EP0050281B1 - Separation device in the high-gradient magnetic separation technique - Google Patents

Separation device in the high-gradient magnetic separation technique Download PDF

Info

Publication number
EP0050281B1
EP0050281B1 EP81108146A EP81108146A EP0050281B1 EP 0050281 B1 EP0050281 B1 EP 0050281B1 EP 81108146 A EP81108146 A EP 81108146A EP 81108146 A EP81108146 A EP 81108146A EP 0050281 B1 EP0050281 B1 EP 0050281B1
Authority
EP
European Patent Office
Prior art keywords
magnetic
magnetic field
filter structure
medium
carrying elements
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP81108146A
Other languages
German (de)
French (fr)
Other versions
EP0050281A1 (en
Inventor
Karl Schuster
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP0050281A1 publication Critical patent/EP0050281A1/en
Application granted granted Critical
Publication of EP0050281B1 publication Critical patent/EP0050281B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C1/00Magnetic separation
    • B03C1/02Magnetic separation acting directly on the substance being separated
    • B03C1/025High gradient magnetic separators
    • B03C1/031Component parts; Auxiliary operations
    • B03C1/033Component parts; Auxiliary operations characterised by the magnetic circuit
    • B03C1/0335Component parts; Auxiliary operations characterised by the magnetic circuit using coils

Definitions

  • the invention relates to a device for separating magnetisable particles down to particle sizes below 1 ⁇ m according to the principle of high gradient magnetic separation technology from a flowing medium with an axial or radial inlet and outlet for the medium and with a filter structure arranged in a filter space, that between the two magnetic poles forming parts of a ferromagnetic yoke of a magnetic device is arranged in a magnetic field directed essentially parallel or antiparallel to the direction of flow of the medium in the area of the filter structure and the several wire meshes arranged at least approximately perpendicular to the direction of flow of the medium and in the direction of flow as seen closely behind one another contains of non-corrosive, ferromagnetic material with a predetermined mesh size and thickness of their wires.
  • a magnetic separator is known from DE-A-2 628 095.
  • Magnetic deposition methods take advantage of the fact that, in a suitable magnetic field arrangement, a magnetizable particle experiences a force that moves or holds it against other forces acting on it, such as gravity, or in a liquid medium against hydrodynamic frictional forces.
  • Such separation processes are intended, for example, for steam or cooling water circuits in conventional as well as in nuclear power plants.
  • particles are suspended, which are generally caused by corrosion.
  • These particles are partly ferromagnetic, such as magnetite (Fe 3 0 4 ), partly antiferromagnetic, such as hematite (a-Fe z 0 3 ) or paramagnetic, such as copper oxide (Cu0).
  • the magnetizability of these particles which also occur in different sizes, is therefore different.
  • HGM technology high gradient magnetic separation technology
  • a corresponding HGM separating device can also be found in DE-A-2 628 095 and FR-A-2 355 545. It contains a central filter space with a filter structure made up of a plurality of wire meshes arranged closely one behind the other in the direction of flow, which are arranged perpendicular to the direction of flow of the medium in a relatively strong magnetic field. This magnetic field is directed parallel or antiparallel to the direction of flow of the medium in the area of the filter structure and causes, for example, a magnetic induction in the order of 1 Tesla.
  • the thickness of the wires of the networks made of ferromagnetic material is very small and is, for example, less than 0.1 mm. The magnetic field gradients generated on them are consequently very high, so that even weakly magnetizable particles can be filtered out with the separating device.
  • the central filter space of the known separating device in which the filter structure from the wire nets is located, is arranged between the ends of two pole shoes, which are parts of a yoke body made of ferromagnetic material, which serves to guide the magnetic field caused by a magnetic coil.
  • the medium to be filtered is fed into or out of the filter space either through bores in these pole pieces or through a gap remaining between the pole pieces via annular chambers.
  • the object of the present invention is to improve the above-mentioned magnetic separating device of the high gradient magnetic separation technology in such a way that in particular the inflow of the medium containing the particles to be separated into the filter structure is evened out and at the same time a reduction in the magnetic induction in the filter structure is avoided.
  • the device should have a relatively simple structure.
  • a magnetic separating device which also contains magnetic field-guiding elements made of ferromagnetic material on the inlet and outlet side of a medium to be filtered, these elements extending up to a filter structure and being at least evenly distributed over the respective end face of the filter structure are arranged.
  • a grid or grate serves as magnetic field-guiding elements, axial channels being formed with a relatively large length and small width. With such channels, therefore, the same problems arise as with the corresponding bores in the pole pieces of the separating device known from DE-A-2 628 095.
  • the filter structure of the separating device known from the aforementioned FR-A-2 143 481 is not one for the high-gradient magnetic separation technology characteristic structure, the questions of introducing the magnetic field to the structure are less critical.
  • the advantages of the separating device achieved with the measures according to the invention consist, in particular, in that the medium to be filtered enters the structure at a not too high speed, evenly distributed over the cross section of the filter structure, since there are only relatively short distances between the individual magnetic field-guiding elements at the filter inlet .
  • these elements advantageously couple the magnetic field directly to the filter structure without the need for relatively long bores or channels, which can only be produced at correspondingly high cost, through pole shoes or in lattice-like structures.
  • FIG. 1 illustrates a separating device according to the invention.
  • 2 and 3 show designs of magnetic field-guiding elements of this device, while FIGS. 4 and 5 show a further separating device according to the invention.
  • a magnetic separation device of the high gradient magnetic separation technology is schematically indicated as a longitudinal section.
  • This device is intended to filter out the smallest ferromagnetic particles with particle sizes below 1 11 m or weakly magnetic, for example paramagnetic or antiferromagnetic, particles with a relatively high degree of separation from a liquid medium.
  • Components of this separating device which are not shown in the figure can be, for example, corresponding components of the device known from DE-A-2 628 095.
  • the separating device contains a yoke body made of magnetic iron which is rotationally symmetrical with respect to an axis 3 and which is composed of a tubular yoke cylinder 4 and two end-side circular disk-shaped yoke plates 5 and 6.
  • the yoke cylinder encloses a hollow cylindrical magnet coil 7, for example a copper solenoid, which can be forcedly cooled if necessary.
  • the yoke body 4 to 6 and the magnetic coil 7 thus form the magnetic device of the separating device 2.
  • the magnetic coil 7 located in the interior space enclosed by the yoke body is only expanded in the axial direction to such an extent that between its end faces and the respective yoke plates 5 and 6 respectively cylindrical space 9 or 10 is formed with a small axial extent.
  • a magnetic field is generated with the magnetic coil 7, which runs in a central, cylindrical filter space 12 delimited by it at least approximately parallel to the axis 3 between the yoke plates 5 and 6 and whose magnetic induction in the filter space is illustrated by arrows denoted by B.
  • a filter structure 13, not shown in detail in the figure, is arranged in the filter space 12.
  • This filter structure is, in particular, a stack of a large number of nets, so-called net blanks, which consist of the finest wires and have a predetermined mesh size.
  • a corresponding stack contains, for example, 150 fine nets with a wire thickness of 0.067 mm and a mesh size of 0.14 mm.
  • the nets of this stack facing the circular disk-shaped yoke plates 5 and 6 can be coarser and, for example, have a wire thickness of 0.3 mm and a mesh size of 0.5 mm.
  • the networks consist of non-corrosive, ferromagnetic material, for example stainless steel, and are arranged perpendicular to the magnetic field directed in the area of the filter structure parallel to axis 3
  • the space 9 formed between the yoke plate 5 and the magnetic coil 7 or the filter space 12 serves as a distribution chamber, which is provided with a lateral inlet 15 for the medium M, for feeding the medium, designated M, containing the particles to be separated out, into the filter structure 13. As indicated by the arrowed lines in the figure, from there the medium enters the filter structure 13 from below through the end face denoted by 16.
  • the upper space 10 between the magnet coil and the yoke plate 6 serves as a collecting channel, which is provided with a lateral outlet 18 for the filtered medium, designated M '.
  • individual column-like elements 20 such as, for example, are arranged between the yoke plate 5 and the filter structure.
  • the magnetic field is advantageously coupled to the filter structure without interruption.
  • At least the entire cross-sectional area of the magnetic field-carrying elements 20 covers about '/ 4 to 1/2 of the entry surface 16 of the filter structure from, one of which is not guaranteed to high entrance velocity of the medium M in the filter structure.
  • the elements are arranged at least approximately uniformly distributed over the inlet surface 16, a corresponding, largely uniform flow with little turbulence is achieved at the inlet. Clogging of the filter structure on the inlet side is thus prevented.
  • the outlet side of the separating device 2 can also correspond to the inlet side with elements 21 carrying magnetic fields between the yoke plate and the filter structure 13 may be provided. A corresponding number and arrangement of these elements can also prevent turbulence on the outlet side.
  • guide bodies 19 influencing the flow conditions can be provided at least on the inlet side in the distribution chamber 9 on the side facing the inlet 15.
  • a baffle serves to force the flowing medium M, at least on the side facing the inlet 15, initially only to a greater distance from the inlet surface 16 of the filter structure. This can prevent the medium from flowing closer to the inlet of the inlet surface 16 comparatively much more strongly into the filter structure 13 than from the inlet surface of the inlet.
  • net-like structures can optionally also be provided, which can also be formed into a tubular body enclosing the elements 20 at a predetermined distance.
  • FIG. 2 In addition to the orientation and design form of the magnetic field-guiding elements 20 and 21 shown in FIG. 1, other elements extending between the yoke plate 5 and 6 and the filter structure 13 are also suitable for preventing turbulence at the entry surface 16 or the corresponding exit surface of the structure . Two embodiments of such elements emerge from FIGS. 2 and 3, parts in these figures which correspond to FIG. 1 being provided with the corresponding reference numerals.
  • elements can also be provided which are oriented obliquely with respect to the axis 3 and a central element 20.
  • the elements 23 arranged further away with respect to this axis can be inclined more than the closer elements 22. In this way, a further equalization of the flow of the medium M entering the filter structure can be brought about.
  • At least the magnetic field-guiding elements 24 running between the yoke plate 5 and the entry surface 16 of the filter structure 13 may not only have a cylindrical shape, but may also be frustoconical, for example.
  • the elements 20 to 24 guiding the magnetic field and standardizing the flow are attached directly to the yoke plates 5 and 6, respectively.
  • a special holding plate made of ferromagnetic material this particular plate then being rigidly connected to the respective yoke plate.
  • a further HGM separating device is schematically illustrated as a longitudinal section or as a cross section. Parts corresponding to FIG. 1 have the corresponding reference numerals.
  • This device, generally designated 26 differs from the device 2 according to FIG. 1 essentially in that an axial feed line of the medium M to be filtered and a corresponding discharge of the filtered medium M 'are provided.
  • a disk-shaped yoke plate 28 of a yoke body made of ferromagnetic material lying on the inlet side contains a central bore 29, the diameter of which is adapted to the diameter of the filter space 12 enclosed by a hollow cylindrical magnet coil 7 with a filter structure 13.
  • Individual magnetic field-guiding elements 30 made of ferromagnetic material are arranged in the bore 29 and are laterally connected to the yoke plate 28.
  • Iron elements which are parallel to one another and which, viewed in the direction of flow, extend directly to the filter structure 13 can advantageously be provided as elements. Even with such sheets, particularly at high flow velocities, turbulence in the medium M entering the filter structure 13 and thus inhomogeneous separation at the filter inlet can be at least largely prevented.
  • sheets 31 can also be provided in a central bore 32 of a yoke plate 33 on the outlet side.
  • perforated plates made of ferromagnetic material fitted into the bores 29 and 32 can also be used, on the sides of which facing the filter structure 13 in each case bolts according to FIGS. 1 to 3 are attached.
  • the bolts 20 to 24 and the plates 30 and 31, in particular in the case of a larger cross section of each of these elements, can each be provided with distribution channels on their end faces facing the filter structure.
  • Slits running, for example, parallel to the corresponding inlet or outlet surface of the filter structure can serve as distribution channels in order to further promote the distribution of the medium entering or exiting the filter structure.

Landscapes

  • Filtering Materials (AREA)
  • Filtration Of Liquid (AREA)

Description

Die Erfindung bezieht sich auf eine Vorrichtung zum Abscheiden von magnetisierbaren Teilchen bis zu Teilchengrössen unter 1 µm nach dem Prinzip der Hochgradienten-Magnettrenntechnik aus einem strömenden Medium mit einem axialen oder radialen Ein- und Auslass für das Medium und mit einer in einem Filterraum angeordneten Filterstruktur, die zwischen den zwei magnetische Pole bildenden Teilen eines ferromagnetischen Joches einer Magneteinrichtung in einem im wesentlichen parallel oder antiparallel zur Flussrichtung des Mediums im Bereich der Filterstruktur gerichteten Magnetfeld angeordnet ist und die mehrere zumindest annähernd senkrecht zur Flussrichtung des Mediums und in Flussrichtung gesehen eng hintereinander angeordnete Drahtnetze aus nicht-korrodierendem, ferromagnetischem Material mit vorbestimmter Maschenweite und Stärke ihrer Drähte enthält. Eine solche magnetische Abscheidevorrichtung ist aus der DE-A-2 628 095 bekannt.The invention relates to a device for separating magnetisable particles down to particle sizes below 1 μm according to the principle of high gradient magnetic separation technology from a flowing medium with an axial or radial inlet and outlet for the medium and with a filter structure arranged in a filter space, that between the two magnetic poles forming parts of a ferromagnetic yoke of a magnetic device is arranged in a magnetic field directed essentially parallel or antiparallel to the direction of flow of the medium in the area of the filter structure and the several wire meshes arranged at least approximately perpendicular to the direction of flow of the medium and in the direction of flow as seen closely behind one another contains of non-corrosive, ferromagnetic material with a predetermined mesh size and thickness of their wires. Such a magnetic separator is known from DE-A-2 628 095.

Bei magnetischen Abscheideverfahren wird die Tatsache ausgenutzt, dass in einer geeigneten Magnetfeldanordnung ein magnetisierbares Teilchen eine Kraft erfährt, die es gegen andere an ihm angreifende Kräfte wie beispielsweise die Schwerkraft oder in einem flüssigen Medium gegen hydrodynamische Reibungskräfte bewegt bzw. festhält. Solche Abscheideverfahren sind beispielsweise für Dampf- oder Kühlwasserkreisläufe in konventionellen wie auch in nuklearen Kraftwerken vorgesehen. In dem flüssigen oder gasförmigen Medium dieser Kreisläufe sind Teilchen suspendiert, die im allgemeinen durch Korrosion entstanden sind. Diese Teilchen sind teils ferromagnetisch wie beispielsweise Magnetit (Fe304), teils antiferromagnetisch wie beispielsweise Hämatit (a-Fez03) oder paramagnetisch wie z.B. Kupferoxid (Cu0). Die Magnetisierbarkeit dieser Teilchen, die darüber hinaus in verschiedener Grösse auftreten, ist folglich verschieden stark.Magnetic deposition methods take advantage of the fact that, in a suitable magnetic field arrangement, a magnetizable particle experiences a force that moves or holds it against other forces acting on it, such as gravity, or in a liquid medium against hydrodynamic frictional forces. Such separation processes are intended, for example, for steam or cooling water circuits in conventional as well as in nuclear power plants. In the liquid or gaseous medium of these circuits, particles are suspended, which are generally caused by corrosion. These particles are partly ferromagnetic, such as magnetite (Fe 3 0 4 ), partly antiferromagnetic, such as hematite (a-Fe z 0 3 ) or paramagnetic, such as copper oxide (Cu0). The magnetizability of these particles, which also occur in different sizes, is therefore different.

Kleinste ferromagnetische Teilchen mit Teilchendurchmessern in der Grössenordnung von 1 11m oder auch schwach magnetische, d.h. antiferro- oder paramagnetische Teilchen können mit einem grösseren Abscheidegrad auf magnetische Weise praktisch nur mit Abscheidevorrichtungen der sogenannten Hochgradienten-Magnettrenntechnik (HGM-Technik) aus einem strömenden Medium herausgefiltert werden (vgl. z. B. «Journal of Magnetism and Magnetic Materials», Vol. 13, 1979, Seiten 1 bis 10).Smallest ferromagnetic particles with particle diameters in the order of 1 11m or weak magnetic, i.e. Antiferro- or paramagnetic particles with a higher degree of separation can be magnetically filtered out of a flowing medium practically only with separation devices of the so-called high gradient magnetic separation technology (HGM technology) (see, for example, “Journal of Magnetism and Magnetic Materials”, Vol 13, 1979, pages 1 to 10).

Eine entsprechende HGM-Abscheidevorrichtung ist auch der DE-A-2 628 095 bzw. FR-A-2 355 545 zu entnehmen. Sie enthält einen zentralen Filterraum mit einer Filterstruktur aus einer Vielzahl von in Strömungsrichtung gesehen eng hintereinander zu einem Stapel angeordneten Drahtnetzen, die senkrecht zur Flussrichtung des Mediums in einem verhältnismässig starken Magnetfeld angeordnet sind. Dieses Magnetfeld ist parallel oder antiparallel zur Flussrichtung des Mediums im Bereich der Filterstruktur gerichtet und ruft dort beispielsweise eine magnetische Induktion in der Grössenordnung von 1 Tesla hervor. Die Stärke der aus ferromagnetischem Material bestehenden Drähte der Netze ist dabei sehr klein und liegt beispielsweise unter 0,1 mm. Die an ihnen erzeugten Magnetfeldgradienten sind dann folglich sehr hoch, so dass mit der Abscheidevorrichtung auch schwach magnetisierbare Teilchen herausgefiltert werden können.A corresponding HGM separating device can also be found in DE-A-2 628 095 and FR-A-2 355 545. It contains a central filter space with a filter structure made up of a plurality of wire meshes arranged closely one behind the other in the direction of flow, which are arranged perpendicular to the direction of flow of the medium in a relatively strong magnetic field. This magnetic field is directed parallel or antiparallel to the direction of flow of the medium in the area of the filter structure and causes, for example, a magnetic induction in the order of 1 Tesla. The thickness of the wires of the networks made of ferromagnetic material is very small and is, for example, less than 0.1 mm. The magnetic field gradients generated on them are consequently very high, so that even weakly magnetizable particles can be filtered out with the separating device.

Der zentrale Filterraum der bekannten Abscheidevorrichtung, in dem sich die Filterstruktur aus den Drahtnetzen befindet, ist zwischen den Enden zweier Polschuhe angeordnet, die Teile eines Jochkörpers aus ferromagnetischem Material sind, der zur Führung des von einer Magnetspule hervorgerufenen magnetischen Feldes dient. Das zu filternde Medium wird dabei entweder über Bohrungen in diesen Polschuhen selbst oder durch einen zwischen den Polschuhen verbleibenden Spalt über ringförmige Kammern in den Filterraum ein- bzw. aus diesem wieder herausgeleitet. Im Falle einer axialen Zu-und Ableitung des Mediums ergeben sich jedoch verhältnismässig grosse Durchflussgeschwindigkeiten in den durchbohrten Polschuhen und inhomogene Abscheidungen am Filtereingang über den Filterquerschnitt. Auch bei radialer Ein- und Ausströmung des Mediums bilden sich Turbulenzen über den Filterquerschnitt aus, die zu einer ungleichmässigen Abscheidung in der Filterstruktur führen.The central filter space of the known separating device, in which the filter structure from the wire nets is located, is arranged between the ends of two pole shoes, which are parts of a yoke body made of ferromagnetic material, which serves to guide the magnetic field caused by a magnetic coil. The medium to be filtered is fed into or out of the filter space either through bores in these pole pieces or through a gap remaining between the pole pieces via annular chambers. In the case of an axial supply and discharge of the medium, however, there are comparatively high flow rates in the pierced pole shoes and inhomogeneous deposits at the filter inlet over the filter cross section. Even when the medium flows in and out radially, turbulence forms over the filter cross-section, which leads to an uneven separation in the filter structure.

Aufgabe der vorliegenden Erfindung ist es, die eingangs genannte magnetische Abscheidevorrichtung der Hochgradienten-Magnettrenntechnik dahingehend zu verbessern, dass insbesondere die Einströmung des die abzuscheidenden Teilchen enthaltenden Mediums in die Filterstruktur vergleichmässigt ist und dabei zugleich eine Verringerung der magnetischen Induktion in der Filterstruktur vermieden wird. Dabei soll die Vorrichtung einen verhältnismässig einfachen Aufbau haben.The object of the present invention is to improve the above-mentioned magnetic separating device of the high gradient magnetic separation technology in such a way that in particular the inflow of the medium containing the particles to be separated into the filter structure is evened out and at the same time a reduction in the magnetic induction in the filter structure is avoided. The device should have a relatively simple structure.

Diese Aufgabe wird erfindungsgemäss mit den im kennzeichnenden zweiten Teil des Hauptanspruchs angegebenen Massnahmen gelöst.This object is achieved according to the invention with the measures specified in the characterizing second part of the main claim.

Aus der FR-A-2 143 481 ist zwar eine magnetische Abscheidevorrichtung bekannt, die an der Ein- und Auslassseite eines zu filternden Mediums ebenfalls magnetfeldführende Elemente aus ferromagnetischem Material enthält, wobei diese Elemente sich bis zu einer Filterstruktur erstrecken und zumindest gleichmässig verteilt über die jeweilige Stirnfläche der Filterstruktur angeordnet sind. Als magnetfeldführende Elemente dient jedoch ein Gitter oder Rost, wobei axiale Kanäle mit verhältnismässig grosser Länge und kleiner Weite ausgebildet sind. Mit solchen Kanälen ergeben sich deshalb dieselben Probleme wie mit den entsprechenden Bohrungen in den Polschuhen der aus der DE-A-2 628 095 bekannten Abscheidevorrichtung. Da es sich ferner bei der Filterstruktur der aus der genannten FR-A-2 143 481 bekannten Abscheidevorrichtung um keine für die Hochgradienten-Magnettrenntechnik charakteristische Struktur handelt, sind hier die Fragen einer Heranführung des Magnetfeldes an die Struktur weniger kritisch.From FR-A-2 143 481 a magnetic separating device is known, which also contains magnetic field-guiding elements made of ferromagnetic material on the inlet and outlet side of a medium to be filtered, these elements extending up to a filter structure and being at least evenly distributed over the respective end face of the filter structure are arranged. However, a grid or grate serves as magnetic field-guiding elements, axial channels being formed with a relatively large length and small width. With such channels, therefore, the same problems arise as with the corresponding bores in the pole pieces of the separating device known from DE-A-2 628 095. Furthermore, since the filter structure of the separating device known from the aforementioned FR-A-2 143 481 is not one for the high-gradient magnetic separation technology characteristic structure, the questions of introducing the magnetic field to the structure are less critical.

Die mit den erfindungsgemässen Massnahmen erreichten Vorteile der Abscheidevorrichtung bestehen insbesondere darin, dass das zu filternde Medium verhältnismässig gleichmässig über den Querschnitt der Filterstruktur verteilt in die Struktur mit nicht zu hoher Geschwindigkeit eintritt, da beim Filtereinlauf nur verhältnismässig kurze Wege zwischen den einzelnen magnetfeldführenden Elementen gegeben sind. Ausserdem wird vorteilhaft durch diese Elemente das magnetische Feld unmittelbar an die Filterstruktur angekoppelt, ohne dass verhältnismässig lange Bohrungen oder Kanäle, die nur mit entsprechend hohem Kostenaufwand zu erstellen sind, durch Polschuhe bzw. in gitterartigen Strukturen erforderlich sind.The advantages of the separating device achieved with the measures according to the invention consist, in particular, in that the medium to be filtered enters the structure at a not too high speed, evenly distributed over the cross section of the filter structure, since there are only relatively short distances between the individual magnetic field-guiding elements at the filter inlet . In addition, these elements advantageously couple the magnetic field directly to the filter structure without the need for relatively long bores or channels, which can only be produced at correspondingly high cost, through pole shoes or in lattice-like structures.

Vorteilhafte Ausgestaltungen der magnetischen Abscheidevorrichtung nach der Erfindung gehen aus den abhängigen Ansprüchen hervor.Advantageous refinements of the magnetic separation device according to the invention emerge from the dependent claims.

Zur weiteren Erläuterung der Erfindung und deren in den abhängigen Ansprüchen gekennzeichneten Weiterbildungen wird auf die Zeichnung verwiesen, in deren Fig. 1 eine Abscheidevorrichtung nach der Erfindung veranschaulicht ist. Die Fig. 2 und 3 zeigen Gestaltungsformen von magnetfeldführenden Elementen dieser Vorrichtung, während in den Fig. 4 und 5 eine weitere Abscheidevorrichtung nach der Erfindung dargestellt ist.To further explain the invention and its further developments characterized in the dependent claims, reference is made to the drawing, in which FIG. 1 illustrates a separating device according to the invention. 2 and 3 show designs of magnetic field-guiding elements of this device, while FIGS. 4 and 5 show a further separating device according to the invention.

In Fig. 1 ist eine magnetische Abscheidevorrichtung der Hochgradienten-Magnettrenntechnik schematisch als Längsschnitt angedeutet. Mit dieser Vorrichtung sollen kleinste ferromagnetische Teilchen mit Teilchengrössen bis unter 1 11m oder auch schwach magnetische, beispielsweise paramagnetische oder antiferromagnetische Teilchen mit einem verhältnismässig hohen Abscheidegrad aus einem flüssigen Medium herausgefiltert werden. In der Figur nicht näher ausgeführte Bauteile dieser Abscheidevorrichtung können beispielsweise entsprechende Bauteile der aus der DE-A-2 628 095 bekannten Vorrichtung sein.In Fig. 1, a magnetic separation device of the high gradient magnetic separation technology is schematically indicated as a longitudinal section. This device is intended to filter out the smallest ferromagnetic particles with particle sizes below 1 11 m or weakly magnetic, for example paramagnetic or antiferromagnetic, particles with a relatively high degree of separation from a liquid medium. Components of this separating device which are not shown in the figure can be, for example, corresponding components of the device known from DE-A-2 628 095.

Die allgemein mit 2 bezeichnete Abscheidevorrichtung enthält einen bezüglich einer Achse 3 rotationssymmetrischen Jochkörper aus magnetischem Eisen, der aus einem rohrförmigen Jochzylinder 4 und zwei stirnseitigen, kreisscheibenförmigen Jochplatten 5 und 6 zusammengesetzt ist. Der Jochzylinder umschliesst eine hohlzylindrische Magnetspule 7, beispielsweise einen Kupfer-Solenoid, die gegebenenfalls forciert gekühlt werden kann. Der Jochkörper 4 bis 6 und die Magnetspule 7 bilden somit die Magneteinrichtung der Abscheidevorrichtung 2. Die sich in dem von dem Jochkörper eingeschlossenen Innenraum befindende Magnetspule 7 ist in Axialrichtung nur so weit ausgedehnt, dass zwischen ihren Stirnseiten und den jeweiligen Jochplatten 5 bzw. 6 ein zylindrischer Zwischenraum 9 bzw. 10 mit geringer axialer Ausdehnung ausgebildet ist. Mit der Magnetspule 7 wird ein Magnetfeld erzeugt, das in einem von ihr begrenzten zentralen, zylindrischen Filterraum 12 zumindest annähernd parallel zur Achse 3 zwischen den Jochplatten 5 und 6 verläuft und dessen magnetische Induktion in dem Filterraum durch mit B bezeichnete Pfeile veranschaulicht ist. In dem Filterraum 12 ist eine in der Figur nicht näher ausgeführte Filterstruktur 13 angeordnet. Bei dieser Filterstruktur handelt es sich insbesondere um einen Stapel aus einer Vielzahl von Netzen, sogenannten Netz-Ronden, die aus feinsten Drähten bestehen und eine vorbestimmte Maschenweite haben. Ein entsprechender Stapel enthält beispielsweise 150 feine Netze mit einer Drahtstärke von 0,067 mm und einer Maschenweite von 0,14 mm. Dabei können die den kreisscheibenförmigen Jochplatten 5 und 6 zugewandten Netze dieses Stapels gröber sein und beispielsweise eine Drahtstärke von 0,3 mm und eine Maschenweite von 0,5 mm haben. Die Netze bestehen aus nicht-korrodierendem, ferromagnetischem Material, beispielsweise aus Edelstahl, und sind senkrecht zu dem im Bereich der Filterstruktur parallel zur Achse 3 gerichteten Magnetfeld angeordnetThe separating device, generally designated 2, contains a yoke body made of magnetic iron which is rotationally symmetrical with respect to an axis 3 and which is composed of a tubular yoke cylinder 4 and two end-side circular disk-shaped yoke plates 5 and 6. The yoke cylinder encloses a hollow cylindrical magnet coil 7, for example a copper solenoid, which can be forcedly cooled if necessary. The yoke body 4 to 6 and the magnetic coil 7 thus form the magnetic device of the separating device 2. The magnetic coil 7 located in the interior space enclosed by the yoke body is only expanded in the axial direction to such an extent that between its end faces and the respective yoke plates 5 and 6 respectively cylindrical space 9 or 10 is formed with a small axial extent. A magnetic field is generated with the magnetic coil 7, which runs in a central, cylindrical filter space 12 delimited by it at least approximately parallel to the axis 3 between the yoke plates 5 and 6 and whose magnetic induction in the filter space is illustrated by arrows denoted by B. A filter structure 13, not shown in detail in the figure, is arranged in the filter space 12. This filter structure is, in particular, a stack of a large number of nets, so-called net blanks, which consist of the finest wires and have a predetermined mesh size. A corresponding stack contains, for example, 150 fine nets with a wire thickness of 0.067 mm and a mesh size of 0.14 mm. The nets of this stack facing the circular disk-shaped yoke plates 5 and 6 can be coarser and, for example, have a wire thickness of 0.3 mm and a mesh size of 0.5 mm. The networks consist of non-corrosive, ferromagnetic material, for example stainless steel, and are arranged perpendicular to the magnetic field directed in the area of the filter structure parallel to axis 3

Zur Zuführung des die abzuscheidenden Teilchen enthaltenden, mit M bezeichneten Mediums in die Filterstruktur 13 dient der zwischen der Jochplatte 5 und der Magnetspule 7 bzw. dem Filterraum 12 ausgebildete Raum 9 als Verteilungskammer, die mit einem seitlichen Einlauf 15 für das Medium M versehen ist. Wie in der Figur durch gepfeilte Linien angedeutet ist, tritt von dort aus das Medium von unten her in die Filterstruktur 13 an deren Stirnseite durch die mit 16 bezeichnete Stirnfläche ein. In entsprechender Weise dient der obere Raum 10 zwischen der Magnetspule und der Jochplatte 6 als Sammelkanal, der mit einem seitlichen Auslass 18 für das gefilterte, mit M' bezeichnete Medium versehen ist.The space 9 formed between the yoke plate 5 and the magnetic coil 7 or the filter space 12 serves as a distribution chamber, which is provided with a lateral inlet 15 for the medium M, for feeding the medium, designated M, containing the particles to be separated out, into the filter structure 13. As indicated by the arrowed lines in the figure, from there the medium enters the filter structure 13 from below through the end face denoted by 16. In a corresponding manner, the upper space 10 between the magnet coil and the yoke plate 6 serves as a collecting channel, which is provided with a lateral outlet 18 for the filtered medium, designated M '.

Um einen annähernd gleichmässigen Eintritt des zu filternden Mediums M in die Filterstruktur 13 zu gewährleisten und insbesondere Turbulenzen zu vermeiden, sind zwischen der Jochplatte 5 und der Filterstruktur einzelne säulenartige Elemente 20 wie z. B. Bolzen aus ferromagnetischem Material vorgesehen. Diese Elemente sind beispielsweise an der Jochplatte 5 befestigt und erstrecken sich in axialer Richtung bis unmittelbar zu dem ersten Netz der Filterstruktur 13. Das Magnetfeld wird auf diese Weise vorteilhaft an die Filterstruktur ohne Unterbrechung angekoppelt. Zumindest die gesamte Querschnittsfläche der magnetfeldführenden Elemente 20 deckt dabei etwa '/4 bis 1/2-der Eintrittsfläche 16 der Filterstruktur ab, wobei eine nicht zu hohe Eintrittsgeschwindigkeit des Mediums M in die Filterstruktur gewährleistet ist. Da ferner die Elemente zumindest annähernd gleichmässig über die Eintrittsfläche 16 verteilt angeordnet sind, wird eine entsprechende, weitgehend gleichmässige Strömung mit geringen Turbulenzen am Einlauf erreicht. Einem Verstopfen der Filterstruktur an der Einlaufseite wird somit vorgebeugt.In order to ensure an approximately uniform entry of the medium M to be filtered into the filter structure 13 and, in particular, to avoid turbulence, individual column-like elements 20, such as, for example, are arranged between the yoke plate 5 and the filter structure. B. bolts made of ferromagnetic material. These elements are fastened, for example, to the yoke plate 5 and extend in the axial direction directly to the first network of the filter structure 13. In this way, the magnetic field is advantageously coupled to the filter structure without interruption. At least the entire cross-sectional area of the magnetic field-carrying elements 20 covers about '/ 4 to 1/2 of the entry surface 16 of the filter structure from, one of which is not guaranteed to high entrance velocity of the medium M in the filter structure. Furthermore, since the elements are arranged at least approximately uniformly distributed over the inlet surface 16, a corresponding, largely uniform flow with little turbulence is achieved at the inlet. Clogging of the filter structure on the inlet side is thus prevented.

Wie Fig. 1 ferner zu entnehmen ist, kann auch die Auslassseite der Abscheidevorrichtung 2 entsprechend der Einlaufseite mit magnetfeldführenden Elementen 21 zwischen der Jochplatte und der Filterstruktur 13 versehen sein. Durch eine entsprechende Anzahl und Anordnung dieser Elemente lassen sich auch an der Auslassseite Turbulenzen vorbeugen.As can also be seen in FIG. 1, the outlet side of the separating device 2 can also correspond to the inlet side with elements 21 carrying magnetic fields between the yoke plate and the filter structure 13 may be provided. A corresponding number and arrangement of these elements can also prevent turbulence on the outlet side.

Wie in Fig. 1 ferner angedeutet ist, können zumindest auf der Einlassseite in der Verteilungskammer 9 noch auf der dem Zulauf 15 zugewandten Seite die Strömungsverhältnisse beeinflussende Leitkörper 19 vorgesehen werden. So dient beispielsweise ein Leitblech dazu, das zufliessende Medium M zumindest an der dem Zulauf 15 zugewandten Seite zunächst erst auf einen grösseren Abstand von der Eintrittsfläche 16 der Filterstruktur zu zwingen. Hiermit kann verhindert werden, dass an dem Zulauf näheren Stellen der Eintrittsfläche 16 das Medium vergleichsweise viel stärker in die Filterstruktur 13 einströmt als an dem Zulauf ferner liegenden Stellen der Eintrittsfläche. Statt Leitblechen können gegebenenfalls auch netzartige Strukturen vorgesehen werden, die darüber hinaus auch zu einem die Elemente 20 in vorbestimmtem Abstand umschliessenden rohrförmigen Körper ausgebildet sein können.As is also indicated in FIG. 1, guide bodies 19 influencing the flow conditions can be provided at least on the inlet side in the distribution chamber 9 on the side facing the inlet 15. For example, a baffle serves to force the flowing medium M, at least on the side facing the inlet 15, initially only to a greater distance from the inlet surface 16 of the filter structure. This can prevent the medium from flowing closer to the inlet of the inlet surface 16 comparatively much more strongly into the filter structure 13 than from the inlet surface of the inlet. Instead of baffles, net-like structures can optionally also be provided, which can also be formed into a tubular body enclosing the elements 20 at a predetermined distance.

Neben der in Fig. 1 dargestellten Ausrichtung und Gestaltungsform der magnetfeldführenden Elemente 20 und 21 sind auch andere, sich zwischen der Jochplatte 5 bzw. 6 und der Filterstruktur 13 erstreckende Elemente zur Verhinderung von Turbulenzen an der Eintrittsfläche 16 bzw. der entsprechenden Austrittsfläche der Struktur geeignet. Zwei Ausführungsformen solcher Elemente gehen aus den Fig. 2 und 3 hervor, wobei in diesen Figuren mit Fig. 1 übereinstimmende Teile mit den entsprechenden Bezugszeichen versehen sind.In addition to the orientation and design form of the magnetic field-guiding elements 20 and 21 shown in FIG. 1, other elements extending between the yoke plate 5 and 6 and the filter structure 13 are also suitable for preventing turbulence at the entry surface 16 or the corresponding exit surface of the structure . Two embodiments of such elements emerge from FIGS. 2 and 3, parts in these figures which correspond to FIG. 1 being provided with the corresponding reference numerals.

So lassen sich gemäss dem schematischen Längsschnitt nach Fig. 2 auch Elemente vorsehen, die schräg bezüglich der Achse 3 und einem zentralen Element 20 ausgerichtet sind. Dabei können die bezüglich dieser Achse weiter entfernt angeordneten Elemente 23 stärker geneigt sein als die näherliegenden Elemente 22. Hierdurch kann eine weitere Vergleichmässigung der in die Filterstruktur eintretenden Strömung des Mediums M bewirkt werden.Thus, according to the schematic longitudinal section according to FIG. 2, elements can also be provided which are oriented obliquely with respect to the axis 3 and a central element 20. In this case, the elements 23 arranged further away with respect to this axis can be inclined more than the closer elements 22. In this way, a further equalization of the flow of the medium M entering the filter structure can be brought about.

Wie darüber hinaus dem schematischen Längsschnitt nach Fig. 3 zu entnehmen ist, können zumindest die zwischen der Jochplatte 5 und der Eintrittsfläche 16 der Filterstruktur 13 verlaufenden magnetfeldführenden Elemente 24 nicht nur eine zylindrische Form haben, sondern beispielsweise auch kegelstumpfförmig ausgebildet sein.As can also be seen from the schematic longitudinal section according to FIG. 3, at least the magnetic field-guiding elements 24 running between the yoke plate 5 and the entry surface 16 of the filter structure 13 may not only have a cylindrical shape, but may also be frustoconical, for example.

Gemäss den Ausführungsbeispielen der Abscheidevorrichtung nach den Fig. 1 bis 3 wurde davon ausgegangen, dass die magnetfeldführenden, die Strömung vereinheitlichenden Elemente 20 bis 24 direkt an den Jochplatten 5 bzw. 6 befestigt sind. Für eine leichtere Montierbarkeit der Vorrichtung kann es gegebenenfalls zweckmässig sein, dass diese Elemente von einer besonderen Halteplatte aus ferromagnetischem Material zusammengehalten sind, wobei diese besondere Platte dann mit der jeweiligen Jochplatte starr verbunden wird.According to the exemplary embodiments of the separating device according to FIGS. 1 to 3, it was assumed that the elements 20 to 24 guiding the magnetic field and standardizing the flow are attached directly to the yoke plates 5 and 6, respectively. For easier assembly of the device, it may be expedient if these elements are held together by a special holding plate made of ferromagnetic material, this particular plate then being rigidly connected to the respective yoke plate.

In den Fig. 4 und 5 ist eine weitere HGM-Abscheidevorrichtung nach der Erfindung als Längsschnitt bzw. als Querschnitt schematisch veranschaulicht. Mit Fig. 1 übereinstimmende Teile haben dabei die entsprechenden Bezugszeichen. Diese allgemein mit 26 bezeichnete Vorrichtung unterscheidet sich von der Vorrichtung 2 gemäss Fig. 1 im wesentlichen dadurch, dass eine axiale Zuleitung des zu filternden Mediums M und eine entsprechende Ableitung des gefilterten Mediums M' vorgesehen sind. Hierzu enthält eine auf der Einlassseite liegende, scheibenförmige Jochplatte 28 eines Jochkörpers aus ferromagnetischem Material eine zentrale Bohrung 29, deren Durchmesser dem Durchmesser des von einer hohlzylinderförmigen Magnetspule 7 eingeschlossenen Filterraumes 12 mit einer Filterstruktur 13 angepasst ist. In der Bohrung 29 sind einzelne magnetfeldführende Elemente 30 aus ferromagnetischem Material angeordnet, die seitlich mit der Jochplatte 28 verbunden sind. Als Elemente können vorteilhaft untereinander parallele Eisenbleche vorgesehen sein, die sich in Strömungsrichtung gesehen bis unmittelbar an die Filterstruktur 13 hin erstrecken. Auch mit derartigen Blechen lassen sich, insbesondere bei hohen Strömungsgeschwindigkeiten, Turbulenzen in dem in die Filterstruktur 13 eintretenden Medium M und somit eine inhomogene Abscheidung am Filtereingang zumindest weitgehend unterbinden. In entsprechender Weise können auch auf der Auslassseite Bleche 31 in einer zentralen Bohrung 32 einer Jochplatte 33 vorgesehen sein.4 and 5, a further HGM separating device according to the invention is schematically illustrated as a longitudinal section or as a cross section. Parts corresponding to FIG. 1 have the corresponding reference numerals. This device, generally designated 26, differs from the device 2 according to FIG. 1 essentially in that an axial feed line of the medium M to be filtered and a corresponding discharge of the filtered medium M 'are provided. For this purpose, a disk-shaped yoke plate 28 of a yoke body made of ferromagnetic material lying on the inlet side contains a central bore 29, the diameter of which is adapted to the diameter of the filter space 12 enclosed by a hollow cylindrical magnet coil 7 with a filter structure 13. Individual magnetic field-guiding elements 30 made of ferromagnetic material are arranged in the bore 29 and are laterally connected to the yoke plate 28. Iron elements which are parallel to one another and which, viewed in the direction of flow, extend directly to the filter structure 13 can advantageously be provided as elements. Even with such sheets, particularly at high flow velocities, turbulence in the medium M entering the filter structure 13 and thus inhomogeneous separation at the filter inlet can be at least largely prevented. Correspondingly, sheets 31 can also be provided in a central bore 32 of a yoke plate 33 on the outlet side.

Statt der in den Fig. 4 und 5 angedeuteten Eisenbleche als magnetfeldführende Elemente 30 und 31 können auch in die Bohrungen 29 bzw. 32 eingepasste Lochplatten aus ferromagnetischem Material verwendet werden, auf deren der Filterstruktur 13 zugewandten Seiten jeweils Bolzen gemäss den Fig. 1 bis 3 befestigt sind.Instead of the iron sheets indicated in FIGS. 4 and 5 as magnetic field-guiding elements 30 and 31, perforated plates made of ferromagnetic material fitted into the bores 29 and 32 can also be used, on the sides of which facing the filter structure 13 in each case bolts according to FIGS. 1 to 3 are attached.

Ausserdem können die Bolzen 20 bis 24 und die Bleche 30 und 31, insbesondere bei grösserem Querschnitt jedes dieser Elemente jeweils auf ihrer der Filterstruktur zugewandten Stirnseite noch mit Verteilungskanälen versehen sein. Als Verteilungskanäle können beispielsweise parallel zu der entsprechenden Einlass- oder Auslassfläche der Filterstruktur verlaufende Schlitze dienen, um die Verteilung des in die Filterstruktur eintretenden bzw. des aus der Struktur austretenden Mediums noch weiter zu fördern.In addition, the bolts 20 to 24 and the plates 30 and 31, in particular in the case of a larger cross section of each of these elements, can each be provided with distribution channels on their end faces facing the filter structure. Slits running, for example, parallel to the corresponding inlet or outlet surface of the filter structure can serve as distribution channels in order to further promote the distribution of the medium entering or exiting the filter structure.

Claims (6)

1. Apparatus (2) for separating magnetizable particles of size up to below 1 11m from a flowing medium in accordance with the principle of the highgradient magnetic separation technique, comprising an axial or radial inlet and outlet for the medium and having a filter structure (13) which is arranged in a filter space between the two magnetic pole-forming parts of a ferro-magnetic yoke of a magnetic device (7) in a magnetic field which is essentially directed parallel or anti-parallel to the direction of flow of the medium in the region of the filter structure (13), and which filter structure comprises a plurality of wire gauzes which are arranged at least approximately at right angles to the direction of flow of the medium and viewed in the flow direction, are arranged so as to follow one another closely, and made of a non-corrosive ferro-magnetic material with a predetermined mesh size and wire thickness, characterised in that at least at the inlet side of the medium (M) to be filtered, there are arranged magnetic field-carrying elements (20, 22 to 24; 30) in the form of pegs or sheets of a ferro-magnetic material, which
a) at their side which faces away from the filter structure (13), are held together by means of a plate (5; 28) made of a ferro-magnetic material, this plate (5; 28) being fixed to the yoke body of the magnetic device or itself forming part of the yoke body,
b) extend to the filter structure (13),
c) are at least approximately evenly distributed over the entry surface (16) of the filter structure (13), and
d) have an overall cross-sectional surface which covers approximately between '/< and '/2 of the entry surface (16).
2. Separation apparatus as claimed in Claim 1, characterised in that, on the outlet side of the filtered medium (M'), there are arranged magnetic field-carrying elements (21 to 24; 31) corresponding to the inlet side.
3. Separation apparatus as claimed in Claim 1 or Claim 2, characterised in that the magnetic field-carrying elements (20 to 24; 30, 31) have a cylindrical shape, or the shape of a truncated cone having their larger base surface connected to the ferro-magnetic yoke part (5, 6).
4. Separation apparatus as claimed in one of Claims 1 to 3, characterised in that the magnetic field-carrying elements (22, 23) are arranged obliquely in relation to the axis (3) of the magnetic field.
5. Separation apparatus as claimed in Claim 4, characterised in that the inclination of the magnetic field-carrying elements (22, 23) to the axis (3) of the magnetic field increases with increasing distance of the element from the axis (Fig. 2).
6. Separation apparatus as claimed in one of Claims 1 to 5, characterised in that, at their end faces facing the filter structure (13), the magnetic field-carrying elements (20 to 24; 30, 31) are provided with slits which extend transversely to the direction of flow of the medium (M, M').
EP81108146A 1980-10-16 1981-10-09 Separation device in the high-gradient magnetic separation technique Expired EP0050281B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3039171A DE3039171C2 (en) 1980-10-16 1980-10-16 Device for separating magnetizable particles according to the principle of high-gradient magnetic separation technology
DE3039171 1980-10-16

Publications (2)

Publication Number Publication Date
EP0050281A1 EP0050281A1 (en) 1982-04-28
EP0050281B1 true EP0050281B1 (en) 1985-05-22

Family

ID=6114553

Family Applications (1)

Application Number Title Priority Date Filing Date
EP81108146A Expired EP0050281B1 (en) 1980-10-16 1981-10-09 Separation device in the high-gradient magnetic separation technique

Country Status (6)

Country Link
US (1) US4432873A (en)
EP (1) EP0050281B1 (en)
JP (1) JPS5794317A (en)
CA (1) CA1187007A (en)
DE (1) DE3039171C2 (en)
SU (1) SU1069608A3 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004034541B3 (en) * 2004-07-16 2006-02-02 Forschungszentrum Karlsruhe Gmbh High-gradient magnetic

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3336255A1 (en) * 1983-10-05 1985-04-18 Krupp Polysius Ag, 4720 Beckum DEVICE FOR SEPARATING FERROMAGNETIC PARTICLES FROM A TURBIDITY
JPS6128413A (en) * 1984-07-19 1986-02-08 Sumitomo Heavy Ind Ltd Removal of cracking catalyst in marine use fuel oil
US6020210A (en) * 1988-12-28 2000-02-01 Miltenvi Biotech Gmbh Methods and materials for high gradient magnetic separation of biological materials
CN1399718A (en) * 1999-04-09 2003-02-26 宇宙硬件最佳技术股份有限公司 Multistage electromagnetic separator for purifying cells, chemicals and protein structures
GB0023385D0 (en) * 2000-09-23 2000-11-08 Eriez Magnetics Europ Ltd Magnetic separator
US20040053136A1 (en) * 2002-09-13 2004-03-18 Bauman William C. Lithium carbide composition, cathode, battery and process
GR1006221B (en) * 2006-04-27 2009-01-13 Βασιλειος Γεωργιου Νικολοπουλος Web-based energy search machine and method for decision making on the optimal management and pricing evaluation of energy resources.
USH2238H1 (en) 2006-07-26 2010-05-04 The United States Of America As Represented By The Secretary Of The Navy Magnetic particle separator
WO2009029613A1 (en) * 2007-08-31 2009-03-05 The Board Of Regents, The University Of Texas System Apparatus for performing magnetic electroporation
DE102008047852B4 (en) * 2008-09-18 2015-10-22 Siemens Aktiengesellschaft Separator for separating a mixture of magnetizable and non-magnetizable particles contained in a suspension carried in a separation channel
WO2011032149A2 (en) * 2009-09-14 2011-03-17 Board Of Regents, The University Of Texas System Bipolar solid state marx generator
CN102179386B (en) * 2011-01-17 2013-04-24 中国石油大学(北京) Pipeline cleaner ball receiving device with high gradient magnetic separator and powder separation method
US9598957B2 (en) 2013-07-19 2017-03-21 Baker Hughes Incorporated Switchable magnetic particle filter
CN103586126A (en) * 2013-11-05 2014-02-19 合肥工业大学 Magnetic trap for capturing magnetic impurities in high-temperature liquid metal coolant
US9352331B1 (en) * 2015-09-26 2016-05-31 Allnew Chemical Technology Company Filters for paramagnetic and diamagnetic substances
CN107309082B (en) * 2017-07-19 2021-01-12 北京科技大学 Method for preparing high-purity iron oxide from dust removed by superconducting high-gradient magnetic separation converter
RU2717817C1 (en) * 2019-09-16 2020-03-25 Федеральное государственное унитарное предприятие "Научно-исследовательский технологический институт имени А.П. Александрова" Highly gradient magnetic filter with a rigid matrix
CN114749272B (en) * 2022-04-18 2022-12-13 湖南中科电气股份有限公司 Scrap steel magnetic separation system and method

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB557214A (en) * 1942-04-30 1943-11-10 Herbert Huband Thompson Improvements in or relating to magnetic separators
US2925650A (en) * 1956-01-30 1960-02-23 Pall Corp Method of forming perforate metal sheets
GB1190329A (en) * 1968-04-23 1970-05-06 M E L Equipment Co Ltd Magnetic Filter
US3567026A (en) * 1968-09-20 1971-03-02 Massachusetts Inst Technology Magnetic device
GB1377511A (en) * 1971-06-25 1974-12-18 Philips Electronic Associated Magnetic filter
US4116829A (en) * 1974-01-18 1978-09-26 English Clays Lovering Pochin & Company Limited Magnetic separation, method and apparatus
GB1501396A (en) * 1974-07-19 1978-02-15 English Clays Lovering Pochin Magnetic separators
DE2628095C3 (en) * 1976-06-23 1981-08-06 Siemens AG, 1000 Berlin und 8000 München Magnetic separation device
GB1599823A (en) * 1978-02-27 1981-10-07 English Clays Lovering Pochin Separating chamber for a magnetic separator
JPS55111813A (en) * 1979-02-21 1980-08-28 Nec Corp Magnetic separator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004034541B3 (en) * 2004-07-16 2006-02-02 Forschungszentrum Karlsruhe Gmbh High-gradient magnetic

Also Published As

Publication number Publication date
DE3039171A1 (en) 1982-05-13
EP0050281A1 (en) 1982-04-28
SU1069608A3 (en) 1984-01-23
CA1187007A (en) 1985-05-14
JPS6123005B2 (en) 1986-06-04
US4432873A (en) 1984-02-21
DE3039171C2 (en) 1985-11-28
JPS5794317A (en) 1982-06-11

Similar Documents

Publication Publication Date Title
EP0050281B1 (en) Separation device in the high-gradient magnetic separation technique
DE2628095C3 (en) Magnetic separation device
DE3610303C1 (en) Methods and devices for sorting paramagnetic particles in the fine and fine grain range in a strong magnetic field
DE102010061952A1 (en) Device for separating ferromagnetic particles from a suspension
CH657541A5 (en) METHOD AND DEVICE FOR SEPARATING MAGNETIC FROM UNMAGNETIC PARTICLES.
EP0111825B1 (en) Device used in the high gradient magnetic separation technique for separating magnetizable particles
EP1198296B1 (en) High gradient magnetic separator
DE102008047842A1 (en) Apparatus and method for separating ferromagnetic particles from a suspension
DE2615580C2 (en) Magnetic separator for separating magnetizable particles from a flowing fluid
DE3123229C2 (en)
DE2624090C2 (en) Magnetic separator
EP0242773B1 (en) Method for the continuous separation of magnetizable particles, and device therefor
DE2929468C2 (en)
DE3827252C2 (en)
DE3620660A1 (en) DESALINATION FILTRATION DEVICE
DE2501858C2 (en) Device for separating magnetizable particles suspended in a liquid
EP0815941A1 (en) High gradient magnetic separator
DE3247557C2 (en) Device for high gradient magnetic separation
DE68922108T2 (en) Device for the continuous purification of liquids, especially water, by means of high gradient magnetic filtration.
DE69220930T2 (en) MAGNETIC CUTTER
DE2738649C2 (en) System for separating the finest magnetizable particles
DE3316443C2 (en)
DE2461760C3 (en) Free-fall magnetic separator
DE2428273C3 (en) Magnetic cutter for sorting fabric mix
DE2923378A1 (en) Magnetic separator for suspended particles in circulating fluid - in conventional or nuclear power plant

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19811009

AK Designated contracting states

Designated state(s): CH FR GB IT SE

ITF It: translation for a ep patent filed

Owner name: STUDIO JAUMANN

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): CH FR GB IT LI SE

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19871010

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19871031

Ref country code: CH

Effective date: 19871031

GBPC Gb: european patent ceased through non-payment of renewal fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19880630

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19881118

EUG Se: european patent has lapsed

Ref document number: 81108146.2

Effective date: 19880707