktionszone gebildete NE-Metall-reiche Phase kann dampfförmig sein, wie Zink- und Bleidampf, sie kann auch schmelzflüssig sein, wie metallisches Blei, Kupfer oder Kupferstein. Es kann auch eine dampfförmige Phase neben einer schmelzflüssigen Phase vorliegen. Die schmelzflüssige NE-Metall-reiche Phase kann an jeder Stelle der Oxidationszone von deren Anfang bis zum Ende oder am Anfang der Reduktionszone abgezogen werden. Die Schlacke wird am Ende der Reduktionszone abgezogen. Das Einblasen der sauerstoffhaltigen Gase und der Reduktionsmittel in die Schmelze erfolgt vorzugsweise in bekannter Weise durch Düsen mit mehreren konzentrischen Rohren von unten, wobei zum Schutze der Düsen gegen Abbrand ein Kühlmittel mit in die Schmelze eingeblasen wird. Das Absaugen der Abgase aus den beiden Zonen erfolgt im allgemeinen am Anfang der Oxidationszone und am Ende der Reduktionszone, kann jedoch prinzipiell auch an anderen Stellen erfolgen. Wenn aus metallurgischen Gründen eine gasseitige Verbindung der nebeneinander liegenden Teile der beiden Zonen erfolgen soll, wird der Nullpunkt des Differenzdruckes entsprechend verschoben. Dadurch kann z.B. ein NE-Metall, das bei einem höheren Oxidationspotential reduziert und verflüchtigt wird, von einem NE-Metall getrennt werden, das bei einem niedrigeren Oxidationspotential reduziert und verflüchtigt wird. So kann z.B. die Schlacke am Anfang der Reduktionszone zunächst selektiv auf Blei reduziert werden, wobei ein Teil des Bleigehaltes der Schlacke in Dampfform anfällt und durch entsprechende Unterdruckregelung in die Oxidationszone gezogen wird. Anschließend kann dann die Schlacke in der Reduktionszone auf Zink reduziert werden, wobei das Zink dampfförmig anfällt und mit einem Minimum an Bleigehalt separat aus der Reduktionszone abgesaugt wird. Es können auch mehrere Oxidations- und Reduktionszonen nebeneinander angeordnet werden. Wenn als NE-Metall-reiche Phase ein Stein, wie Kupferstein, erzeugt wird, dann wird in die Reduktionszone als Reduktionsmittel ein Sulfid oder SO₂ mit einem weiteren Reduktionsmittel eingesetzt. Der Reaktor kann um seine Achse gedreht werden, so daß die Düsen aus der Schmelze herausgedreht werden können.The oxidation zone can be operated so that only one slag phase is formed, which contains the entire non-ferrous metal content in the form of oxides. It can also be operated in such a way that a slag phase and a phase rich in non-ferrous metals are formed. The slag then contains only part of the non-ferrous metal content in oxidic form. The non-ferrous metal-rich phase can consist of metal, such as lead, or stone, such as copper stone. Oxygen-enriched air or technically pure oxygen are used as the oxygen-containing gases. The reducing agents used in the reduction zone can be solid, gaseous or liquid. The non-ferrous metal-rich phase formed in the reduction zone can be in vapor form, such as zinc and lead vapor, or it can also be molten, such as metallic lead, copper or copper stone. A vaporous phase can also be present in addition to a molten phase. The molten non-ferrous metal-rich phase can be drawn off at any point in the oxidation zone from the beginning to the end or at the beginning of the reduction zone. The slag is withdrawn at the end of the reduction zone. The oxygen-containing gases and the reducing agents are preferably blown into the melt in a known manner through nozzles with several concentric tubes from below, a coolant being blown into the melt to protect the nozzles against erosion. The exhaust gases are suctioned out of the two zones in general at the beginning of the oxidation zone and at the end of the reduction zone, but in principle can also take place at other points. If, for metallurgical reasons, a gas-side connection of the adjacent parts of the two zones is to take place, the zero point of the differential pressure is shifted accordingly. In this way, for example, a non-ferrous metal that is reduced and volatilized at a higher oxidation potential can be separated from a non-ferrous metal that is reduced and volatilized at a lower oxidation potential. For example, the slag at the beginning of the reduction zone can initially be selectively reduced to lead, a part of the lead content of the slag being obtained in vapor form and being drawn into the oxidation zone by means of a corresponding vacuum control. The slag can then be reduced to zinc in the reduction zone, the zinc being produced in vapor form and being sucked off separately from the reduction zone with a minimum lead content. Several oxidation and reduction zones can also be arranged side by side. If a stone, such as copper stone, is produced as the non-ferrous metal-rich phase, then a sulfide or SO₂ with a further reducing agent is used as the reducing agent in the reduction zone. The reactor can be rotated about its axis so that the nozzles can be rotated out of the melt.

Der Ausdruck "einschnürt" soll jede Verengung des Querschnitts des Gasraums erfassen, die eine Öffnung im Gasraum oberhalb der Oberfläche der Schmelze offenläßt. Die Öffnung kann in der Mitte des Querschnitts oder seitlich angeordnet sein. Im allgemeinen wird nur eine Öffnung vorgesehen, im Prinzip können jedoch auch mehrere Öffnungen vorgesehen werden. Die Einschnürung besteht vorzugsweise aus einer Wand mit einer Gasdurchtrittsöffnung, wobei die Wand in die Schmelze eintaucht und einen Untertritt für die Schmelze freiläßt. Durch die Einschnürung läßt sich die Regelung der Lage des Nullpunktes des Differenzdruckes besonders gut durchführen. Der Damm besteht vorzugsweise aus einer Trennwand, die eine Öffnung am Boden oder in der Mitte einen Schlitz hat. Zweckmäßigerweise ist der Damm als Einheit mit der Trennwand im Gasraum ausgebildet. Durch den Damm wird die metallurgische Arbeit in der Oxidations- und Reduktionszone erleichtert. Eine gemeinsame Öffnung für die Metallphase und die Schlackenphase hat den Vorteil, daß die bei niedrigerer Temperatur schmelzende Metallphase immer ein Offenhalten der Öffnung bewirkt und so auch den Schlackenfluß durch die Öffnung ermöglicht. Außerdem kann die in der Oxidationszone erzeugte Primär-Metallphase mit einer in der Reduktionszone erzeugten Sekundär-Metallphase zusammen abgezogen werden.The term "constricted" is intended to encompass any narrowing of the cross section of the gas space which leaves an opening in the gas space above the surface of the melt open. The opening can be arranged in the middle of the cross section or laterally. Generally only one opening is provided, but in principle several openings can also be provided. The constriction preferably consists of a wall with a gas passage opening, the wall being immersed in the melt and leaving a step underneath for the melt. The restriction of the position of the zero point of the differential pressure can be carried out particularly well by the constriction. The dam preferably consists of a partition wall which has an opening at the bottom or in the middle of a slot. The dam is expediently designed as a unit with the partition in the gas space. The dam facilitates the metallurgical work in the oxidation and reduction zone. A common opening for the metal phase and the slag phase has the advantage that the metal phase melting at a lower temperature always keeps the opening open and thus also enables the flow of slag through the opening. In addition, the primary metal phase generated in the oxidation zone can be subtracted together with a secondary metal phase generated in the reduction zone.

Eine vorzugsweise Ausgestaltung besteht darin, daß die Gasdurchtrittsöffnung der Einschnürung dicht über der Oberfläche des Schlackenbades liegt. Dadurch wird ein baldiger Überfluß der Schlacke aus der Oxidationszone in die Reduktionszone bewirkt, wenn eine Störung des Schlackenflusses unter der Einschnürung hindurch eintritt. Durch diesen baldigen Überfluß wird verhindert, daß in der Oxidationszone ein merklich erhöhter statischer Druck infolge einer höheren Schlackenschicht eintreten kann.A preferred embodiment consists in that the gas passage opening of the constriction lies closely above the surface of the slag bath. This causes the slag to overflow from the oxidation zone into the reduction zone as soon as there is a disturbance in the slag flow under the constriction. This soon overflow prevents a noticeably increased static pressure due to a higher slag layer from occurring in the oxidation zone.

Eine vorzugsweise Ausgestaltung besteht darin, daß mindestens ein Teil der Reduktionszone des Reaktors mit kleinerem Durchmesser ausgebildet ist als die Oxidationszone. Dadurch wird ein gutes Fließen der Schlacke aus der Oxidationszone in die Reduktionszone und der schmelzflüssigen NE-Metall-reichen Phase aus der Reduktionszone in die Oxidationszone erreicht, ohne daß die Dicke der feuerfesten Auskleidung in beiden Zonen unterschiedlich sein muß. Der Anfang der Reduktionszone liegt dabei noch im Schlußteil des Teiles des Reaktors mit größerem Durchmesser, wenn ein Damm im Schlackenbad angeordnet ist, weil dadurch in der Untertrittsöffnung des Dammes immer ein Metallbad steht.A preferred embodiment consists in that at least part of the reduction zone of the reactor is designed with a smaller diameter than the oxidation zone. This ensures good flow of the slag from the oxidation zone into the reduction zone and the molten non-ferrous metal-rich phase from the reduction zone into the oxidation zone without the thickness of the refractory lining having to be different in the two zones. The beginning of the reduction zone is still in the final part of the part of the reactor with a larger diameter when a dam is arranged in the slag bath because this always results in a metal bath in the underflow opening of the dam.

Eine vorzugsweise Ausgestaltung besteht darin, daß die Größe der Gasdurchtrittsöffnung der Einschnürung beim Durchsaugen von Rauchgasen eine Gasgeschwindigkeit von unter 15 m/sec, vorzugsweise 4 bis 8 m/sec, ergibt. Wenn eine Reparatur oder eine Inspektion an einem der beiden Gasabzüge oder nachgeschalteten Aggregaten erfolgen muß, wird die Schmelze durch Beheizung flüssiggehalten und die entstehenden Rauchgase durch den anderen Gasabzug abgeleitet, so daß ein Entleeren des Reaktors und Abkühlen der Auskleidung nicht erforderlich ist. Mit dieser Gasgeschwindigkeit ist ein Warmhalten sehr gut möglich.A preferred embodiment consists in that the size of the gas passage opening of the constriction has a gas velocity of when sucking in smoke gases below 15 m / sec, preferably 4 to 8 m / sec. If a repair or an inspection has to be carried out on one of the two gas fume cupboards or downstream units, the melt is kept liquid by heating and the resulting flue gases are discharged through the other gas fume cupboard, so that emptying of the reactor and cooling of the lining is not necessary. With this gas velocity, keeping warm is very possible.

Die Erfindung wird anhand der Figuren näher erläutert.

  • Fig. 1 ist ein Längsschnitt durch einen Reaktor mit Einschnürung.
  • Fig. 2 zeigt eine Ausgestaltung der Einschnürung als Einheit mit einem Damm in der Schlackenschicht.
The invention is illustrated by the figures.
  • Fig. 1 is a longitudinal section through a reactor with constriction.
  • 2 shows an embodiment of the constriction as a unit with a dam in the slag layer.

In Fig. 1 ist an der Grenze zwischen Oxidationszone (1) und Reduktionszone (2) eine Wand (3) mit Gasdurchtrittsöffnung (4) als Einschnürung im Gasraum angeordnet. Die Wand (3) dient gleichzeitig als Damm (5) in der Schlackenschicht (6). Die Unterkante der Gasdurchtrittsöffnung (4) liegt kurz oberhalb der Oberfläche der Schlackenschicht (6). Der Damm (5) hat am Boden eine Durchtrittsöffnung (7), deren Oberkante in der Schlackenschicht (6) liegt, so daß die Schlacke durch die Durchtrittsöffnung (7) fließen kann. In der Oxidationszone (1) wird über mehrere Beschickungsstellen (8) die Charge auf die Schmelze chargiert. Von unten wird Sauerstoff (9) eingeblasen. Es werden eine Schlackenphase (6) mit hohem Anteil an NE-Metalloxid und eine primäre NE-Metall-reiche Phase (10) gebildet. Die Schlackenphase (6) fließt durch die Durchtrittsöffnung (7) in die Reduktionszone (2). Dort wird von unten Sauerstoff und Reduktionsmittel (11) eingeblasen, der NE-Metalloxidgehalt der Schlacke reduziert und eine flüssige sekundäre NE-Metall-reiche Phase (12) gebildet, die in Richtung Oxidationszone (1) fließt. Die primäre (10) und sekundäre (11) NE-Metall-reiche Phase werden gemeinsam bei (13) abgezogen. In der Reduktionszone kann eine zweite NE-Metall-reiche Phase in Form von verflüchtigten NE-Metallen gebildet werden, die mit dem SO₂-freien Abgas (14) abgezogen wird. Die NE-Metall-arme Schlacke wird bei (15) abgezogen. Das SO₂-haltige Abgas der Oxidationszone (1) wird bei (16) abgezogen.In Fig. 1, a wall (3) with a gas passage opening (4) is constricted in the gas space at the boundary between the oxidation zone (1) and the reduction zone (2). The wall (3) also serves as a dam (5) in the slag layer (6). The lower edge of the gas passage opening (4) is just above the surface of the slag layer (6). The dam (5) has a passage opening (7) on the bottom, the upper edge of which lies in the slag layer (6), so that the slag can flow through the passage opening (7). In the oxidation zone (1), the batch is charged onto the melt via a plurality of loading points (8). Oxygen (9) is blown in from below. A slag phase (6) with a high proportion of non-ferrous metal oxide and a primary non-ferrous metal-rich phase (10) are formed. The slag phase (6) flows through the passage opening (7) into the reduction zone (2). There, oxygen and reducing agent (11) are blown in from below, the non-ferrous metal oxide content of the slag is reduced and a liquid secondary non-ferrous metal-rich phase (12) is formed, which flows in the direction of the oxidation zone (1). The primary (10) and secondary (11) non-ferrous metal-rich phases are subtracted together at (13). In the reduction zone, a second non-ferrous metal-rich phase can be formed in the form of volatilized non-ferrous metals, which is drawn off with the SO₂-free exhaust gas (14). The non-ferrous metal slag is removed at (15). The SO₂-containing exhaust gas from the oxidation zone (1) is drawn off at (16).

Die Vorteile der Erfindung bestehen darin, daß trotz des getrennten Abzuges der Gase aus der Oxidationszone und Reduktionszone eine gasseitige Verbindung der benachbarten Teile der beiden Zonen möglich ist und somit bei Bedarf verdampfte Metalle aus dem benachbarten Teil einer Zone an die andere Zone überführt werden können. Dadurch wird das Verfahren flexibel gehalten. Außerdem können Rauchgase aus einer Zone durch die andere Zone geführt werden. Dadurch ist eine Reparatur oder Inspektion des Gasabzuges einer der beiden Zoner oder nachgeschalteter Aggregate ohne Abkühlung des Mauerwerks und der Schmelze möglich. Weiterhin kann die Schlacke aus der Oxidationszone auch bei Störungen immer in die Reduktionszone fließen.The advantages of the invention are that, despite the separate withdrawal of the gases from the oxidation zone and reduction zone, a gas-side connection of the adjacent parts of the two zones is possible and, if necessary, vaporized metals can be transferred from the adjacent part of one zone to the other zone. This keeps the process flexible. In addition, flue gases from one zone can be led through the other zone. This makes it possible to repair or inspect the gas outlet of one of the two zones or downstream units without cooling the masonry and the melt. Furthermore, the slag from the oxidation zone can always flow into the reduction zone even in the event of faults.

Claims (4)

1. A method for the continuous direct melting of materials containing sulphidic non-ferrous metals, characterized in that
a) the melting takes place in a reactor with an oxidation zone and a reduction zone lying adjacent to each other, which zones each have a slag bath with a gas chamber situated above same and with an opening connecting the gas chambers of the two zones,
b) the slag baths of the two zones are connected with each other,
c) the materials in the oxidation zone are charged onto the slag bath and oxygen-containing gases are blown into the slag bath,
d) a slag with a high content of non-ferrous metallic oxides is directed out of the oxidation zone into the reduction zone,
e) in the reduction zone, reducing agents and oxygen-containing gases are blown into the slag in quantities such that the non-ferrous metallic oxides are reduced to the greatest possible extent and a liquid and/or vaporous phase rich in non-ferrous metal, and also a slag which is deficient in non-ferrous metal are formed,
f) the slag which is deficient in non-ferrous metal is drawn off from the reduction zone,
g) the liquid and/or vaporous or respectively gaseous phase which is rich in non-ferrous metal is removed from the reactor,
h) the gases are drawn off separately from the oxidation zone and from the reduction zone,
i) the underpressures in the drain pipes out of the oxidation zone and out of the reduction zone are set such that, with the avoidance of a gas flow between the two zones at the opening connecting the two zones in the gas chamber a differential pressure of zero prevails,
j) the opening connecting the gas chambers of the zones narrows down the cross-section of the gas chambers and
k) in the slag bath between the oxidation zone and the reduction zone, a dam extending over the level of the slag bath is arranged with a passage opening, situated beneath this level, for slag and if applicable liquid phase rich in non-ferrous metal.
2. A method according to Claim 1, characterized in that the gas passage opening of the narrowed down section lies closely above the surface of the slag bath.
3. A method according to Claim 1 or 2, characterized in that at least a portion of the reduction zone of the reactor is constructed with a smaller diameter than the oxidation zone.
4. A method according to one of Claims 1 to 3, characterized in that the size of the gas passage opening of the narrowed down section, when sucking fumes through, produces a gas velocity of below 15 m/sec, preferably 4 to 8 m/sec.
EP88200025A 1987-01-23 1988-01-11 Instant smelting process for sulfidic ores Expired - Lifetime EP0276032B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT88200025T ATE64760T1 (en) 1987-01-23 1988-01-11 DIRECT SMELTING PROCESS FOR SULPHIDE ORES.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3701846 1987-01-23
DE19873701846 DE3701846A1 (en) 1987-01-23 1987-01-23 DIRECT MELTING PROCESS FOR SULFIDIC ORES

Publications (2)

Publication Number Publication Date
EP0276032A1 EP0276032A1 (en) 1988-07-27
EP0276032B1 true EP0276032B1 (en) 1991-06-26

Family

ID=6319332

Family Applications (1)

Application Number Title Priority Date Filing Date
EP88200025A Expired - Lifetime EP0276032B1 (en) 1987-01-23 1988-01-11 Instant smelting process for sulfidic ores

Country Status (11)

Country Link
US (1) US4895595A (en)
EP (1) EP0276032B1 (en)
JP (1) JPS63192827A (en)
KR (1) KR960008886B1 (en)
AT (1) ATE64760T1 (en)
AU (1) AU595418B2 (en)
CA (1) CA1297681C (en)
DE (2) DE3701846A1 (en)
MA (1) MA21162A1 (en)
MX (1) MX167226B (en)
ZA (1) ZA88454B (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4108687A1 (en) * 1991-03-16 1992-11-05 Metallgesellschaft Ag METHOD FOR REDUCING NE-METAL OXIDES IN SLAGS
JPH0641652A (en) * 1992-01-23 1994-02-15 Shell Internatl Res Maatschappij Bv Method of recovering noble metals from catalyst residues
US5449395A (en) * 1994-07-18 1995-09-12 Kennecott Corporation Apparatus and process for the production of fire-refined blister copper
RU2541239C1 (en) * 2013-07-30 2015-02-10 Федеральное государственное автономное образовательное учреждение высшего профессионального образования "Национальный исследовательский технологический университет "МИСиС" Processing method of iron-containing materials in two-zone furnace

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE747352C (en) * 1939-03-22 1944-09-20 Method of operating a converter
US2769706A (en) * 1948-06-04 1956-11-06 Bolidens Gruv Ab Smelting sulfide ores
CA893624A (en) * 1969-10-27 1972-02-22 J. Themelis Nickolas Direct process for smelting of lead sulphide concentrates to lead
CA938111A (en) * 1970-03-26 1973-12-11 E. Mahin William Production of metals from metalliferous materials
US3941587A (en) * 1973-05-03 1976-03-02 Q-S Oxygen Processes, Inc. Metallurgical process using oxygen
DE2807964A1 (en) * 1978-02-24 1979-08-30 Metallgesellschaft Ag METHOD FOR THE CONTINUOUS CONVERSION OF NON-METAL SULFID CONCENTRATES
US4252560A (en) * 1978-11-21 1981-02-24 Vanjukov Andrei V Pyrometallurgical method for processing heavy nonferrous metal raw materials
FR2444721A1 (en) * 1978-12-22 1980-07-18 Mo I Stali I Splavov Pyrometallurgical treatment of non-ferrous heavy metal ores - in furnace where gas contg. specific amt. of oxygen is blow into slag contg. sulphide(s) and oxide(s)
DE3101369A1 (en) * 1981-01-17 1982-08-26 Klöckner-Humboldt-Deutz AG, 5000 Köln METHOD AND DEVICE FOR PREVENTING FUSIBLE SUBSTANCES LIKE ORE CONCENTRATE
GB2173820B (en) * 1985-04-03 1989-06-28 Cra Services Smelting process

Also Published As

Publication number Publication date
KR880009137A (en) 1988-09-14
JPS63192827A (en) 1988-08-10
CA1297681C (en) 1992-03-24
DE3863360D1 (en) 1991-08-01
EP0276032A1 (en) 1988-07-27
DE3701846A1 (en) 1988-08-04
AU595418B2 (en) 1990-03-29
ZA88454B (en) 1989-09-27
MX167226B (en) 1993-03-10
MA21162A1 (en) 1988-10-01
AU1071788A (en) 1988-07-28
KR960008886B1 (en) 1996-07-05
US4895595A (en) 1990-01-23
ATE64760T1 (en) 1991-07-15

Similar Documents

Publication Publication Date Title
DE2819587A1 (en) PROCEDURE FOR INJECTING GAS INTO A LIQUID METALLURGICAL BATH AND LANCE FOR CARRYING OUT THE PROCEDURE
DE2710970C2 (en) Process for the extraction of raw or blistered copper from sulphidic copper raw material
DE2156041A1 (en) Process for the continuous smelting and wind refining of copper concentrates and apparatus for the same
DE2521830A1 (en) METHOD AND DEVICE FOR THERMAL REFINING OF HIGHLY POLLUTED COPPER IN THE MELTED PHASE
EP0053848B1 (en) Process for injecting gases rich in oxygen into a molten non-ferrous metal bath
EP0276032B1 (en) Instant smelting process for sulfidic ores
DE2716084A1 (en) METHOD FOR EVOLVATING ZINC
DE3022790C2 (en) Process for oxidizing molten low iron metal stone to raw metal
DE3101369A1 (en) METHOD AND DEVICE FOR PREVENTING FUSIBLE SUBSTANCES LIKE ORE CONCENTRATE
DE1483154B1 (en) Apparatus and process for the continuous melting of copper concentrates in direct current and their conversion into metallic copper
DE3140260C2 (en)
DE3304885C2 (en) Device for separating solid and melt particles from the exhaust gases of metallurgical furnaces
DE3639343C2 (en) Process and plant for pyrometallurgical smelting of finely divided materials
EP0045531B1 (en) Process for the continuous direct smelting of metallic lead from sulfidic lead concentrates
DE3115502C2 (en)
DE1224341B (en) Process for refining iron smelting and device for its implementation
DE3437816A1 (en) PROCESS FOR REFINING SULFIDIC CONCENTRATES CONTAINING ARSEN, ANTIMON AND BISMUTH
DE2320548B2 (en) Process for smelting lead
DE2812869C3 (en) Process for the suspension melting of ferrous sulphide concentrate
DE326592C (en) Furnace for the reduction of sulphide ores using iron or copper
DE590505C (en) Process for the extraction of lead, antimony or bismuth
DE3304884A1 (en) METHOD FOR PRODUCING LEAD FROM LEAD SHINE (LEAD SULFIDE)
DE1921184C3 (en) Process for the treatment of copper and / or nickel ores or their concentrates
EP0530893B1 (en) Method for continuously melting metallic lead
DE3638204A1 (en) Process and equipment for the smelting of fusible materials such as ore concentrate, utilising unspent reducing gas from the top-blowing process in the melting cyclone

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE DE FR GB IT NL SE

17P Request for examination filed

Effective date: 19890118

17Q First examination report despatched

Effective date: 19900419

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE DE FR GB IT NL SE

REF Corresponds to:

Ref document number: 64760

Country of ref document: AT

Date of ref document: 19910715

Kind code of ref document: T

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
REF Corresponds to:

Ref document number: 3863360

Country of ref document: DE

Date of ref document: 19910801

ET Fr: translation filed
ITF It: translation for a ep patent filed

Owner name: STUDIO JAUMANN

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19920801

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
EAL Se: european patent in force in sweden

Ref document number: 88200025.0

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19971211

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19971217

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19971223

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19971231

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19980108

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19981217

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990111

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990111

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990112

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990131

BERE Be: lapsed

Owner name: METALLGESELLSCHAFT A.G.

Effective date: 19990131

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19990111

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF THE APPLICANT RENOUNCES

Effective date: 19991030

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050111