EP0053054B1 - Procédé de récupération de l'uranium (VI) présent dans des solutions d'acide phosphorique - Google Patents
Procédé de récupération de l'uranium (VI) présent dans des solutions d'acide phosphorique Download PDFInfo
- Publication number
- EP0053054B1 EP0053054B1 EP81401686A EP81401686A EP0053054B1 EP 0053054 B1 EP0053054 B1 EP 0053054B1 EP 81401686 A EP81401686 A EP 81401686A EP 81401686 A EP81401686 A EP 81401686A EP 0053054 B1 EP0053054 B1 EP 0053054B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- uranium
- process according
- organic solvent
- extraction
- radicals
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 title claims description 96
- 229910000147 aluminium phosphate Inorganic materials 0.000 title claims description 48
- 238000000034 method Methods 0.000 title claims description 26
- 230000008569 process Effects 0.000 title claims description 19
- AAORDHMTTHGXCV-UHFFFAOYSA-N uranium(6+) Chemical compound [U+6] AAORDHMTTHGXCV-UHFFFAOYSA-N 0.000 title claims description 6
- 229960004838 phosphoric acid Drugs 0.000 title 1
- 235000011007 phosphoric acid Nutrition 0.000 title 1
- 229910052770 Uranium Inorganic materials 0.000 claims description 119
- JFALSRSLKYAFGM-UHFFFAOYSA-N uranium(0) Chemical compound [U] JFALSRSLKYAFGM-UHFFFAOYSA-N 0.000 claims description 118
- 238000000605 extraction Methods 0.000 claims description 69
- 239000003960 organic solvent Substances 0.000 claims description 54
- 239000000243 solution Substances 0.000 claims description 38
- 239000002253 acid Substances 0.000 claims description 33
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 claims description 30
- 150000001875 compounds Chemical class 0.000 claims description 29
- -1 alkoxyalkyl radical Chemical class 0.000 claims description 28
- 239000002904 solvent Substances 0.000 claims description 18
- AUONHKJOIZSQGR-UHFFFAOYSA-N oxophosphane Chemical compound P=O AUONHKJOIZSQGR-UHFFFAOYSA-N 0.000 claims description 17
- 229910021529 ammonia Inorganic materials 0.000 claims description 15
- 230000007935 neutral effect Effects 0.000 claims description 15
- ATRRKUHOCOJYRX-UHFFFAOYSA-N Ammonium bicarbonate Chemical compound [NH4+].OC([O-])=O ATRRKUHOCOJYRX-UHFFFAOYSA-N 0.000 claims description 13
- 239000001099 ammonium carbonate Substances 0.000 claims description 13
- 235000012501 ammonium carbonate Nutrition 0.000 claims description 13
- 239000007864 aqueous solution Substances 0.000 claims description 11
- 125000004432 carbon atom Chemical group C* 0.000 claims description 11
- 125000000217 alkyl group Chemical group 0.000 claims description 8
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 claims description 7
- 150000003254 radicals Chemical class 0.000 claims description 7
- ZMBHCYHQLYEYDV-UHFFFAOYSA-N trioctylphosphine oxide Chemical group CCCCCCCCP(=O)(CCCCCCCC)CCCCCCCC ZMBHCYHQLYEYDV-UHFFFAOYSA-N 0.000 claims description 7
- 125000005289 uranyl group Chemical group 0.000 claims description 6
- SYHPANJAVIEQQL-UHFFFAOYSA-N dicarboxy carbonate Chemical compound OC(=O)OC(=O)OC(O)=O SYHPANJAVIEQQL-UHFFFAOYSA-N 0.000 claims description 5
- 150000005840 aryl radicals Chemical class 0.000 claims description 4
- 238000011084 recovery Methods 0.000 claims description 4
- OMLVPEUOCUINNC-UHFFFAOYSA-N 1-(dihexylphosphorylmethoxy)octane Chemical group CCCCCCCCOCP(=O)(CCCCCC)CCCCCC OMLVPEUOCUINNC-UHFFFAOYSA-N 0.000 claims description 3
- 125000003118 aryl group Chemical group 0.000 claims description 2
- 239000003795 chemical substances by application Substances 0.000 claims description 2
- 125000004183 alkoxy alkyl group Chemical group 0.000 claims 1
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 60
- 229910052742 iron Inorganic materials 0.000 description 29
- 150000002903 organophosphorus compounds Chemical class 0.000 description 21
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 15
- 238000005192 partition Methods 0.000 description 15
- 239000000203 mixture Substances 0.000 description 12
- 239000008346 aqueous phase Substances 0.000 description 10
- 239000012071 phase Substances 0.000 description 10
- 239000000047 product Substances 0.000 description 10
- 230000015572 biosynthetic process Effects 0.000 description 9
- 238000006243 chemical reaction Methods 0.000 description 9
- 150000003333 secondary alcohols Chemical class 0.000 description 9
- 238000009434 installation Methods 0.000 description 8
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 7
- 230000002378 acidificating effect Effects 0.000 description 7
- 150000002148 esters Chemical class 0.000 description 7
- 239000012074 organic phase Substances 0.000 description 7
- 238000002360 preparation method Methods 0.000 description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 7
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 6
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 6
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 6
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 6
- 150000003138 primary alcohols Chemical class 0.000 description 6
- 239000011734 sodium Substances 0.000 description 6
- 229910052708 sodium Inorganic materials 0.000 description 6
- DLYUQMMRRRQYAE-UHFFFAOYSA-N tetraphosphorus decaoxide Chemical compound O1P(O2)(=O)OP3(=O)OP1(=O)OP2(=O)O3 DLYUQMMRRRQYAE-UHFFFAOYSA-N 0.000 description 6
- JCMLRUNDSXARRW-UHFFFAOYSA-N trioxouranium Chemical compound O=[U](=O)=O JCMLRUNDSXARRW-UHFFFAOYSA-N 0.000 description 6
- 238000005406 washing Methods 0.000 description 6
- 150000003863 ammonium salts Chemical class 0.000 description 5
- 238000007254 oxidation reaction Methods 0.000 description 5
- 150000003017 phosphorus Chemical class 0.000 description 5
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 4
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 4
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 4
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 239000000284 extract Substances 0.000 description 4
- 230000007062 hydrolysis Effects 0.000 description 4
- 238000006460 hydrolysis reaction Methods 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 230000003647 oxidation Effects 0.000 description 4
- 125000002467 phosphate group Chemical group [H]OP(=O)(O[H])O[*] 0.000 description 4
- XHXFXVLFKHQFAL-UHFFFAOYSA-N phosphoryl trichloride Chemical compound ClP(Cl)(Cl)=O XHXFXVLFKHQFAL-UHFFFAOYSA-N 0.000 description 4
- 239000004254 Ammonium phosphate Substances 0.000 description 3
- 229910019142 PO4 Inorganic materials 0.000 description 3
- 230000009471 action Effects 0.000 description 3
- 229910000148 ammonium phosphate Inorganic materials 0.000 description 3
- 235000019289 ammonium phosphates Nutrition 0.000 description 3
- MNNHAPBLZZVQHP-UHFFFAOYSA-N diammonium hydrogen phosphate Chemical compound [NH4+].[NH4+].OP([O-])([O-])=O MNNHAPBLZZVQHP-UHFFFAOYSA-N 0.000 description 3
- 238000005886 esterification reaction Methods 0.000 description 3
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 3
- 239000010452 phosphate Substances 0.000 description 3
- 239000002244 precipitate Substances 0.000 description 3
- 238000000746 purification Methods 0.000 description 3
- 238000003756 stirring Methods 0.000 description 3
- 230000002195 synergetic effect Effects 0.000 description 3
- ISIJQEHRDSCQIU-UHFFFAOYSA-N tert-butyl 2,7-diazaspiro[4.5]decane-7-carboxylate Chemical compound C1N(C(=O)OC(C)(C)C)CCCC11CNCC1 ISIJQEHRDSCQIU-UHFFFAOYSA-N 0.000 description 3
- 238000005809 transesterification reaction Methods 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- CSNNHWWHGAXBCP-UHFFFAOYSA-L Magnesium sulfate Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 description 2
- UEZVMMHDMIWARA-UHFFFAOYSA-N Metaphosphoric acid Chemical compound OP(=O)=O UEZVMMHDMIWARA-UHFFFAOYSA-N 0.000 description 2
- XYFCBTPGUUZFHI-UHFFFAOYSA-N Phosphine Chemical compound P XYFCBTPGUUZFHI-UHFFFAOYSA-N 0.000 description 2
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 150000007513 acids Chemical class 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 230000005587 bubbling Effects 0.000 description 2
- 239000001569 carbon dioxide Substances 0.000 description 2
- 229910002092 carbon dioxide Inorganic materials 0.000 description 2
- 238000012512 characterization method Methods 0.000 description 2
- 238000012790 confirmation Methods 0.000 description 2
- 238000010908 decantation Methods 0.000 description 2
- CPUDLRLOFJLISR-UHFFFAOYSA-N diethyl(trihydroxy)-$l^{5}-phosphane Chemical compound CCP(O)(O)(O)CC CPUDLRLOFJLISR-UHFFFAOYSA-N 0.000 description 2
- 238000004821 distillation Methods 0.000 description 2
- SNRUBQQJIBEYMU-UHFFFAOYSA-N dodecane Chemical compound CCCCCCCCCCCC SNRUBQQJIBEYMU-UHFFFAOYSA-N 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000032050 esterification Effects 0.000 description 2
- 239000003337 fertilizer Substances 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 2
- 239000003350 kerosene Substances 0.000 description 2
- MPQXHAGKBWFSNV-UHFFFAOYSA-N oxidophosphanium Chemical class [PH3]=O MPQXHAGKBWFSNV-UHFFFAOYSA-N 0.000 description 2
- KJFMBFZCATUALV-UHFFFAOYSA-N phenolphthalein Chemical compound C1=CC(O)=CC=C1C1(C=2C=CC(O)=CC=2)C2=CC=CC=C2C(=O)O1 KJFMBFZCATUALV-UHFFFAOYSA-N 0.000 description 2
- 229930195734 saturated hydrocarbon Natural products 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 159000000000 sodium salts Chemical class 0.000 description 2
- YBBRCQOCSYXUOC-UHFFFAOYSA-N sulfuryl dichloride Chemical compound ClS(Cl)(=O)=O YBBRCQOCSYXUOC-UHFFFAOYSA-N 0.000 description 2
- MDDUHVRJJAFRAU-YZNNVMRBSA-N tert-butyl-[(1r,3s,5z)-3-[tert-butyl(dimethyl)silyl]oxy-5-(2-diphenylphosphorylethylidene)-4-methylidenecyclohexyl]oxy-dimethylsilane Chemical compound C1[C@@H](O[Si](C)(C)C(C)(C)C)C[C@H](O[Si](C)(C)C(C)(C)C)C(=C)\C1=C/CP(=O)(C=1C=CC=CC=1)C1=CC=CC=C1 MDDUHVRJJAFRAU-YZNNVMRBSA-N 0.000 description 2
- DEWLEGDTCGBNGU-UHFFFAOYSA-N 1,3-dichloropropan-2-ol Chemical compound ClCC(O)CCl DEWLEGDTCGBNGU-UHFFFAOYSA-N 0.000 description 1
- YUMNZEWYPUBSQA-UHFFFAOYSA-N 1-(chloromethoxy)octane Chemical compound CCCCCCCCOCCl YUMNZEWYPUBSQA-UHFFFAOYSA-N 0.000 description 1
- DEYGPTFKWXTDDE-UHFFFAOYSA-N 1-(dibutylphosphorylmethoxy)octane Chemical compound CCCCCCCCOCP(=O)(CCCC)CCCC DEYGPTFKWXTDDE-UHFFFAOYSA-N 0.000 description 1
- KMCOLJKZEORYBT-UHFFFAOYSA-N 1-[bis(2-methylpropyl)phosphorylmethoxy]octane Chemical compound CCCCCCCCOCP(=O)(CC(C)C)CC(C)C KMCOLJKZEORYBT-UHFFFAOYSA-N 0.000 description 1
- WPWHSFAFEBZWBB-UHFFFAOYSA-N 1-butyl radical Chemical compound [CH2]CCC WPWHSFAFEBZWBB-UHFFFAOYSA-N 0.000 description 1
- NGNBDVOYPDDBFK-UHFFFAOYSA-N 2-[2,4-di(pentan-2-yl)phenoxy]acetyl chloride Chemical compound CCCC(C)C1=CC=C(OCC(Cl)=O)C(C(C)CCC)=C1 NGNBDVOYPDDBFK-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-L Phosphate ion(2-) Chemical compound OP([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-L 0.000 description 1
- OCBFFGCSTGGPSQ-UHFFFAOYSA-N [CH2]CC Chemical compound [CH2]CC OCBFFGCSTGGPSQ-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 238000010306 acid treatment Methods 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 150000001447 alkali salts Chemical class 0.000 description 1
- 125000003545 alkoxy group Chemical group 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- ZAASRHQPRFFWCS-UHFFFAOYSA-P diazanium;oxygen(2-);uranium Chemical compound [NH4+].[NH4+].[O-2].[O-2].[O-2].[O-2].[O-2].[O-2].[O-2].[U].[U] ZAASRHQPRFFWCS-UHFFFAOYSA-P 0.000 description 1
- NZZIMKJIVMHWJC-UHFFFAOYSA-N dibenzoylmethane Chemical compound C=1C=CC=CC=1C(=O)CC(=O)C1=CC=CC=C1 NZZIMKJIVMHWJC-UHFFFAOYSA-N 0.000 description 1
- 125000003963 dichloro group Chemical group Cl* 0.000 description 1
- SARRNWKIYKZZFU-UHFFFAOYSA-N dihexyl(octoxymethyl)phosphane Chemical compound CCCCCCCCOCP(CCCCCC)CCCCCC SARRNWKIYKZZFU-UHFFFAOYSA-N 0.000 description 1
- 239000003085 diluting agent Substances 0.000 description 1
- 235000011180 diphosphates Nutrition 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- 229960004887 ferric hydroxide Drugs 0.000 description 1
- 150000004820 halides Chemical class 0.000 description 1
- 239000008240 homogeneous mixture Substances 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- IEECXTSVVFWGSE-UHFFFAOYSA-M iron(3+);oxygen(2-);hydroxide Chemical compound [OH-].[O-2].[Fe+3] IEECXTSVVFWGSE-UHFFFAOYSA-M 0.000 description 1
- 159000000003 magnesium salts Chemical class 0.000 description 1
- 229910052943 magnesium sulfate Inorganic materials 0.000 description 1
- 235000019341 magnesium sulphate Nutrition 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 150000007530 organic bases Chemical group 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 150000003016 phosphoric acids Chemical class 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 229910000073 phosphorus hydride Inorganic materials 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 238000004313 potentiometry Methods 0.000 description 1
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 1
- 238000000425 proton nuclear magnetic resonance spectrum Methods 0.000 description 1
- 238000010992 reflux Methods 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 238000002798 spectrophotometry method Methods 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 230000001131 transforming effect Effects 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B60/00—Obtaining metals of atomic number 87 or higher, i.e. radioactive metals
- C22B60/02—Obtaining thorium, uranium, or other actinides
- C22B60/0204—Obtaining thorium, uranium, or other actinides obtaining uranium
- C22B60/0217—Obtaining thorium, uranium, or other actinides obtaining uranium by wet processes
- C22B60/0252—Obtaining thorium, uranium, or other actinides obtaining uranium by wet processes treatment or purification of solutions or of liquors or of slurries
- C22B60/026—Obtaining thorium, uranium, or other actinides obtaining uranium by wet processes treatment or purification of solutions or of liquors or of slurries liquid-liquid extraction with or without dissolution in organic solvents
Definitions
- the present invention relates to a process for recovering uranium (VI) present in solutions of phosphoric acid, in particular in solutions of phosphoric acid obtained from phosphate ores.
- the phosphate ores include significant contents of uranium which, during the attack of these ores by a sulfuric solution, pass into the phosphoric acid solution obtained. Also, it is interesting to recover the uranium present in these solutions which constitute an important additional source of uranium.
- the present invention specifically relates to a process for recovering uranium (VI) using an organic solvent which makes it possible to obtain better uranium extraction rates than the solvents currently known.
- the alkoxyalkyl radical advantageously has from 9 to 23 carbon atoms.
- the acid organophosphorus compound can be constituted by a phosphoric ester of secondary alcohol or by a phosphoric ester of primary alcohol.
- phosphoric esters of primary alcohol these advantageously correspond to the formula: in which R 6 and R 7 which are identical or different, are alkyl or aryl radicals, and n and n ′ which are identical or different, are numbers equal to 2 or 3.
- n and n ' are preferably equal to 2.
- the alkyl radicals R 6 and R 7 have at least 8 carbon atoms to avoid the formation of a third phase during this re-extraction.
- the acid organophosphorus compound can also consist of a phosphoric ester of secondary alcohol corresponding to formula IV: in which R 8 and R 9 , which are identical or different, represent an alkyl or aryl radical, and p and q which can be identical or different, are equal to 1 or 2.
- p and q are equal to 1, because the extracting power of the system increases when the ether-oxide function of the acid organophosphorus compound is close to the phosphate group.
- the radicals R 8 and R 9 preferably have at least 4 carbon atoms to avoid the formation of a third phase during this re-extraction.
- the acid organophosphorus compounds of formula (III) or of formula (IV) used in the process of the invention can be obtained by transesterification or by esterification of a phosphorus derivative with the corresponding alkoxy alcohol, this reaction being optionally followed by oxidation and / or hydrolysis.
- phosphorus derivatives use may be made of a dialkyl phosphorous acid, phosphorus oxychloride or also phosphoric anhydride P 2 0 5 .
- the transesterification reaction with the corresponding alkoxy alcohol is followed by an oxidation reaction then by a hydrolysis to give the corresponding acid organophosphorus compound.
- the oxidation can be carried out by the action of sulfuryl chloride SO 2 Cl 2 and the hydrolysis by the action of sodium hydroxide and by the action of hydrochloric acid.
- the esterification reaction is carried out with the corresponding alkoxy alcohol in the presence of a base, in particular a tertiary organic base, then the product obtained is subjected to a hydrolysis, which leads to the production of a mixture of mono and diacids which are then separated.
- the esterification is carried out with the corresponding alkoxyalcohol, away from humidity, a mixture of mono and diacids which may also contain neutral phosphate and impurities such as pyrophosphates and polymers.
- the alkoxy alcohols used as starting materials for the synthesis of acid organophosphorus compounds can be prepared by reaction of a sodium alcoholate with the dichloro derivative of a secondary alcohol, for example, sodium alcoholate with 1,3-dichloro -propanol-2, according to the following reaction scheme:
- a sodium alcoholate is reacted with the chlorinated derivative of a primary alcohol.
- the neutral phosphine oxide corresponding to the abovementioned formula I preferably comprises at least one alkoxyalkyl radical, for example, an alkoxymethyl radical having from 4 to 12 carbon atoms.
- alkoxyalkyl radicals for example, an alkoxymethyl radical having from 4 to 12 carbon atoms.
- the other radicals are alkyl radicals, these generally have from 4 to 12 carbon atoms, and they are preferably linear.
- neutral phosphine oxides which may be used, mention may be made of di-isobutyl-octoxymethylphosphine oxide, di-n-butyl-octoxymethylphosphine oxide, di-n- oxide pentyl-octoxymethylphosphine, and di-n-hexyl-octoxymethylphosphine oxide (POX 11).
- phosphine oxides can be prepared by reacting a halogenated magnesium salt of secondary phosphine oxide with an organic halide of formula RX in which R represents an alkoxyalkyl radical, for example, a chloromethyl n-octyl ether, as described in French patent 2,346,361 filed on 12/13/73.
- trialkylphosphine oxides in which the alkyl radicals have from 4 to 14 carbon atoms, for example tri-n-octylphosphine oxide (TOPO).
- TOPO tri-n-octylphosphine oxide
- the system of extractants in an inert organic solvent generally constituted for example by a saturated hydrocarbon having at least 8 carbon atoms such as dodecane, or by a mixture of hydrocarbons.
- the concentrations of acid organophosphorus compound and of neutral phosphine oxide are such that the molar ratio of the acid organophosphorus compound to the neutral phosphine oxide is between 1 and 9, and preferably from 2 to 4. .
- the method of the invention can be implemented in any conventional extraction device such as batteries of settling mixers, pulsed columns, centrifugal extractors, etc.
- the uranium extracted in the organic solvent can then be reextracted in an aqueous solution of phosphoric acid optionally containing a reducing agent so as to reduce the uranium VI to uranium IV to facilitate its re-extraction.
- the re-extraction of the uranium is carried out in a re-extraction device comprising at least two stages.
- a re-extraction device comprising at least two stages.
- the ammoniated organic solvent leaving the last re-extraction stage is re-acidified by reacting it with an acid to remove the ammonium in the form of the ammonium salt, and the organic solvent thus re-acidified is reused to carry out the extraction of the 'uranium.
- the acid is chosen from the group comprising sulfuric acid, hydrochloric acid and phosphoric acid.
- the ammoniated organic solvent leaving the last re-extraction stage is re-acidified by reacting it with the phosphoric acid recovered at the end of the uranium extraction.
- This preferred method of re-extracting uranium makes it possible to obtain, at the end of re-extraction, an aqueous uranium solution from which it is easy to recover the uranium directly to standards. defined by the refiners, therefore without additional purification cycle, either in the form of oxide, or in the form of an alkaline or alkaline-earth uranate, with an overall uranium recovery yield greater than 90%.
- the organic solvent which has been re-acidified by treatment with phosphoric acid can be reused for the extraction of uranium, and the ammonium phosphate obtained during the re-acidification treatment of the organic solvent is a marketable product or recyclable in a fertilizer unit for example.
- the re-extraction of uranium is preferably carried out in three stages.
- the organic solvent containing the uranium is circulated from the first to the third stage and an aqueous solution of ammonium carbonate or a mixture of carbon dioxide and ammonia previously dissolved in the is introduced into the third stage.
- water in the form of carbonate representing 50 to 80% of the stoichiometric quantity necessary to neutralize the acid organophosphorus compound of the organic solvent and to transform the uranium into uranyl ammonium tricarbonate.
- This solution circulates from the third stage to the first stage and ammonia in the form of gas or aqueous solution is added to it before entering the first stage, the amount added being such that the pH of the first stage is maintained at a value between 8 and 8.5.
- the ammonia is added in the form of an aqueous solution having a molar ammonia concentration of 5 M to 7.5 M.
- the organic solvent charged with uranium and also containing iron is transformed little by little in contact with ammonia and an ammonium salt and the aqueous phase which moves against the current, is enriched in uranium and in iron, the ammonium carbonate forming with uranium the ammonium uranyl tricarbonate which remains in solution and the iron transforming into ferric hydroxide which precipitates and which can be separated by decantation from the aqueous phase.
- the ammoniated organic solvent is preferably re-acidified by treatment with an acid such as sulfuric acid, hydrochloric acid or phosphoric acid, which makes it possible to recover an organic phase which does not contain more ammonium ions and an aqueous phase containing an ammonium salt.
- an acid such as sulfuric acid, hydrochloric acid or phosphoric acid
- a fraction of the phosphoric acid recovered at the end of the uranium extraction step is used.
- This example relates to the recovery of uranium present in a 6 M phosphoric acid solution containing 1 g / l of uranium (VI) and it illustrates the effect of the temperature and the nature of the extractant system. on the uranium extraction rate.
- the various acid organophosphorus compounds in Table 1 are used with trioctylphosphine oxide (TOPO) or with di-n-hexyl-octoxymethyl phosphine oxide (POX 11).
- TOPO trioctylphosphine oxide
- POX 11 di-n-hexyl-octoxymethyl phosphine oxide
- the two extractants are diluted in hyfrane 120® which is a branched saturated hydrocarbon with an average carbon number equal to 12 and the content of acidic organophosphorus compound in the solvent is 0.5 M and its content of phosphine oxide is 0.125 Mr.
- the extraction is carried out under the following conditions: a volume of the aqueous phosphoric acid solution with a volume of the organic solvent is brought into contact at 23 ° C or 40 ° C for approximately 15 minutes, the two are mechanically stirred phases present, they are separated by centrifugation, then each phase is sampled and analyzed in order to determine its uranium concentration, this being measured by dibenzoyl methane spectrophotometry, the uranium being previously extracted in a trioctylphosphine oxide solution; the partition coefficient D of the uranium is then determined, which is equal to the ratio of the uranium concentration of the organic phase to the uranium concentration of the aqueous phase.
- the partition coefficient of uranium increases with the number of carbon atoms in the alkoxy chains.
- the organic solvent consists of hyfrane 120 containing a mixture of bis hydrogenphosphate (dibutoxy-1,3-propyl-2), that is to say of compound n ° 8 of table 1 and of oxide of di-n-hexyloctoxymethyphosphine (POX 11) to recover uranium from a 6 N phosphoric acid solution containing 1.1 g per liter of uranium VI.
- a total concentration of 0.5 M in extractants in extractants is used and the extraction is carried out under the same conditions as those of Example 1.
- curve (1) of FIG. 1 represents the variations of the partition coefficient D of uranium as a function of the content of acidic organophosphorus compound in the organic solvent.
- curve 2 represents the variations in the partition coefficient D of iron as a function of the compound content, extracts under the same conditions from a 6 M phosphoric acid solution containing 1.1 g / I of iron III.
- This example illustrates the influence of the concentration of phosphoric acid in the aqueous solution on the extraction of uranium VI, at 23 ° C., by means of the diluted extractors systems I, II and II I of table 2 in hyfrane 120.
- the extraction is carried out under the same conditions as those of Example 1.
- FIG. 2 represents the variations in the partition coefficient D of uranium VI as a function of the concentration of phosphoric acid in the aqueous phase.
- curves 1, II and III respectively illustrate the results obtained with the extractant systems 1, II and III in Table 2.
- the partition coefficient D of uranium decreases as a function of the phosphoric acid concentration, but it decreases less significantly with the extractant systems II and III of the invention.
- This example illustrates the influence of temperature on the extraction of uranium VI.
- the extraction is carried out under the same conditions as those of Examples 2 and 3 by varying the temperature from 10 to 60 ° C. and using the extractant systems I to IV of Table 2 diluted in hyfrane 120.
- the results obtained are represented in FIG. 3 where the curves I, II, III and IV relate respectively to the systems I, II, III and IV.
- the uranium is extracted from a phosphoric acid solution 6 M containing 1.06 g / I of uranium VI and 4.70 g / I of iron III, using the extractant system No. III in Table 2 diluted in hyfrane 120 and operating under the same conditions than those of Example 1, but by determining the partition coefficients of uranium VI and iron III after different extraction times.
- Figure 4 represents the evolution of the extraction rate (in%) in the organic phase of uranium (curve 1) and iron (curve 2) as a function of the extraction time (in seconds).
- the uranium is recovered from an industrial phosphoric acid solution containing 27% P 2 0 5 and 130 mg / I in uranium, using as extractant systems I, III and IV of Table 2 diluted in the product sold under the brand Escaid 110, which is a flavored kereosene, with a concentration of 0.5 M in acidic organophosphorus compound and a concentration of 0.125 M in phosphine oxide.
- FIG. 6 also illustrates the results obtained with regard to the extraction of iron as a function of the number of contacts.
- curve 2 represents the evolution of the iron concentration of the organic solvent as a function of the number of contacts
- curve 1 represents the evolution of the uranium concentration of the organic solvent as a function of the number of contacts, when 'The extractant system III of the invention is used.
- the organic solvent thus obtained which contains 798 mg / I of uranium and 775 mg / I of iron is brought into contact with a solution of ammonium carbonate at 140 g / I and 0.5 M in NH 4 0H to re-extract l uranium in solution and separate the iron as hydroxide.
- the organic phase contains only 0.4 mg / I of uranium and 1 mg / I of iron.
- the extractant system No. III extracts more than three times better uranium than the conventional system of the prior art (system No. I) and more than twice better than the system No. IV of the art. prior. Therefore, one can reduce the volume of organic phase and therefore limit the consumption of ammonium carbonate and ammonia during the re-extraction operation.
- the organic solvents used contain the extractant systems I, III, IV or V of Table 2 attached, and a diluent consisting of kerosene known under the trade name ISOPAR L.
- a diluent consisting of kerosene known under the trade name ISOPAR L.
- the phosphine oxide content is 0.125 M and the content of acidic organophosphorus compound is 0.500 M.
- the extraction is carried out by bringing a volume of the aqueous phosphoric acid solution into contact with a volume of the organic solvent at 39 ° C. with stirring for approximately 5 min; the two phases are then separated and then taken and analyzed each to obtain their uranium concentration and their iron concentration and then determine the partition coefficient D of uranium and the partition coefficient D of iron.
- the results obtained are given in table 3, attached.
- the organic solvents containing the extractant system of the invention that is to say the organophosphorus acid compound HBIDIBOPP associated with a phosphinetel oxide which POX 11 or TOPO allow '' obtaining very improved results compared to the extractant systems I and IV of the prior art.
- This example relates to the extraction of uranium contained in industrial phosphoric acid having the same characteristics as that of Example 7, using for the extraction the installation shown in FIG. 7.
- the reference A designates the uranium extraction unit which comprises five extraction stages
- the reference B represents a washing unit for the organic solvent which comprises three stages
- the references C 1 , C 2 and C 3 denote the three stages of uranium re-extraction
- the reference D illustrates the unit for separating uranium
- the reference E denotes the reacidification unit of the organic solvent, which comprises two stages.
- extraction unit A industrial phosphoric acid is introduced via line 1 a after having flocculated and decanted it. It is specified that this acid was subjected beforehand to an oxidation treatment to bring all of the uranium in the hexavalent form, which also brings the iron to the trivalent state.
- extraction unit A the phosphoric acid is brought into contact against the current with an organic solvent introduced via line 3 a.
- This organic solvent comprises a system of extractants consisting of an acidic organophosphorus compound and a neutral phosphine oxide diluted in kerosene known under the trade name ISOPAR L, the concentration of acidic organophosphorus compound in the solvent being 0.5 words ⁇ I -1 and the concentration of phosphine oxide in the organic solvent being 0.125 mol - 1- 1 .
- the phosphoric acid solution circulates in the extraction unit at a flow rate which is maintained at the value of 4 l / h, and the organic solvent circulates against the current in the extraction unit by being introduced at a flow rate of 1.6 I / h for extractant system No. I, 1.0 I / h for extractant system No. IV and 0.54 I / h for extractant system No. III.
- each extraction stage part of the organic solvent leaving this stage is recycled, which makes it possible to increase the volume of organic phase in contact with phosphoric acid in the extraction unit A, all of the stages of which are maintained at 35 ° C.
- the phosphoric acid containing practically no more uranium is discharged via line 1 b and the organic solvent loaded with uranium and iron is discharged via line 3 b.
- This solvent then passes into the washing unit comprising three stages where it is washed with water to remove the phosphoric ions entrained by the solvent.
- the water loaded with phosphoric acid which leaves the top floor of the washing unit is recycled in the phosphoric acid manufacturing plant where it is used for washing or rinsing the installations.
- the organic solvent is introduced via line 3 c into the first re-extraction stage C 1 , then it circulates in the following stages C 2 and C 3 , stages C 1 , C 2 and C 3 being maintained at 40 ° C.
- stages C 2 and C 3 it is brought into contact against the current with a solution of ammonium carbonate at 155 g ⁇ l -1 introduced into the last stage C 3 by line 4 a and in the stage C 1 , it is brought into contact against the current with the carbonate solution coming from stage C 2 and with ammonia at 200 g ⁇ I -1 injected by line 5 into the carbonate solution which enters the first stage C 1 .
- the ammonia flow rate is adjusted using a valve controlled by a pH meter so as to maintain the pH of the first stage C 1 at a value of 8.2.
- the flow rate of the ammonium carbonate solution introduced into the last stage C 3 by line 4 a is adjusted so that it corresponds to 50 to 80% of the stoichiometric quantity necessary to neutralize, by a on the one hand, the organo phosphorus acid compound and transform, on the other hand, the uranium into uranyl tri ammonium carbonate.
- the organic solvent loaded with uranium and iron which first comes into contact with ammonia gradually transforms into a hydrated ammonium salt and the aqueous phase which moves against the current is enriched in uranium and iron, the ammonium carbonate reacting with uranium to form uranyl ammonium tricarbonate which remains in solution and the iron being precipitated in the form of hydroxide which is separated by filtration.
- the aqueous phase containing the uranyl ammonium tricarbonate leaves the first re-extraction stage Ci by line 4b and it is then directed to the separation unit D of the uranium.
- the uranium can be separated from the solution, either in the form of oxide, or in the form of sodium uranate.
- the ammonium uranyl tricarbonate solution is subjected to an air bubbling reactor, at a temperature between 90 and 100 ° C., for approximately 6 hours, then filter the precipitate and wash it with water; after drying at 120 ° C and roasting at around 400 ° C, uranium trioxide is thus obtained.
- the ammonium uranyl tricarbonate solution which has been degassed beforehand by bubbling air around 90 ° C. is neutralized with sodium hydroxide at approximately 80 ° C.
- the uranium is precipitated by adding sodium hydroxide to the solution, operating at a temperature of 80 ° C for 1 hour. After filtration and washing with water at 50 ° C., the sodium uranate is collected which can be subsequently transformed into ammonium diuranate or uranium trioxide.
- the deuranied organic solvent is evacuated by line 3 d and sent to the reacidification purification unit E comprising two stages in which it is treated by means of phosphoric acid introduced by line 1 c, this phosphoric acid constituting a fraction of the phosphoric acid which leaves the extraction unit A via line 1 b.
- the reacidification purification unit E comprising two stages in which it is treated by means of phosphoric acid introduced by line 1 c, this phosphoric acid constituting a fraction of the phosphoric acid which leaves the extraction unit A via line 1 b.
- ammonium phosphate thus recovered can be marketed directly or be used in fertilizer manufacturing units.
Landscapes
- Engineering & Computer Science (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Geology (AREA)
- Manufacturing & Machinery (AREA)
- Environmental & Geological Engineering (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Extraction Or Liquid Replacement (AREA)
- Manufacture And Refinement Of Metals (AREA)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR8024253 | 1980-11-14 | ||
FR8024253A FR2494258A1 (fr) | 1980-11-14 | 1980-11-14 | Procede de recuperation de l'uranium present dans des solutions d'acide phosphorique |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0053054A1 EP0053054A1 (fr) | 1982-06-02 |
EP0053054B1 true EP0053054B1 (fr) | 1985-01-23 |
Family
ID=9247989
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP81401686A Expired EP0053054B1 (fr) | 1980-11-14 | 1981-10-23 | Procédé de récupération de l'uranium (VI) présent dans des solutions d'acide phosphorique |
Country Status (15)
Country | Link |
---|---|
US (1) | US4432946A (xx) |
EP (1) | EP0053054B1 (xx) |
JP (1) | JPS57110324A (xx) |
AU (1) | AU542919B2 (xx) |
BR (1) | BR8107393A (xx) |
CA (1) | CA1188106A (xx) |
DE (1) | DE3168526D1 (xx) |
EG (1) | EG15457A (xx) |
ES (1) | ES8206387A1 (xx) |
FR (1) | FR2494258A1 (xx) |
JO (1) | JO1166B1 (xx) |
MA (1) | MA19328A1 (xx) |
OA (1) | OA06944A (xx) |
YU (1) | YU42740B (xx) |
ZA (1) | ZA817498B (xx) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2596383B1 (fr) * | 1986-03-28 | 1990-10-26 | Cogema | Procede de separation du fer a partir d'une solution organique contenant de l'uranium |
US5188736A (en) * | 1991-08-27 | 1993-02-23 | Institute Of Nuclear Energy Research | Process for the separation and recovery of extractant from spent solvent |
US20110226694A1 (en) * | 2010-03-22 | 2011-09-22 | Battelle Energy Alliance, Llc | Methods of reducing radiotoxicity in aqueous acidic solutions and a reaction system for same |
FR3038326A1 (fr) | 2015-06-30 | 2017-01-06 | Areva Mines | Procede de separation du fer d'une phase organique contenant de l'uranium et procede d'extraction de l'uranium d'une solution aqueuse d'acide mineral contenant de l'uranium et du fer |
FR3069539B1 (fr) | 2017-07-31 | 2019-08-30 | Areva Mines | Composes bifonctionnels a fonction thiophosphine, utiles comme extractants de l'uranium(vi), leurs procedes de synthese et leurs utilisations |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2860031A (en) * | 1956-06-29 | 1958-11-11 | Robert R Grinstead | Process for utilizing organic orthophosphate extractants |
FR1303476A (fr) * | 1960-06-03 | 1962-09-14 | Atomic Energy Commission | Procédé d'extraction liquide-liquide pour la récupération de l'uranium |
IL52756A0 (en) * | 1976-09-10 | 1977-10-31 | Westinghouse Electric Corp | Recovery of uranium from wet process phosphoric acid |
FR2423545A1 (fr) * | 1977-08-25 | 1979-11-16 | Minemet Rech Sa | Procede pour la recuperation de l'uranium contenu dans des solutions phosphatees |
US4243637A (en) * | 1977-10-11 | 1981-01-06 | Occidental Petroleum Company | Uranium recovery from pre-treated phosphoric acid |
IL58726A (en) * | 1978-11-28 | 1982-12-31 | Commissariat Energie Atomique | Recovery of uranium from phosphoric acid solutions |
FR2442796A1 (fr) * | 1978-11-28 | 1980-06-27 | Commissariat Energie Atomique | Procede de recuperation de l'uranium present dans les solutions d'acide phosphorique |
-
1980
- 1980-11-14 FR FR8024253A patent/FR2494258A1/fr active Granted
-
1981
- 1981-10-23 DE DE8181401686T patent/DE3168526D1/de not_active Expired
- 1981-10-23 EP EP81401686A patent/EP0053054B1/fr not_active Expired
- 1981-10-27 AU AU76847/81A patent/AU542919B2/en not_active Ceased
- 1981-10-29 ZA ZA817498A patent/ZA817498B/xx unknown
- 1981-10-30 US US06/316,941 patent/US4432946A/en not_active Expired - Fee Related
- 1981-11-05 YU YU2627/81A patent/YU42740B/xx unknown
- 1981-11-11 MA MA19532A patent/MA19328A1/fr unknown
- 1981-11-11 EG EG659/81A patent/EG15457A/xx active
- 1981-11-12 CA CA000389920A patent/CA1188106A/en not_active Expired
- 1981-11-13 JP JP56182163A patent/JPS57110324A/ja active Pending
- 1981-11-13 ES ES507131A patent/ES8206387A1/es not_active Expired
- 1981-11-13 BR BR8107393A patent/BR8107393A/pt unknown
- 1981-11-14 OA OA57540A patent/OA06944A/xx unknown
-
1982
- 1982-02-18 JO JO19821166A patent/JO1166B1/en active
Also Published As
Publication number | Publication date |
---|---|
YU42740B (en) | 1988-12-31 |
YU262781A (en) | 1983-12-31 |
EG15457A (en) | 1988-10-31 |
JPS57110324A (en) | 1982-07-09 |
MA19328A1 (fr) | 1982-07-01 |
ZA817498B (en) | 1982-10-27 |
CA1188106A (en) | 1985-06-04 |
DE3168526D1 (en) | 1985-03-07 |
ES507131A0 (es) | 1982-08-16 |
BR8107393A (pt) | 1982-08-10 |
ES8206387A1 (es) | 1982-08-16 |
EP0053054A1 (fr) | 1982-06-02 |
JO1166B1 (en) | 1983-11-30 |
US4432946A (en) | 1984-02-21 |
FR2494258B1 (xx) | 1984-11-02 |
AU542919B2 (en) | 1985-03-21 |
AU7684781A (en) | 1982-05-20 |
OA06944A (fr) | 1983-07-31 |
FR2494258A1 (fr) | 1982-05-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0210928B1 (fr) | Nouveaux agents d'extraction et nouveaux propanediamides, leur utilisation pour la récuperation des actinides et/ou des lanthanides et leur procédé de préparation | |
EP0156735B1 (fr) | Procédé de séparation des terres rares par extraction liquide-liquide | |
EP0038764B1 (fr) | Applications à l'échange de cathions de dérivés diphosphoniques, nouveaux dérivés diphosphoniques et leur procédé de fabrication | |
EP0110789B1 (fr) | Procédé de récupération des actinides et/ou des lanthanides présents à l'état trivalent dans une solution aqueuse acide | |
EP0090692B1 (fr) | Procédé de récuperation et de purification d'un acide sulfurique residuaire contenant des sels de titane | |
WO2014139869A1 (fr) | Utilisation de composés à fonctions amide et phosphonate pour extraire l'uranium(vi) de solutions aqueuses d'acide sulfurique, issues notamment de la lixiviation sulfurique de minerais uranifères | |
EP0053054B1 (fr) | Procédé de récupération de l'uranium (VI) présent dans des solutions d'acide phosphorique | |
FR3062128A1 (fr) | N,n-dialkylamides dissymetriques, utiles notamment pour separer l'uranium(vi) du plutonium(iv), leur synthese et leurs utilisations | |
CA1187706A (en) | Process for separating germanium from an aqueous solution | |
WO2019002788A1 (fr) | Carbamides pour la séparation de l'uranium(vi) et du plutonium(iv) sans réduction du plutonium(iv) | |
EP0284503A1 (fr) | Procédé de séparation des terres rares par extraction liquide-liquide | |
FR2684670A1 (fr) | Amides a substituant heterocyclique azote, leur procede de preparation et leur utilisation pour extraire selectivement les actinides (iii) et les separer en particulier des lanthanides (iii). | |
EP0527685B1 (fr) | Procédé pour séparer les actinides des lanthanides par extraction sélective des actinides dans un solvant organique comprenant un propanediamide | |
EP0266272B1 (fr) | Procédé de récupération de composés organophosphorés acides et/ou d'ions organophosphate présents dans une solution aqueuse et son utilisation pour le traitement d'effluents aqueux | |
US4256716A (en) | Process for treating loaded extractant from purification of phosphoric acid by extraction | |
EP0011516B1 (fr) | Procédé pour la récupération de l'uranium contenu dans des composés phosphatés | |
FR2483464A1 (fr) | Procede d'extraction de cobalt a faible teneur en nickel a partir de solutions aqueuses de cobalt et de nickel | |
JP3310728B2 (ja) | 希土類金属のための抽出剤及び希土類金属の分離、精製方法 | |
EP0239501B1 (fr) | Procédé de séparation du fer à partir d'une solution organique contenant de l'uranium | |
FR2459205A2 (fr) | Procede de recuperation de l'uranium present dans une solution d'acide phosphorique | |
EP0251399A1 (fr) | Procédé de séparation ou de récupération de plutonium et plutonium ainsi obtenu | |
Goryunov et al. | α-and β-diphenylphosphorylated secondary alkanols: I. general method of synthesis and extraction properties towards f-elements | |
FR2669348A1 (fr) | Compositions contenant des derives hydroxydiphosphoniques pour l'extraction de cations metalliques. | |
FR2585692A1 (fr) | Procede de recuperation des actinides et/ou des lanthanides par extraction dans un solvant organique contenant un propanediamide | |
CA1336799C (fr) | Procede de traitement hydrometallurgique d'une solution de chlorure d'indium |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Designated state(s): BE DE FR GB IT NL |
|
17P | Request for examination filed |
Effective date: 19821109 |
|
ITF | It: translation for a ep patent filed | ||
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Designated state(s): BE DE FR GB IT NL |
|
REF | Corresponds to: |
Ref document number: 3168526 Country of ref document: DE Date of ref document: 19850307 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Effective date: 19861031 |
|
BERE | Be: lapsed |
Owner name: COMMISSARIAT A L'ENERGIE ATOMIQUE ETABLISSEMENT D Effective date: 19861031 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 19871031 Year of fee payment: 7 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Effective date: 19881023 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Effective date: 19890501 |
|
NLV4 | Nl: lapsed or anulled due to non-payment of the annual fee | ||
GBPC | Gb: european patent ceased through non-payment of renewal fee | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 19890925 Year of fee payment: 9 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Effective date: 19910702 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 19991027 Year of fee payment: 19 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20010629 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |