EP0050969A1 - Poudre d'acier allié - Google Patents
Poudre d'acier allié Download PDFInfo
- Publication number
- EP0050969A1 EP0050969A1 EP19810305004 EP81305004A EP0050969A1 EP 0050969 A1 EP0050969 A1 EP 0050969A1 EP 19810305004 EP19810305004 EP 19810305004 EP 81305004 A EP81305004 A EP 81305004A EP 0050969 A1 EP0050969 A1 EP 0050969A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- powder
- alloy
- silicon
- phosphorus
- final product
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000843 powder Substances 0.000 title claims abstract description 26
- 229910000851 Alloy steel Inorganic materials 0.000 title claims abstract description 6
- 229910045601 alloy Inorganic materials 0.000 claims abstract description 30
- 239000000956 alloy Substances 0.000 claims abstract description 30
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims abstract description 22
- 229910052742 iron Inorganic materials 0.000 claims abstract description 11
- 229910052698 phosphorus Inorganic materials 0.000 claims abstract description 10
- 239000011574 phosphorus Substances 0.000 claims abstract description 10
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 10
- 239000010703 silicon Substances 0.000 claims abstract description 10
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims abstract description 9
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims abstract description 8
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 5
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 5
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 4
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 claims abstract description 3
- 229910052750 molybdenum Inorganic materials 0.000 claims abstract description 3
- 239000011733 molybdenum Substances 0.000 claims abstract description 3
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims abstract 2
- 229910052804 chromium Inorganic materials 0.000 claims abstract 2
- 239000011651 chromium Substances 0.000 claims abstract 2
- 239000000203 mixture Substances 0.000 claims description 7
- 238000005245 sintering Methods 0.000 claims description 6
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 claims 1
- 238000005260 corrosion Methods 0.000 abstract description 14
- 230000007797 corrosion Effects 0.000 abstract description 14
- 229910001220 stainless steel Inorganic materials 0.000 abstract description 6
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 abstract description 2
- 229910052748 manganese Inorganic materials 0.000 abstract description 2
- 239000011572 manganese Substances 0.000 abstract description 2
- 238000012986 modification Methods 0.000 abstract description 2
- 230000004048 modification Effects 0.000 abstract description 2
- 239000012467 final product Substances 0.000 description 18
- 239000012255 powdered metal Substances 0.000 description 16
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 9
- 238000000034 method Methods 0.000 description 8
- 239000000047 product Substances 0.000 description 7
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 5
- 239000000314 lubricant Substances 0.000 description 4
- 238000004663 powder metallurgy Methods 0.000 description 3
- 239000010935 stainless steel Substances 0.000 description 3
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 239000007791 liquid phase Substances 0.000 description 2
- 238000005461 lubrication Methods 0.000 description 2
- PMVSDNDAUGGCCE-TYYBGVCCSA-L Ferrous fumarate Chemical compound [Fe+2].[O-]C(=O)\C=C\C([O-])=O PMVSDNDAUGGCCE-TYYBGVCCSA-L 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 238000000889 atomisation Methods 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C33/00—Making ferrous alloys
- C22C33/02—Making ferrous alloys by powder metallurgy
- C22C33/0257—Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements
- C22C33/0278—Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements with at least one alloying element having a minimum content above 5%
- C22C33/0285—Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements with at least one alloying element having a minimum content above 5% with Cr, Co, or Ni having a minimum content higher than 5%
Definitions
- the present invention provides a corrosion resistant alloy steel powder and a method of producing final products using the same. More specifically, the alloy powder is a modification of a type 300 series stainless steel, with increased percentages of silicon and phosphorus. The alloy powder is useful for producing fully dense metal products by powder metallurgy techniques.
- Type 300 series stainless steels are common stainless steels used in numerous industrial applications. In attempting to make fully dense products from the atomized powder of the alloys of this type of stainless steel using powder metallurgy techniques, it is known that powder alloys of the typical compositions of the alloy series, i.e. type 304 and type 316, are difficult to sinter to full density.
- the present invention provides a high alloy steel powder useful in forming fully dense, corrosion resistant products by powder metallurgy techniques. A method of producing final products from the steel powder is also provided.
- the typical composition of the type 300 series stainless steel is changed to provide additional silicon and phosphorus.
- the invention provides an alloy steel powder containing, by weight: the balance being essentially iron.
- the difference between the solidus and liquidus temperatures is increased to greater than 25°F (14°C) by the addition of the silicon andphosphorus, and sintering can be commercially performed within the temperature range.
- the additional silicon is usually added in a pre-alloy operation prior to atomization of the molten alloy to form a powder.
- the phosphorus can be added in the pre-alloy operation, but can also be added in an ad-mix operation. In such an ad-mix operation, the phosphorus is added in powder form to the alloy powder, usually in the form of ferro-phosphorus powder.
- the nickel content of the alloys is preferably about 12%.
- the silicon content may for example be 2-3% and is preferably about 3%.
- the phosphorus content is preferably 0.08-0.1%.
- the maximum carbon content of the alloys is typically about 0.1%, and if desired carbon, manganese and molybdenum can be absent from the compositions.
- the powdered metal was blended with about 1% by weight Acrawax (Trademark) for die lubrication purposes. Any similar lubricant may also be used.
- the sample was compacted in a die at 50 TSI (7047 Kg/cm 2 ), the lubricant was removed in a burn off process and then the compacted sample was vacuum sintered at 2420°F (1327°C) for 90 minutes.
- the corrosion rate of the final product was 0.1 inch per year (0.25 cm/year).
- the corrosion test was performed according to practice B of ASTM A 262.
- the product was also found to be rust free in a 5% salt fog environment according to ASTM B 117-63.
- the final products can be water quenched to improve corrosion resistance, ductility, toughness and other properties.
- the final product when water quenched from a solution treatment temprature of 2100°F (1150°C) has an elongation of 40% and an unnotched impact strength of greater than 120 ft-lb (163 joules).
- the corrosion rate of the final product was 0.04 in/yr (1 mm/yr) in boiling sulfuric acid according to practice B of ASTM A 262.
- Another iron base alloy that was water atomized and screened at -88 mesh to provide a powdered metal had the following initial analysis by weight:
- the powdered metal was compacted and sintered in a manner similar to Example 1.
- the final product had properties similar to the final product in Example 1, except that elongation improved to 26%.
- the corrosion rate was 0.047 in/yr (1.2 mm/yr).
- Another iron base alloy that was water atomized and screened at -88 mesh to provide a powdered metal had the following initial analysis by weight:
- the powdered metal was blended with about 1% by weight Acrawax (Trademark) for die lubrication purposes. Any similar lubricant may also be used.
- the sample was compacted in a die at 50 TSI (7047 Kg/cm 2 ), the lubricant was removed in a burn off process and then the compacted sample was vacuum sintered at 2430°F (1332°C) for 90 minutes.
- Another iron base alloy that was water atomized and screened at -88 mesh to provide a powdered metal had the following initial analysis by weight:
- the powdered metal was compacted and sintered in a manner similar to that set forth in Example 1.
- the final product had properties similar to the final product in Example 1, except that the corrosion rate was 0.05 in/yr (1.27 mm/yr).
- Another iron base alloy that was water atomized and screened at -88 mesh to provide a powdered metal had the following initial analysis by weight:
- the powdered metal was compacted and sintered in a manner similar to that set forth in Example 1.
- the final product had properties similar to the final product in Example 1, except that the corrosion rate was 0.037 in/yr (0.94 mm/yr).
- Another iron base alloy that was atomized and screened at -88 mesh to provide a powdered metal had the following initial analysis by weight:
- the powdered metal was compacted and sintered in a manner similar to that set forth in Example 1.
- the final product had properties similar to the final product in Example 1, except that the corrosion rate was 0.049 in/yr (1.25 mm/yr).
- Another iron base alloy that was water atomized and screened at -88 mesh to provide a powdered metal had the following initial analysis by weight:
- Example 1 The powdered metal was compacted and sintered in a manner similar to that set forth in Example 1.
- the final product had properties similar to the final product in Example 1.
- Another iron base alloy that was water atomized and screened at -88 mesh to provide a powdered metal had the following initial analysis by weight:
- the powdered metal was compacted and sintered in a manner similar to that set forth in Example 1.
- the final product had properties similar to the final product in Example 1, except that the corrosion rate was 0.10 in/yr (2.5 mm/yr).
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Powder Metallurgy (AREA)
- Manufacture Of Metal Powder And Suspensions Thereof (AREA)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US20052780A | 1980-10-24 | 1980-10-24 | |
US200527 | 1988-05-31 |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0050969A1 true EP0050969A1 (fr) | 1982-05-05 |
EP0050969B1 EP0050969B1 (fr) | 1984-07-04 |
Family
ID=22742085
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP19810305004 Expired EP0050969B1 (fr) | 1980-10-24 | 1981-10-23 | Poudre d'acier allié |
Country Status (8)
Country | Link |
---|---|
EP (1) | EP0050969B1 (fr) |
JP (1) | JPS5798659A (fr) |
BR (1) | BR8106856A (fr) |
CA (1) | CA1193891A (fr) |
DE (1) | DE3164598D1 (fr) |
ES (1) | ES8300872A1 (fr) |
IN (1) | IN153975B (fr) |
MX (1) | MX156202A (fr) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002100581A1 (fr) * | 2001-06-13 | 2002-12-19 | Höganäs Ab | Produits en acier inoxydable a densite elevee et procede de preparation correspondant |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2012653A1 (fr) * | 1968-07-10 | 1970-03-20 | Minnesota Mining & Mfg | |
FR2183069A1 (fr) * | 1972-05-02 | 1973-12-14 | Hoeganaes Ab | |
FR2382506A1 (fr) * | 1977-03-02 | 1978-09-29 | Bosch Gmbh Robert | Alliage ferreux, fritte, a haute resistance |
-
1981
- 1981-10-16 CA CA000388061A patent/CA1193891A/fr not_active Expired
- 1981-10-22 JP JP16798381A patent/JPS5798659A/ja active Granted
- 1981-10-23 BR BR8106856A patent/BR8106856A/pt unknown
- 1981-10-23 DE DE8181305004T patent/DE3164598D1/de not_active Expired
- 1981-10-23 EP EP19810305004 patent/EP0050969B1/fr not_active Expired
- 1981-10-23 ES ES506504A patent/ES8300872A1/es not_active Expired
- 1981-10-24 IN IN1187/CAL/81A patent/IN153975B/en unknown
- 1981-10-26 MX MX18980581A patent/MX156202A/es unknown
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2012653A1 (fr) * | 1968-07-10 | 1970-03-20 | Minnesota Mining & Mfg | |
FR2183069A1 (fr) * | 1972-05-02 | 1973-12-14 | Hoeganaes Ab | |
FR2382506A1 (fr) * | 1977-03-02 | 1978-09-29 | Bosch Gmbh Robert | Alliage ferreux, fritte, a haute resistance |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002100581A1 (fr) * | 2001-06-13 | 2002-12-19 | Höganäs Ab | Produits en acier inoxydable a densite elevee et procede de preparation correspondant |
CN1330444C (zh) * | 2001-06-13 | 2007-08-08 | 赫加奈斯公司 | 高密度不锈钢产品及其制备方法 |
US7311875B2 (en) | 2001-06-13 | 2007-12-25 | Höganäs Ab | High density stainless steel products and method for the preparation thereof |
Also Published As
Publication number | Publication date |
---|---|
DE3164598D1 (en) | 1984-08-09 |
CA1193891A (fr) | 1985-09-24 |
ES506504A0 (es) | 1982-11-01 |
JPS5798659A (en) | 1982-06-18 |
MX156202A (es) | 1988-07-25 |
EP0050969B1 (fr) | 1984-07-04 |
JPS6123841B2 (fr) | 1986-06-07 |
ES8300872A1 (es) | 1982-11-01 |
BR8106856A (pt) | 1982-07-06 |
IN153975B (fr) | 1984-09-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AU2015363754B2 (en) | A wear resistant alloy | |
EP0331679B1 (fr) | Alliages ferreux frittes a haute densite | |
TW201833346A (zh) | 用於製造雙相經燒結不銹鋼之不銹鋼粉末 | |
US10094007B2 (en) | Method of manufacturing a ferrous alloy article using powder metallurgy processing | |
CA1036392A (fr) | Acier inoxydable ferritique | |
JPH068484B2 (ja) | 加工可能なホウ素含有ステンレス鋼合金から製造される物品及びその製造方法 | |
CA3078603A1 (fr) | Acier approprie pour des outils de formage a chaud | |
EP3034211A1 (fr) | Acier à outil résistant à l'usure produite par pressage isostatique à chaud | |
DE60002669T2 (de) | Hochfester pulvermetallurgischer werkzeugstahl und daraus hergestellter gegenstand | |
US3716354A (en) | High alloy steel | |
CA2348909A1 (fr) | Acier inoxydable austenitique cr-mn-ni-cu | |
DE69907896T4 (de) | Kaltarbeitsstahl | |
EP0050969B1 (fr) | Poudre d'acier allié | |
US4731117A (en) | Nickel-base powder metallurgy alloy | |
US4028094A (en) | Stainless steel powder | |
PL83802B1 (fr) | ||
US5918293A (en) | Iron based powder containing Mo, P and C | |
SU1740481A1 (ru) | Порошковый материал на основе железа дл получени спеченных изделий | |
DE2221220B2 (de) | Verwendung einer chrom-basis-legierung als kokillenwerkstoff | |
US2169187A (en) | Copper base alloy | |
Fishel et al. | Desulphurizing Action of Titanium in Steels | |
AT130626B (de) | Hartlegierung für Arbeitsgeräte und Werkzeuge. | |
DE2350201C3 (de) | Vorlegiertes Stahlpulver zur Herstellung von gesinterten und pulvergeschmiedeten Konstruktionsteilen | |
JPH0629441B2 (ja) | 焼結添加用Fe−Ni−B合金粉末および焼結法 | |
US2267299A (en) | Alloy |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Designated state(s): BE DE FR GB IT SE |
|
17P | Request for examination filed |
Effective date: 19820930 |
|
ITF | It: translation for a ep patent filed | ||
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Designated state(s): BE DE FR GB IT SE |
|
REF | Corresponds to: |
Ref document number: 3164598 Country of ref document: DE Date of ref document: 19840809 |
|
ET | Fr: translation filed | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 19910913 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 19910917 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 19910918 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 19910927 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 19910930 Year of fee payment: 11 |
|
ITTA | It: last paid annual fee | ||
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Effective date: 19921023 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Effective date: 19921024 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Effective date: 19921031 |
|
BERE | Be: lapsed |
Owner name: AMSTED INDUSTRIES INC. Effective date: 19921031 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 19921023 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Effective date: 19930630 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Effective date: 19930701 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |
|
EUG | Se: european patent has lapsed |
Ref document number: 81305004.4 Effective date: 19930510 |