EP0052220B1 - Method and device for measuring the resistance in a signalling line - Google Patents

Method and device for measuring the resistance in a signalling line Download PDF

Info

Publication number
EP0052220B1
EP0052220B1 EP81108038A EP81108038A EP0052220B1 EP 0052220 B1 EP0052220 B1 EP 0052220B1 EP 81108038 A EP81108038 A EP 81108038A EP 81108038 A EP81108038 A EP 81108038A EP 0052220 B1 EP0052220 B1 EP 0052220B1
Authority
EP
European Patent Office
Prior art keywords
capacitor
signalling line
resistance
series
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP81108038A
Other languages
German (de)
French (fr)
Other versions
EP0052220A2 (en
EP0052220A3 (en
Inventor
Uwe Metzner
Peer Dr.-Ing. Thilo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to AT81108038T priority Critical patent/ATE20982T1/en
Publication of EP0052220A2 publication Critical patent/EP0052220A2/en
Publication of EP0052220A3 publication Critical patent/EP0052220A3/en
Application granted granted Critical
Publication of EP0052220B1 publication Critical patent/EP0052220B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B25/00Alarm systems in which the location of the alarm condition is signalled to a central station, e.g. fire or police telegraphic systems
    • G08B25/01Alarm systems in which the location of the alarm condition is signalled to a central station, e.g. fire or police telegraphic systems characterised by the transmission medium
    • G08B25/018Sensor coding by detecting magnitude of an electrical parameter, e.g. resistance

Definitions

  • the invention relates to a method and a device for measuring the resistance on a signaling line in a hazard alarm system according to the preamble of claim 1.
  • each detector In alarm systems, for example for fire or burglar alarms, several detectors are often connected in series and connected to a control center via a line. Several similar signaling lines are connected to this control center. Each detector has a quiescent resistance, which is changed to an alarm resistance when the detector is actuated. In order to detect the actuation of a detector or a fault on the signaling line in the control center, it is therefore necessary to detect relatively small absolute changes in resistance on a line.
  • the value of the change in resistance can be very different from the total value of the resistance of the signal line. For example, the value of the change in resistance in relation to the total resistance can be very small. This depends on the number of detectors connected in series and the size of the line resistance. This requires a measuring method that can measure and evaluate the relatively small changes in resistance value precisely.
  • a device for determining the alarm trigger location in alarm systems is known.
  • a signaling loop is fed with a constant current source via a series resistor.
  • a voltage proportional to the parallel resistor in question reaches an analog memory via a rectifier, which can be a capacitor.
  • the highest stored voltage value present is a charging voltage of the capacitor proportional to the resistance value of the loop.
  • This analog voltage value is compared with an analog voltage value generated by a staircase voltage generator. In the case of equality, the open contact of the signaling loop is recognized and due to the analog voltage level, which corresponds to a specific stored binary value of a binary counter, the relevant contact of the signaling loop is displayed via a decimal decoding unit.
  • a constant current source is required in order to be able to measure a voltage that is exactly proportional to the resistance value in accordance with the resistance value of the loop on the charging capacitor. Every fluctuation of the voltage source or current source influences the measurement result and leads to inaccuracies. In the case of a large number of signaling contacts on a loop, an exact resistance measurement is necessary in order to be able to precisely determine the relevant signaling contact.
  • the measurement of the analog voltage value at the capacitor does not always lead to exact results because the measurement voltage, which is dependent on the resistance value despite the impressed current, is not linear and is therefore not exactly proportional to the resistance value to be measured.
  • the measuring method should remain unaffected by the supply voltage.
  • this object is achieved in an alarm system described at the outset with the features of the characterizing part of claim 1.
  • this object is achieved with the features of claim 4.
  • the measured variable of the resistance value of the signal line to be measured is thus converted into a time variable proportional to the resistance value, the time being measured. This is done by measuring the charging time of a capacitor that is assigned to the signal line and through which a constant current flows. The time proportional to the resistance to be measured is measured digitally.
  • the capacitor is expediently short-circuited and thus discharged before the measurement begins.
  • a switch or a transistor can be provided, which is connected in parallel to the capacitor.
  • the switch is opened so that the capacitor is charged with the constant current becomes.
  • the charging time of the capacitor is measured by supplying pulses from a clock generator via an AND gate to a downstream counting device for this time. If the capacitor is charged, the AND gate is blocked and no further pulses can be fed to the counting device.
  • the end of the charging time of the capacitor can be determined using a comparison circuit.
  • This comparison circuit has two inputs and one output which emits a stop signal to the AND gate at the end of the charging time of the capacitor. This stop signal is emitted when the capacitor voltage and the line voltage are in a predetermined relationship to one another at the input of the comparison circuit.
  • the resistance value of the respective line can be measured in an advantageous manner by cyclically querying the individual signal line.
  • the measuring device can be designed so that each signal line is assigned its own series resistor. It is also possible to design the measuring device in such a way that a single series resistor is provided, which is then also connected to the individual signal lines during the cyclical interrogation.
  • a device for performing the method is to be explained in more detail below with the aid of circuit examples.
  • FIG. 1 shows a control center Z with a plurality of signaling lines ML1 to MLn.
  • Each signal line ML has a resistor RXI to RXn.
  • RXI resistor
  • M1 to Mn are shown, which are connected in series. If there is a detector, e.g. MI, in the idle state, the detector M1 has an idle resistor RR1. If the detector M1 responds, the detector M1 is switched to the alarm resistor RA1 via the contact K1.
  • a relatively small absolute change in resistance for example RR1-RA1, is to be measured and evaluated in the center Z.
  • the circuit arrangement shows the resistance RX of the signal line ML to be measured.
  • This resistor RX is connected to the supply voltage UV via the series resistor RV.
  • the bonding sensor C is connected to the positive pole (+) of the direct voltage source UV with one electrode and to the collector of the transistor TR with the other electrode and to the first input B3 of the comparator D3.
  • the emitter of the transistor TR is connected via a first resistor RI to the negative pole (-) of the direct voltage source UV.
  • the second input A3 of the comparator D3 is connected to the output of a first amplifier D1. Its first input A1 is connected to the common connection point X of the measuring resistor RX of the signal line ML and the series resistor RV.
  • the second input B1 of the first amplifier D1 is connected to the output of the amplifier D1, which is connected to the negative pole (-) of the direct voltage source UV via the series connection of the two resistors R1 and R2.
  • the common connection point Y of the series connection of the two resistors R1 and R2 leads to the first input A2 of a second amplifier D2.
  • the second input B2 of the second amplifier D2 leads to the emitter of the transistor TR.
  • the output of the second amplifier D2 is connected to the base of the transistor TR.
  • a switch S is connected in parallel with the chargeable capacitor C.
  • the voltage UL on the signal line is in a certain relationship to the voltage UC on the capacitor C and the supply voltage UV.
  • the voltage that is present between the negative pole (-) of the DC voltage source UV and the second input B3 of the comparator D3 is designated UB, the voltage that is present at the first input A3 of the comparator D3 is designated UA. Furthermore, the output of the comparator D3 is routed to the first input of an AND gate G. A clock generator TG is connected to the second input of the AND gate G. The output of the AND gate G leads to a counting device ZV.
  • the capacitor C is discharged.
  • the measurement of the resistance value RX of the line ML is started when the switch S is opened.
  • the capacitor C is charged with the constant current I.
  • the comparator D3 outputs a stop signal STO to the AND gate G. This means that the AND gate G is no longer acted on by a signal, so that the pulses of the clock generator TG can no longer reach the counting device ZV.
  • the charging time T of the capacitor C is directly proportional to the measured value of the resistor RX and is independent of the supply voltage UV. Since the supply voltage UV is in a certain relationship to the line voltage UL and thus to the capacitor voltage UC, the charging time T of the capacitor C can be measured relatively easily with this circuit arrangement.
  • FIG. 3 shows only part of the original circuit according to FIG. 2.
  • the switch S according to FIG. 2 which is connected in parallel to the capacitor C, is replaced by a transistor STR.
  • the transistor STR is connected in parallel with the capacitor C with its collector-emitter circuit.
  • the base of the transistor STR is connected via a further resistor R3 to the negative pole (-) of the supply voltage UM and to an optocoupler OK2.
  • the optocoupler OK2 is used for the electrical isolation of the actual measuring device or measuring circuit from the other evaluation device of the control center. For example, a start signal STA for the measurement can take place via the optocoupler OK2, so that the transistor STR which has short-circuited the capacitor C is then opened.
  • the output signal of the comparator D3 is also passed via a further resistor R4 to a further optocoupler OK1, so that the stop signal STO reaches the downstream AND gate G here too, galvanically isolated. This is followed by the counting device ZV.
  • a measuring point changeover switch MU as shown in FIG. 4, can be provided.
  • the measuring point switch MU is connected in turn to the respective signal line ML1 to MLn, which are symbolized here with the resistors RX1 to RXn.
  • a series resistor RV1 to RVn is assigned to the respective signal lines ML1 to MLn. It is expedient to carry out a cyclical query with a multiplex switching device which is controlled by a microprocessor.
  • the start and stop signals STA, STO are sent from a microprocessor, for example via optocouplers OK1, 2 to the measuring circuit or from the measuring circuit to the microcomputer.

Abstract

1. A method of measuring the resistance in a signalling line of a hazard alarm system, the individual signalling lines (M, L) of which commence from a central control unit (Z) and are each provided with series-connected alarms (M1 to Mn) having a variable resistance value, where a voltage source (UV) is connected to the signalling line (ML) via a series resistor (RV) and a capacitor (C) is charged by a constant current in dependence upon the resistance value (RX) of the signalling line (ML), characterised in that the capacitor (C) is charged by a separate constant current source independent of the current in the signalling line and its charging time (T), which is proportional to the resistance value (RX), is measured in digital form by means of a counting device and a clock pulse generator (TG), the capacitor being discharged before measurement commences.

Description

Die Erfindung betrifft ein Verfahren und eine Vorrichtung zur Widerstandsmessung an einer Meldeleitung in einer Gefahrenmeldeanlage gemäß dem Oberbegriff des Anspruchs 1.The invention relates to a method and a device for measuring the resistance on a signaling line in a hazard alarm system according to the preamble of claim 1.

In Gefahrenmeldeanlagen, beispielsweise für Feuer- oder Einbruchalarm sind häufig mehrere Melder in Reihe geschaltet und über eine Leitung an eine Zentrale angeschlossen. An dieser Zentrale sind mehrere gleichartige Meldeleitungen angeschlossen. Jeder Melder besitzt einen Ruhewiderstand, der bei Betätigung des Melders in einen Alarmwiderstand geändert wird. Um die Betätigung eines Melders oder eine Störung auf der Meldeleitung in der Zentrale zu erkennen, ist es darum nötig, relativ kleine absolute Widerstandsänderungen auf einer Leitung zu erkennen. Dabei kann der Wert der Widerstandsänderung sehr verschieden sein vom Gesamtwert des Widerstandes der Meldeleitung. Beispielsweise kann der Wert der Widerstandsänderung im Verhältnis zum Gesamtwiderstand sehr klein sein. Das hängt von der Anzahl der in Reihe geschalteten Melder und der Größe des Leitungswiderstandes ab. Dazu ist ein Meßverfahren notwendig, das die relativ kleinen Widerstandswertänderungen genau messen und auswerten kann.In alarm systems, for example for fire or burglar alarms, several detectors are often connected in series and connected to a control center via a line. Several similar signaling lines are connected to this control center. Each detector has a quiescent resistance, which is changed to an alarm resistance when the detector is actuated. In order to detect the actuation of a detector or a fault on the signaling line in the control center, it is therefore necessary to detect relatively small absolute changes in resistance on a line. The value of the change in resistance can be very different from the total value of the resistance of the signal line. For example, the value of the change in resistance in relation to the total resistance can be very small. This depends on the number of detectors connected in series and the size of the line resistance. This requires a measuring method that can measure and evaluate the relatively small changes in resistance value precisely.

Bekannt ist, den resultierenden Widerstand einer Meldeleitung mit einer Brückenschaltung zu messen. Dabei ist es aber von Nachteil, daß nur bei kleinen Widerstandsänderungen die Brückenausgangsspannung sich zum Widerstandswert proportional verhält. Deswegen muß die Brücke auf den jeweils vorhandenen Gesamtwiderstand abgeglichen werden. Eine änderung der erforderlichen Leitungsspannung ist dabei nicht möglich. Zur Überwachung der Meldeleitung oder zum Erschweren von Sabotagehandlungen ist es aber in vielen Fällen notwendig, die Spannung der Meldeleitung in vorgegebener Weise zu ändern.It is known to measure the resulting resistance of a signal line using a bridge circuit. However, it is disadvantageous that the bridge output voltage is proportional to the resistance value only in the event of small changes in resistance. Therefore, the bridge must be adjusted to the existing total resistance. It is not possible to change the required line voltage. To monitor the signaling line or to make tampering more difficult, it is in many cases necessary to change the voltage of the signaling line in a predetermined manner.

Ferner ist bekannt, einen konstanten Meßstrom zu verwenden und dadurch eine widerstandsproportionaie Meßspannung zu erhalten. Diese Lösung hat aber den Nachteil, daß eine relativ aufwendige Konstantstromquelle verwendet werden muß. Die auch sicher gegen äußere Fremdspannungen sein soll. Es ist auch bekannt, zur Stromeinprägung einen Vorwiderstand zu verwenden, dabei ist aber die Meßspannung nicht mehr dem Widerstandswert proportional, d.h. die vom Widerstandswert abhängige Meßspannung ist nicht linear.It is also known to use a constant measuring current and thereby to obtain a resistance-proportional measuring voltage. However, this solution has the disadvantage that a relatively complex constant current source must be used. Which should also be safe against external external voltages. It is also known to use a series resistor for current injection, but the measuring voltage is no longer proportional to the resistance value, i.e. the measuring voltage dependent on the resistance value is not linear.

Aus der DE-OS 27 16 506 ist eine Vorrichtung zur Bestimmung des Alarmauslöseortes in Alarmanlagen bekannt. Dort wird eine Meldeschleife über einen Vorwiderstand mit einer Konstantstromquelle gespeist. Beim öffnen eines Kontaktes der Meldeschleife gelangt eine dem betreffenden parallel geschalteten Widerstand proportionale Spannung über einen Gleichrichter an einen Analogspeicher, der ein Kondensator sein kann. Der höchste anstehende gespeicherte Spannungswert ist eine dem Widerstandswert der Schleife proportionale Aufladespannung des Kondensators. Dieser analoge Spannungswert wird mit einem von einem Treppenspannungsgenerator erzeugten analogen Spannungswert verglichen. Bei Gleichheit wird auf den geöffneten Kontakt der Meldeschleife erkannt und aufgrund der analogen Spannungshöhe, die einem bestimmten gespeicherten Binärwert eines Binärzählers entspricht, wird über eine dezimale Decodiereinheit der betreffende Kontakt der Melderschleife angezeigt. Eine derartige Vorrichtung hat aber verschiedene Nachteile. Es ist eine Konstantstromquelle erforderlich, um entsprechend dem Widerstandswert der Schleife am Aufladekondensator eine genau dem Widerstandswert proportionale Spannung messen zu können. Jede Schwankung der Spannungsquelle bzw. Stromquelle beeinflußt das Meßergebnis und führt zu Ungenauigkeiten. Gerade bei einer Vielzahl von Meldekontakten auf einer Schleife ist eine exakte Widerstandsmessung notwendig, um den betreffenden Meldekontakt genau ermitteln zu können. Die Messung des analogen Spannungswertes am Kondensator führt nicht immer zu genauen Ergebnissen, weil die vom Widerstandswert trotz eingeprägten Stroms abhängige Meßspannung nicht linear und somit nicht genau zu dem zu messenden Widerstandswert proportional ist.From DE-OS 27 16 506 a device for determining the alarm trigger location in alarm systems is known. There, a signaling loop is fed with a constant current source via a series resistor. When a contact of the signaling loop is opened, a voltage proportional to the parallel resistor in question reaches an analog memory via a rectifier, which can be a capacitor. The highest stored voltage value present is a charging voltage of the capacitor proportional to the resistance value of the loop. This analog voltage value is compared with an analog voltage value generated by a staircase voltage generator. In the case of equality, the open contact of the signaling loop is recognized and due to the analog voltage level, which corresponds to a specific stored binary value of a binary counter, the relevant contact of the signaling loop is displayed via a decimal decoding unit. However, such a device has various disadvantages. A constant current source is required in order to be able to measure a voltage that is exactly proportional to the resistance value in accordance with the resistance value of the loop on the charging capacitor. Every fluctuation of the voltage source or current source influences the measurement result and leads to inaccuracies. In the case of a large number of signaling contacts on a loop, an exact resistance measurement is necessary in order to be able to precisely determine the relevant signaling contact. The measurement of the analog voltage value at the capacitor does not always lead to exact results because the measurement voltage, which is dependent on the resistance value despite the impressed current, is not linear and is therefore not exactly proportional to the resistance value to be measured.

Aufgabe der Erfindung ist es daher, ein Meßverfahren und eine Vorrichtung zur Durchführung des Verfahrens anzugeben, das bzw. die zur Stromeinprägung einen Vorwiderstand benutzt, wobei der zu messende Widerstandswert in eine Größe umgeformt werden soll, die dem Widerstandswert proportional und in einfacher Weise meßbar ist. Dabei soll das Meßverfahren von der Versorgungsspannung unbeeinflußt bleiben.It is therefore an object of the invention to provide a measuring method and a device for carrying out the method which uses a series resistor for impressing current, the resistance value to be measured being converted into a quantity which is proportional to the resistance value and can be measured in a simple manner . The measuring method should remain unaffected by the supply voltage.

Bezüglich des Verfahrens wird diese Aufgabe bei einer eingangs beschriebenen Meldeanlage mit den Merkmalen des kennzeichnenden Teils des Anspruchs 1 gelöst. Bezüglich der Vorrichtung wird diese Aufgabe mit den Merkmalen des Anspruchs 4 gelöst.With regard to the method, this object is achieved in an alarm system described at the outset with the features of the characterizing part of claim 1. With regard to the device, this object is achieved with the features of claim 4.

Es wird also die Meßgröße des zu messenden Widerstandswerts der Meldeleitung in eine dem Widerstandswert proportionale Zeitgröße umgesetzt, wobei die Zeit gemessen wird. Dies geschieht durch die Messung der Aufladezeit eines Kondensators, der der Meldeleitung zugeordnet ist und von einem konstanten Strom durchflossen wird. Dabei wird die dem zu messenden Widerstand proportionale Zeit digital gemessen.The measured variable of the resistance value of the signal line to be measured is thus converted into a time variable proportional to the resistance value, the time being measured. This is done by measuring the charging time of a capacitor that is assigned to the signal line and through which a constant current flows. The time proportional to the resistance to be measured is measured digitally.

Zweckmäßigerweise wird der Kondensator vor Beginn der Messung kurzgeschlossen und damit entladen. Dazu kann ein Schalter oder ein Transistor vorgesehen werden, der zum Kondensator parallel geschaltet ist. Mit Beginn der Messung wird der Schalter geöffnet, so daß der Kondensator mit dem Konstantstrom geladen wird. Die Aufladezeit des Kondensators wird gemessen, indem für diese Zeit Impulse eines Taktgenerators über ein UND-Glied einer nachgeschalteten Zählvorrichtung zugefürt werden. Ist der Kondensator geladen, so wird das UND-Glied gesperrt und der Zählvorrichtung können keine weiteren Impulse mehr zugeführt werden. Das Ende der Aufladezeit des Kondensators kann mit einer Vergleichsschaltung ermittelt werden. Diese Vergleichsschaltung weist zwei Eingänge und einen Ausgang auf, der zum Ende der Aufladezeit des Kondensators an das UND-Glied ein Stopsignal abgibt. Dieses Stopsignal wird abgegeben, wenn am Eingang der Vergleichsschaltung die Kondensatorspannung und die Leitungsspannung zueinander in einem vorgegebenen Verhältnis stehen.The capacitor is expediently short-circuited and thus discharged before the measurement begins. For this purpose, a switch or a transistor can be provided, which is connected in parallel to the capacitor. At the start of the measurement, the switch is opened so that the capacitor is charged with the constant current becomes. The charging time of the capacitor is measured by supplying pulses from a clock generator via an AND gate to a downstream counting device for this time. If the capacitor is charged, the AND gate is blocked and no further pulses can be fed to the counting device. The end of the charging time of the capacitor can be determined using a comparison circuit. This comparison circuit has two inputs and one output which emits a stop signal to the AND gate at the end of the charging time of the capacitor. This stop signal is emitted when the capacitor voltage and the line voltage are in a predetermined relationship to one another at the input of the comparison circuit.

Mit diesem Meßverfahren kann in vorteilhafter Weise der Widerstandswert der jeweiligen Leitung durch zyklische Abfrage der einzelnen Meldeleitung gemessen werden. Dabei kann die Meßvorrichtung so ausgestaltet sein, daß jeder Meldeleitung ein eigener Vorwiderstand zugeordnet ist. Es ist auch möglich, die Meßvorrichtung so zu gestalten, daß ein einziger Vorwiderstand vorgesehen ist, der dann bei der zyklischen Abfrage jeweils mit an die einzelnen Meldeleitungen angeschaltet wird.With this measuring method, the resistance value of the respective line can be measured in an advantageous manner by cyclically querying the individual signal line. The measuring device can be designed so that each signal line is assigned its own series resistor. It is also possible to design the measuring device in such a way that a single series resistor is provided, which is then also connected to the individual signal lines during the cyclical interrogation.

Anhand von Schaltbeispielen soll im folgenden eine Vorrichtung zur Durchführung des Verfahrens is einzelnen näher erläutert werden.A device for performing the method is to be explained in more detail below with the aid of circuit examples.

Es zeigenShow it

  • Fig. 1 eine prinzipielle Melderanordnung in Reihenschaltung, die über Meldeleitungen an der Zentrale angeschlossen sind,1 shows a basic detector arrangement in series connection, which are connected via signal lines to the control center,
  • Fig. 2 eine Schaltungsanordnung einer Meßvorrichtung zur Messung der widerstandsproportionalen Aufladezeit des Kondensators,2 shows a circuit arrangement of a measuring device for measuring the resistance-proportional charging time of the capacitor,
  • Fig. 3 einen Teil der Schaltung nach Fig. 2, in der über Optokoppler das Start- und das Stopsignal an die Meßvorrichtung gegeben wird,3 shows a part of the circuit according to FIG. 2, in which the start and stop signals are sent to the measuring device via optocouplers,
  • Fig. 4 einen Meßstellenumschalter für eine zyklische Abfrage der jeweiligen Meldeleitung.Fig. 4 shows a measuring point switch for a cyclical query of the respective message line.

Die Fig. 1 zeigt eine Zentrale Z mit mehreren Meldeleitungen ML1 bis MLn. Jede Meldeleitung ML besitzt einen Widerstand RXI bis RXn. In der Meldeleitung ML1 sind einzelne Melder M1 bis Mn dargestellt, die in Reihe geschaltet sind. Befindet sich ein Melder, z.B. MI, im Ruhezustand, so hat der Melder M1 einen Ruhewiderstand RR1. Spricht der Melder M1 an, so wird über den Kontakt K1 der Melder M1 auf den Alarmwiderstand RA1 umgeschaltet. Bei der Abfrage soll eine relativ kleine absoluts Widerstandsänderung, beispielsweise RR1 - RA1 in der Zentrale Z gemessen und ausgewertet werden.1 shows a control center Z with a plurality of signaling lines ML1 to MLn. Each signal line ML has a resistor RXI to RXn. In the message line ML1 individual detectors M1 to Mn are shown, which are connected in series. If there is a detector, e.g. MI, in the idle state, the detector M1 has an idle resistor RR1. If the detector M1 responds, the detector M1 is switched to the alarm resistor RA1 via the contact K1. When querying, a relatively small absolute change in resistance, for example RR1-RA1, is to be measured and evaluated in the center Z.

In Fig.2 ist sine Vorrichtung zur Durchführung dieses Widsrstandsmeßverfahrens dargestellt. Die Schaltungsanordnungzeigt den zu messenden Widerstand RX der Meldeleitung ML. Dieser Widerstand RX ist über den Vorwiderstand RV an der Versorgungsspannung UV angeschlossen. Der Bondensator C ist mit einer Elektrode am positiven Pol (+) der Gleichspannungsquelle UV und mit der anderen Elektrode am Kollektor des Transistors TR und am ersten Eingang B3 des Komparators D3 angeschlossen. Der Emitter des Transistors TR ist über einen ersten Widerstand RI am Minuspol (-) der Gleichspannungsquelle UV angeschlossen. Der zweite Eingang A3 des Komparators D3 ist mit dem Ausgang eines ersten Verstärkers D1 verbunden. Dessen erster Eingang A1 ist mit dem gemeinsamen Anschlußpunkt X des Meßwiderstandes RX der Meldeleitung ML und des Vorwiderstandes RV verbunden. Der zweite Eingang B1 des ersten Verstärkers D1 ist auf den Ausgang des Verstärkers D1 geführt, der Über die Reihenschaltung der beiden Widerständs R1 und R2 an den Minuspol (-) der Gleichspannungsquelle UV geführt ist. Der gemeinsame Anschlußpunkt Y der Reihenschaltung der beiden Widerständs R1 und R2 führt auf den ersten Eingang A2 eines zweiten Verstärkers D2. Der zweite Eingang B2 des zweiten Verstärkers D2 führt zum Emitter des Transistors TR. Der Ausgang des zweiten Verstärkers D2 ist mit der Basis des Transistors TR verbunden. Ferner ist dem aufladbaren Kondensator C ein Schalter S parallelgeschaltet. Die Spannung UL an der Meldeleitung steht in einem bestimmten Verhältnis zur Spannung UC am Kondensator C und zur Versorgungsspannung UV. Die Spannung, die zwischen dem Minuspol (-) der Gleichspannungsquelle UV und dem zweiten Eingang B3 des Komparators D3 ansteht, ist mit UB bezeichnet, die Spannung, die am ersten Eingang A3 des Komparators D3 ansteht, ist mit UA bezeichnet. Ferner ist der Ausgang des Komparators D3 auf den ersten Eingang eines UND-Gliedes G geführt. Am zweiten Eingang des UND-Gliedes G ist ein Taktgenerator TG angeschlossen. Der Ausgang des UND-Gliedes G führt auf eine Zählvorrichtung ZV.2 shows its device for carrying out this resistance measuring method. The circuit arrangement shows the resistance RX of the signal line ML to be measured. This resistor RX is connected to the supply voltage UV via the series resistor RV. The bonding sensor C is connected to the positive pole (+) of the direct voltage source UV with one electrode and to the collector of the transistor TR with the other electrode and to the first input B3 of the comparator D3. The emitter of the transistor TR is connected via a first resistor RI to the negative pole (-) of the direct voltage source UV. The second input A3 of the comparator D3 is connected to the output of a first amplifier D1. Its first input A1 is connected to the common connection point X of the measuring resistor RX of the signal line ML and the series resistor RV. The second input B1 of the first amplifier D1 is connected to the output of the amplifier D1, which is connected to the negative pole (-) of the direct voltage source UV via the series connection of the two resistors R1 and R2. The common connection point Y of the series connection of the two resistors R1 and R2 leads to the first input A2 of a second amplifier D2. The second input B2 of the second amplifier D2 leads to the emitter of the transistor TR. The output of the second amplifier D2 is connected to the base of the transistor TR. Furthermore, a switch S is connected in parallel with the chargeable capacitor C. The voltage UL on the signal line is in a certain relationship to the voltage UC on the capacitor C and the supply voltage UV. The voltage that is present between the negative pole (-) of the DC voltage source UV and the second input B3 of the comparator D3 is designated UB, the voltage that is present at the first input A3 of the comparator D3 is designated UA. Furthermore, the output of the comparator D3 is routed to the first input of an AND gate G. A clock generator TG is connected to the second input of the AND gate G. The output of the AND gate G leads to a counting device ZV.

Wird nun vor Beginn der Messung der Schalter S geschlossen, so wird der Kondensator C entladen. Die Messung des Widerstandswertes RX der Leitung ML wird mit dem öffnen des Schalters S gestartet. Dabei wird der Kondensator C mit dem Konstantstrom I geladen. Zu dem Zeitpunkt, zu dem die Spannung UA am ersten Komparatoreingang A3 gleich groß der Spannung UB am zweiten Eingang B3 des Komparators D3 ist, ist der Kondensator C aufgeladen, und der Komparator D3 gibt ein Stopsignal STO an das UND-Glied G ab. Das heißt, das UND-Glied G ist von keinem Signal mehr beaufschlagt, so daß die Impulse des Taktgenerators TG nicht mehr in die Zählvorrichtung ZV gelangen können.If the switch S is now closed before the start of the measurement, the capacitor C is discharged. The measurement of the resistance value RX of the line ML is started when the switch S is opened. The capacitor C is charged with the constant current I. At the time when the voltage UA at the first comparator input A3 is equal to the voltage UB at the second input B3 of the comparator D3, the capacitor C is charged and the comparator D3 outputs a stop signal STO to the AND gate G. This means that the AND gate G is no longer acted on by a signal, so that the pulses of the clock generator TG can no longer reach the counting device ZV.

Bei einfacher Darstellung und unter Voraussetzung idealer Bauelemente gelten folgende Beziehungen:The following relationships apply to a simple representation and provided ideal components:

Figure imgb0001
Figure imgb0001
Figure imgb0002
Figure imgb0002
Figure imgb0003
Figure imgb0003

Wird die Aufladezeit des Kondensators C mit T bezeichnet, so gilt:

  • LT = O.UC
  • Damit ergibt die Aufladezeit T des Kondensators C
    Figure imgb0004
If the charging time of the capacitor C is designated T, the following applies:
  • LT = O.UC
  • This results in the charging time T of the capacitor C.
    Figure imgb0004

Das heißt, die Aufladezeit T des Kondensators C ist direkt proportional dem Meßwert des Widerstandes RX und unabhängig von der Versorgungsspannung UV. Da die Versorgungsspannung UV in einem bestimmten Verhältnis zur Leitungsspannung UL und damit zur Kondensatorspannung UC steht, kann mit dieser Schaltungsanordnung die Aufladezeit T des Kondensators C verhältnismäßig einfach gemessen werden. Dabei muß an den Eingängen A3 und B3 des Komparators C3 nur die Bedingung der Spannungsgleichheit erfüllt sein, d.h. UA = UB, wie sich aus den oben dargestellten Beziehungen leicht veranschaulichen läßt.That is, the charging time T of the capacitor C is directly proportional to the measured value of the resistor RX and is independent of the supply voltage UV. Since the supply voltage UV is in a certain relationship to the line voltage UL and thus to the capacitor voltage UC, the charging time T of the capacitor C can be measured relatively easily with this circuit arrangement. At the inputs A3 and B3 of the comparator C3, only the condition of voltage equality has to be fulfilled, i.e. UA = UB, as can be easily illustrated from the relationships shown above.

Eine vorteilhafte Weiterbildung der Schaltungsanordnung ist in Fig. 3 dargestellt, die nur einen Teil der ursprünglichen Schaltung gemäß Fig. 2 zeigt. Hier ist der Schalter S gemäß Fig. 2, der dem Kondensator C parallelgeschaltet ist, durch einen Transistor STR ersetzt. Der Transistor STR ist mit seinem Kollektor-Emitterkreis dem Kondensator C parallelgeschaltet. Die Basis des Transistors STR ist über einen weiteren Widerstsnd R3 an den Minuspol (-) der Versorgungsspannung UM angeschlossen und an einem Optokoppler OK2. Der Optokoppler OK2 dient zur galvanischen Trennung der eigentlichen Meßvorrichtung bzw, Meßschaltung von der Übrigen Auswerteeinrichtung der Zentrale. Beispielsweise kann ein Startsignal STA für die Messung über den Optokoppler OK2 erfolgen, so daß dann der Transistor STR, der den Kondensator C kurzgeschlossen hat, geöffnet wird. Es ist auch das Ausgangssignal des Komparators D3 über einen weiteren Widerstand R4 an einen weiteren Optokoppler OK1 geführt, so daß auch hier, galvanisch getrennt, das Stopsignal STO an das nachgeordnete UND-Glied G gelangt. Diesem ist die Zählvorrichtung ZV nachgeschaltet.An advantageous development of the circuit arrangement is shown in FIG. 3, which shows only part of the original circuit according to FIG. 2. Here, the switch S according to FIG. 2, which is connected in parallel to the capacitor C, is replaced by a transistor STR. The transistor STR is connected in parallel with the capacitor C with its collector-emitter circuit. The base of the transistor STR is connected via a further resistor R3 to the negative pole (-) of the supply voltage UM and to an optocoupler OK2. The optocoupler OK2 is used for the electrical isolation of the actual measuring device or measuring circuit from the other evaluation device of the control center. For example, a start signal STA for the measurement can take place via the optocoupler OK2, so that the transistor STR which has short-circuited the capacitor C is then opened. The output signal of the comparator D3 is also passed via a further resistor R4 to a further optocoupler OK1, so that the stop signal STO reaches the downstream AND gate G here too, galvanically isolated. This is followed by the counting device ZV.

Ein besonderer Vorteil einer solchen Widerstandsmeßanordnung ergibt sich, wenn diese Meßanordnung nur einmal in einer Zentrale vorgesehen ist und nacheinander in rascher Folge die Widerstandswerte der jeweiligen Meldeleitung mißt. Dazu kann ein Meßstellenumschalter MU, wie er in Fig. 4 dargestellt ist, vorgesehen sein. Der Meßstellenumschalter MU wird der Reihe nach an die jeweiligen Meldeleitung ML1 bis MLn, die hier mit den Widerständen RX1 bis RXn symbolisiert sind, angeschlossen. Den jeweiligen Meldeleitungen ML1 bis MLn ist jeweils ein Vorwiderstand RV1 bis RVn zugeordnet. Zweckmäßigerweise wird man eine zyklische Abfrage mit einer Multiplexschalteinrichtung vornehmen, die von einem Mikroprozessor gesteuert wird. Ebenso werde von einem Mikroprozessor die Start- und Stopsignale STA, STO, beispielsweise über Optokoppler OK1, 2 an die Meßschaltung bzw. von der Meßschaltung an den Mikrocomputer gegeben.A particular advantage of such a resistance measuring arrangement results if this measuring arrangement is provided only once in a control center and measures the resistance values of the respective signal line in rapid succession. For this purpose, a measuring point changeover switch MU, as shown in FIG. 4, can be provided. The measuring point switch MU is connected in turn to the respective signal line ML1 to MLn, which are symbolized here with the resistors RX1 to RXn. A series resistor RV1 to RVn is assigned to the respective signal lines ML1 to MLn. It is expedient to carry out a cyclical query with a multiplex switching device which is controlled by a microprocessor. Likewise, the start and stop signals STA, STO are sent from a microprocessor, for example via optocouplers OK1, 2 to the measuring circuit or from the measuring circuit to the microcomputer.

Claims (6)

1. A method of measuring the resistance in a signalling line of a hazard alarm system, the individual signalling lines (M, L) of which commence from a central control unit (Z) and are each provided with series-connected alarms (M1 to Mn) having a variable resistance value, where a voltage source (UV) is connected to the signalling line (ML) via a series resistor (RV) and a capacitor (C) is charged by a constant current in dependence upon the resistance value (RX) of the signalling line (ML), characterised in that the capacitor (C) is charged by a separate constant current source independent of the current in the signalling line. and its charging time (T), which is proportional to the resistance value (RX), is measured in digital form by means of a counting device and a clock pulse generator (TG), the capacitor being discharged before measurement commences.
2. A method as claimed in Claim 1, characterised in that the capacitor (C) is connected to the supply voltage (UV) via a transistor (TR). and is short-circuited before a measurement commences by a parallel-connected switching element (S; STR) that is opened when the measurement commences and that during the charging time (T) Pulses of the clock-pulse generator (TG) are fed via an AND-gate (G) to the subsequently-connected counting device, and that the end of the charging time (T) of the capacitor (C) is established by a comparator circuit (T3) which emits an output signal (STO) to the AND-gate (G) at a given ratio of the capacitor voltage (UC) to the voltage (UL) of the signalling line (ML).
3. A method as claimed in Claim 1 or 2, characterised in that ihe resisiance value (RX) of ihe signalling line (ML) in question is measured by a cyclic interrogation of the individual signalling lines (ML1 io MLn), where each signalling line (ML) is assigned iis own series resisior (RV).
4. A device for the implementation of the method claimed in Claim 1 or 2, characterised in that the resistance (RX) of the signalling line (ML) is connected to the d.c. voliage supply source (UV) in series w ith a series resisior (RV), that the chargeable capacitor (C) has one electrode connected to the positive pole (+) of the d.c. voltage source (UV) and the other electrode to the collector of a transistor (TR) and a first input (B3) of a comparator (D3), that the emitter of the transisior (TR) is connected via a first resistor (R1) to the negative pole (-) of the d.c. voltage source (UV), that the second input (A3) of the comparator (D3) is connected to the output of a first amplifier (D1) whose input (A1) is connected to the common connection point (X) of the resistance (RX) to be measured, the signalling line (ML) and the series resistor (RV), and whose output is connected via the series arrangement of two resistors (R1 and R2) to the negative pole (-) of the d.c. voltage source (UV), and that a second amplifier (D2) has its input (A2) connected two resistors (R1 and R2) and is connected by its output to the base of the transistor (TR), that the capacitor (C) is connected in parallel with a switching element (S), that the output of the comparator (D3) is connected to the first input of a AND-gate (G) and a clock-pulse generator (TG) is connected to the second input thereof, and that the second output of the AND-gate (G) is connected to a counting device (ZV).
5. A device as claimed in Claim 4, characterised in that the switching element (S) is a switching transistor (STR) which can be acted upon by a start signal (STA).
6. A device as claimed in Claim 4 or 5, characterised in that the output of the comparator (D3) is connected via a first optocoupler (OK1) to the AND-gate (G). and that the switching transistor (STR) can be acted upon by a start signal (STA) via a second opto-coupler (OK2).
EP81108038A 1980-11-17 1981-10-07 Method and device for measuring the resistance in a signalling line Expired EP0052220B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT81108038T ATE20982T1 (en) 1980-11-17 1981-10-07 METHOD AND DEVICE FOR MEASURING RESISTANCE ON A SIGNALING LINE.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3043357A DE3043357C2 (en) 1980-11-17 1980-11-17 Method and device for measuring resistance on a signal line
DE3043357 1980-11-17

Publications (3)

Publication Number Publication Date
EP0052220A2 EP0052220A2 (en) 1982-05-26
EP0052220A3 EP0052220A3 (en) 1982-09-29
EP0052220B1 true EP0052220B1 (en) 1986-07-23

Family

ID=6117002

Family Applications (1)

Application Number Title Priority Date Filing Date
EP81108038A Expired EP0052220B1 (en) 1980-11-17 1981-10-07 Method and device for measuring the resistance in a signalling line

Country Status (3)

Country Link
EP (1) EP0052220B1 (en)
AT (1) ATE20982T1 (en)
DE (1) DE3043357C2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2138187B (en) * 1983-04-08 1986-09-10 Morrison John M Burglar alarm system
EP0529139B1 (en) * 1991-08-30 1996-04-24 Siemens Aktiengesellschaft Binary data transmission method in an alarm signalling system
EP0529140B1 (en) * 1991-08-30 1996-11-06 Siemens Aktiengesellschaft Binary data transmission method in an alarm signalling system
DE10051329C2 (en) 2000-10-10 2003-12-11 Job Lizenz Gmbh & Co Kg Alarm system
DE102005029271B4 (en) * 2005-06-23 2008-12-04 Nokia Siemens Networks Gmbh & Co.Kg Method and device for determining the leakage resistance of at least one wire of a multi-core subscriber line in a communication network
CN110927465B (en) * 2019-11-26 2022-09-02 深圳供电局有限公司 Direct current resistance measuring circuit and device
CN113433391B (en) * 2021-06-18 2023-02-03 哈尔滨工业大学(深圳) Circuit, method, system and storage medium for realizing remote voltage accurate control

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE402660B (en) * 1970-11-12 1978-07-10 Securitas Int Ab FIREPLACE FACILITY
US3916405A (en) * 1973-03-07 1975-10-28 Motohiro Gotanda System for supervision of rooms or buildings
DE2716506A1 (en) * 1977-04-14 1978-10-19 Dieter Eberhard Location of triggered sensor in alarm system - by measuring peak voltage at end of line of series connected sensor contacts having parallel connected resistors

Also Published As

Publication number Publication date
ATE20982T1 (en) 1986-08-15
EP0052220A2 (en) 1982-05-26
DE3043357A1 (en) 1982-06-03
EP0052220A3 (en) 1982-09-29
DE3043357C2 (en) 1985-01-17

Similar Documents

Publication Publication Date Title
DE3612664C2 (en)
EP0042501B1 (en) Device for the transmission of measured values in a fire warning system
EP0173833A2 (en) Circuit and process to measure and to digitize a resistor
EP0052220B1 (en) Method and device for measuring the resistance in a signalling line
DE1288632B (en) Analog / digital converter with an integrating amplifier
DE2809596A1 (en) Circuit detecting earth faults in two=wire signal line - has resistor connected to each battery terminal and earthed in turns
DE2935335A1 (en) DC alarm signalling system - has two parallel lines connecting series of units, with terminal impedance and memory to record impedance at various times
EP0127163A1 (en) Fault recognition circuit for parallel-load feeding-power supply devices
CH660927A5 (en) MONITORING SYSTEM.
DE2626899B2 (en) Method and device for checking the accuracy of an analog-digital converter
EP1849223B1 (en) Device for inductive direct current detection and temperature response compensation of the converter permeability by adapting the frequency of the impressed alternating current
EP0295593B1 (en) Individual identification
DE3027398C2 (en) Electric display device
DE4224266C1 (en) Monitoring device for several electrical switches
DE3225106C2 (en) Process and device for the automatic query of the detector measured value and the detector recognition in a hazard alarm system
DE3500848C2 (en) Method and circuit arrangement for checking the functions of telephone subscriber connection circuits
DE3225081A1 (en) METHOD AND DEVICE FOR AUTOMATICALLY INQUIRING THE DETECTOR MEASUREMENT VALUE AND DETECTOR DETECTION IN A DANGER DETECTING SYSTEM
DE3436844A1 (en) Circuit arrangement for monitoring the continuity of measurement circuits
DE3344363A1 (en) Circuit arrangement for feeding a resistance-type sensor
EP0212045A2 (en) Adaptation of a display or evaluation device to a sensor
DE2547746A1 (en) DEVICE WITH A SENSOR UNIT FOR GENERATING A SEQUENCE OF VOLTAGE VALUES AND AN AVERATING UNIT
EP0185175B1 (en) Method for the identification transmission of the detectors in a risk-signalling system
DE3220014C2 (en)
DE2938970C2 (en) Circuit arrangement for preventing the disadvantageous effect of alternating voltage components in the detection of the switching state of subscriber lines in telephone exchanges
DE1499334C3 (en) Circuit arrangement for generating an output signal corresponding to the square root of the product of two electrical signals

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19811007

AK Designated contracting states

Designated state(s): AT BE CH FR GB IT NL SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Designated state(s): AT BE CH FR GB IT NL SE

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH FR GB IT LI NL SE

REF Corresponds to:

Ref document number: 20982

Country of ref document: AT

Date of ref document: 19860815

Kind code of ref document: T

ET Fr: translation filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19861003

Year of fee payment: 6

ITF It: translation for a ep patent filed

Owner name: STUDIO JAUMANN

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19861031

Year of fee payment: 6

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Effective date: 19871007

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19871008

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19871031

Ref country code: CH

Effective date: 19871031

Ref country code: BE

Effective date: 19871031

BERE Be: lapsed

Owner name: SIEMENS A.G. BERLIN UND MUNCHEN

Effective date: 19871031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19880501

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
GBPC Gb: european patent ceased through non-payment of renewal fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19880630

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19881118

EUG Se: european patent has lapsed

Ref document number: 81108038.1

Effective date: 19880707