EP0049340A1 - Method of determining the cooling power of a quenching medium, especially when quenching steel - Google Patents

Method of determining the cooling power of a quenching medium, especially when quenching steel Download PDF

Info

Publication number
EP0049340A1
EP0049340A1 EP81105887A EP81105887A EP0049340A1 EP 0049340 A1 EP0049340 A1 EP 0049340A1 EP 81105887 A EP81105887 A EP 81105887A EP 81105887 A EP81105887 A EP 81105887A EP 0049340 A1 EP0049340 A1 EP 0049340A1
Authority
EP
European Patent Office
Prior art keywords
test specimen
quenching
hardness
specimen
location
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP81105887A
Other languages
German (de)
French (fr)
Inventor
Joachim Dr.-Ing. Wünning
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of EP0049340A1 publication Critical patent/EP0049340A1/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/56General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering characterised by the quenching agents
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/55Hardenability tests, e.g. end-quench tests

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)
  • Investigating And Analyzing Materials By Characteristic Methods (AREA)

Abstract

For implementing such method, there is used a steel sample having a ratio V/A comprised between 2 and 12 mm (y = volume, A = surface). The hardness of the sample after tempering is determined at least on one spot located under the sample surface where the cooling speed during tempering is approximately proportional to the thermal flux density at the surface (location of the mean integral temperature). Thereafter, the cooling speed //c//c///ct resulting from the measuring values of the hardness by means of the sample characteristics for the temperature deviation //c//c which is appropriate for the tempering, is determined. The formula Q = k.//c//c///ct gives the mean value of the thermal flux density Q at the surface of the sample, which is used as a parameter for the tempering (k = constant proper to materials for samples).

Description

Die Erfindung betrifft ein Verfahren zur Bestimmung der Abschreckwirkung eines eine schroffe Abkühlung von stählerenen Werkstücken bewirkenden Abschreckmediums, insbesondere beim Härten von Stahl, bei dem ein aus Stahl bestehender Probekörper mittels des Abschreckmediums abgeschreckt wird und sodann an dem abgeschreckten Probekörper Härtemessungen vorgenommen werden, aus denen eine für die Abschreckwirkung charakteristische Kenngröße abgeleitet wird. Außerdem bezieht sich die Erfindung auf einen Probekörper zur Durchführung dieses Verfahrens.The invention relates to a method for determining the quenching effect of a quenching medium which brings about a abrupt cooling of steel workpieces, in particular when hardening steel, in which a specimen made of steel is quenched by means of the quenching medium and then hardness measurements are carried out on the quenched specimen, from which a characteristic parameter for the quenching effect is derived. The invention also relates to a test specimen for carrying out this method.

Beim Härten von aus Stahl bestehenden Werkstücken wird in der Regel derart vorgegangen, daß die Werkstücke in einer Ofenkammer auf die Härtetemperatur gebracht und sodann durch ein Abschreckmedium schroff abgekühlt, d.h. abgeschreckt werden. Als Abschreckmedium wird überwiegend Wasser oder Öl verwendet, wobei die Werkstücke dann in entsprechende Wasser- oder Ölbäder eingetaucht werden, doch ist es auch bekannt, zu diesem Zwecke Salzbäder oder insbesondere für sehr große Werkstücke Luft als Abschreckmedium zu verwenden.The hardening of workpieces made of steel is usually carried out in such a way that the workpieces are brought to the hardening temperature in a furnace chamber and then cooled abruptly by a quenching medium, i.e. be deterred. Water or oil is predominantly used as the quenching medium, the workpieces then being immersed in corresponding water or oil baths, but it is also known to use salt baths or, in particular, air as a quenching medium for very large workpieces.

Die Eigenschaften der gehärteten Stahlteile hängen u.a. von den Abschreckbedingungen ab. In der Härtereipraxis wird dabei die sogenannte Abschreckwirkung von Wasser- oder Ölbädern meist lediglich aufgrund empirischer Erfahrungswerte grob beschrieben, beispielsweise durch Begriffe wie "mild" undThe properties of the hardened steel parts depend, among other things. on the quenching conditions. In hardening practice, the so-called quenching effect of water or oil baths is mostly only roughly described on the basis of empirical experience, for example by terms such as "mild" and

"schroff". Die Abschreckwirkung selbst hängt von dem Wärmeübergang zwischen dem Werkstück und dem Abschreckmedium ab und ist deshalb einer genauen Messung nur schwer zugänglich, weil die Wärmeübergangsbedingungen während des Abschreckvorganges starken Änderungen unterworfen sind. Beim Eintauchen eines erwärmten Werkstückes in ein Wasser- oder ölbad ergibt sich in dem hohen Temperaturbereich (von ca. 600 bis 8000 C) zunächst eine sogenannte Filmphase, während der sich ein Film verdampften Abschreckmediums auf der Werkstückoberfläche bildet, der den Wärmeübergangswert bestimmt. Bei absinkender Oberflächentemperatur setzt beispielsweise in der Gegend von 500 C in der Nähe der Werkstückoberfläche ein Siedevorgang ein, der eine Blasenbildung zur Folge hat, die ihrerseits einen Rühreffekt hervorruft, durch den der Wärmeübergangswert steil auf einen extrem hohen Wert ansteigt, um nach einer gewissen Haltezeit auf einen Wert abzusinken, der niedriger liegt als während der Filmphase und dessen Größe dadurch bestimmt ist, daß nunmehr der Wärmeaustausch zwischen der Werkstückoberfläche und dem umgebenden Medium bis zur vollständigen Auskühlung des Werkstückes durch Konvektion stattfindet."gruff". The quenching effect itself depends on the heat transfer between the workpiece and the quenching medium and is therefore difficult to obtain an accurate measurement because the heat transfer conditions are subject to strong changes during the quenching process. Upon immersion of a heated workpiece in a water or oil bath first a so-called film phase is obtained in the high temperature range (from about 600 to 800 0 C), during which a film vaporized quenching to form on the workpiece surface, which determines the heat transfer characteristic. When the surface temperature drops, for example, a boiling process begins in the area of 500 C near the workpiece surface, which results in the formation of bubbles, which in turn causes a stirring effect, by which the heat transfer value rises steeply to an extremely high value, after a certain holding time to decrease to a value which is lower than during the film phase and whose size is determined by the fact that the heat exchange between the workpiece surface and the surrounding medium now takes place until the workpiece is completely cooled by convection.

Um trotz dieser grundsätzlichen. technologischen Schwierigkeiten die Abschreckwirkung von Abschreckbädern vergleichsweise abschätzen zu können, wird in der Praxis häufig die sogenannte H-Wert-Methode nach Grossmann benutzt (vgl. beispielsweise "Härtereitechnische Mitteilungen" Band 6, Heft 2 (1953, Seiten 9 ff.). Bei diesem Verfahren wird in starker Vereinfachung des Abschreckvorganges die sogenannte Abschreckintensität H mit einem mittleren Wärme- übergangskoeffizienten für den Wärmeübergang von dem Werkstück auf das Abschreckmedium definiert. Die Messung des H-Wertes erfolgt meist indirekt über Härtemessungen an einem in dem Härtemedium abgeschreckten Stahl-Probekörper. Dabei geht das Verfahren von der Vorstellung aus, daß innerhalb verschiedener Querschnitte von unterschiedlich dimensionierten gehärteten Werkstücken desselben Stahles alle Punkte mit gleichen Härtewerten während des Abschreckens auch die gleiche Abkühlungsgeschwindigkeit erfahren haben. Mit dem aus den Härtemessungen gewonnenen H-Wert kann sodann eine Umrechnung auf andere Werkstückformen und -querschnitte erfolgen. Diese Methode ist aus prinzipiellen Gründen verhältnismäßig ungenau; auch stellt der H-Wert nur einen Richtwert dar, der nicht direkt überprüft werden kann. Bei einem anderen bekannten Verfahren, der sogenannten Silber- kugel-Methode,wird ein insbesondere kugelförmiger Probekörper aus Silber (gegebenenfalls auch aus Kupfer) in das Abschreckmedium eingebracht, wobei der Temperaturverlauf während des Abschreckvorganges gemessen wird. Wegen der hohen Wärmeleitfähigkeit von Silber (gegebenenfalls Kupfer) treten in einem Probekörper bis etwa 20 mm Wandstärke selbst bei hoher Abschreckwirkung nur geringe Temperaturunterschiede auf. Es kann deshalb aus dem Abkühlungsverlauf der Wärmeübergang an der Oberfläche des Probekörpers einfach berechnet werden:

Figure imgb0001

  • Q - Wärmestromdichte an der Oberfläche in MW/m2
  • c - spezifische Wärmekapazität des Werkstoffs in J/(kg.K) 8- Dichte des Werkstoffs in kg/m 3
  • V - Volumen der Probe in m3
  • A - Oberfläche der Probe in m2
  • Δϑ- Temperaturintervall in K
  • Δt- Zeitintervall in s
  • k - Faktor für bestimmte Probe in 10-6.J/(m2.K)
To despite this fundamental. The so-called H-value method according to Grossmann is often used in practice to be able to comparatively estimate the technical difficulties of the quenching effect of quench baths (cf. for example "Härtereitechnische Mitteilungen" Vol. 6, No. 2 (1953, pages 9 ff.) To simplify the quenching process, the process is known as the so-called quenching intensity H with an average heat transfer coefficient for the heat transfer from the workpiece to the quenching medium The measurement of the H value is usually carried out indirectly via hardness measurements on a steel specimen quenched in the hardening medium the process is based on the idea that within different cross sections of differently dimensioned hardened workpieces of the same steel, all points with the same hardness values have also experienced the same cooling rate during quenching. With the H value obtained from the hardness measurements, ei ne conversion to other workpiece shapes and cross sections. For fundamental reasons, this method is relatively imprecise; the H-value is only a guideline, which cannot be checked directly. In another known method, the so-called silver ball method, a particularly spherical specimen made of silver (optionally also made of copper) is introduced into the quenching medium, the temperature profile being measured during the quenching process. Because of the high thermal conductivity of silver (possibly copper), only small temperature differences occur in a test specimen with a wall thickness of up to approximately 20 mm, even with a high quenching effect. It is therefore easy to calculate the heat transfer on the surface of the test specimen from the cooling process:
Figure imgb0001
  • Q - heat flux density at the surface in MW / m 2
  • c - specific heat capacity of the material in J / (kg.K) 8- density of the material in kg / m 3
  • V - volume of the sample in m 3
  • A - surface area of the sample in m 2
  • Δϑ- temperature interval in K
  • Δt time interval in s
  • k - factor for specific sample in 10 -6 .J / (m 2 .K)

Die Messung des Temperaturverlaufes kann aber mit der erforderlichen Genauigkeit nur im Laboratorium erfolgen. Auch kann der wesentliche Einfluß von Betriebsbedingungen, wie Abschreckbadumwälzung und -temperatur nicht berücksichtigt werden, während eine indirekte Messung der Wärmestromdichte an der Oberfläche über die Härte des Materials bei Silber und Kupfer nicht möglich ist. Diesem Verfahren kommt deshalb keine betriebstechnische Bedeutung zu.However, the temperature curve can only be measured with the required accuracy in the laboratory. The essential influence of operating conditions such as quench bath circulation and temperature cannot be taken into account, while an indirect measurement of the heat flow density on the surface via the hardness of the material is not possible with silver and copper. This process is therefore of no operational importance.

Aufgabe der Erfindung ist es, ein einfaches unter den praktischen Bedingungen des Härtereibetriebes durchführbares Verfahren zu schaffen, das es gestattet, mit ausreichender Genauigkeit eine für die Wärmeübertragung während des Abschreckvorganges und damit für die Abschreckwirkung unmittelbar charakteristische Kenngröße zu ermitteln, die die Bestimmung des Abkühlungsverlaufes bei Werkstücken verschiedener Form, Abmessungen und Stoffwerte gestattet.The object of the invention is to provide a simple process which can be carried out under the practical conditions of the hardening shop and which allows a characteristic variable which is characteristic of the heat transfer during the quenching process and thus of the quenching effect to be determined with sufficient accuracy and which determines the determination of the cooling process Workpieces of different shapes, dimensions and material values permitted.

Zur Lösung dieser Aufgabe wird, ausgehend von dem eingangs genannten Verfahren, bei dem ein aus Stahl bestehender Probekörper benutzt wird, erfindungsgemäß derart vorgegangen, daß:

  • a) ein Probekörper verwendet wird, bei dem das Verhältnis V/A zwischen 2 und 12 mm liegt (V = Volumen, A = Oberfläche),
  • b) nach dem Abschrecken die Härte des Probekörpers an wenigstens einer Stelle an dem unterhalb der Oberfläche des Probekörpers liegenden Ort bestimmt wird, an dem beim Abschrecken die Abkühlungsgeschwindig- keit angenähert proportional zu der Wärmestromdichte an der Oberfläche ist (Ort der integralen mittleren Temperatur,
  • c) aus den Härtemeßergebnissen mittels der Werkstoffeigenschaften des Probekörpers die zugehörige Abkühlungsgeschwindigkeit Δϑ/Δt in dem für die Abschreckung jeweils wesentlichen Temperaturbereich Δϑ bestimmt wird und
  • d) daraus nach der Formel Q = k.Δϑ/Δt der Mittelwert der Wärmestromdichte Q auf der Oberfläche des Probekörpers berechnet und diese sodann als Kenngröße für die Abschreckwirkung verwendet wird. (k = Materialkonstante für den Probekörper).
To achieve this object, starting from the method mentioned at the beginning, in which a test piece made of steel is used, the procedure according to the invention is such that:
  • a) a test specimen is used in which the ratio V / A is between 2 and 12 mm (V = volume, A = surface),
  • b) the test body at least one location is determined at the region lying below the surface of the specimen location by quenching, the hardness at the quenching the A bkühlungsgeschwindig- ness is approximately proportional to the heat flux at the surface (the location of the integral average temperature
  • c) the associated cooling rate Δϑ / Δt is determined from the hardness measurement results by means of the material properties of the test specimen in the temperature range Δϑ which is essential for the quenching and
  • d) the mean value of the heat flow density Q on the surface of the test specimen is calculated therefrom using the formula Q = k.Δϑ / Δt and this is then used as a parameter for the quenching effect. (k = material constant for the test specimen).

Bei diesem Verfahren wird auf Temperaturmessungen unter Betriebsbedingungen verzichtet; es wird vielmehr durch einfache Härtemessungen an dem abgeschreckten Probekörper ein Mittelwert der Wärmestromdichte Q an der Oberfläche des Probekörpers während des Abschreckvorganges in dem jeweils wesentlichen Temperaturbereich bestimmt.With this method, temperature measurements under operating conditions are dispensed with; it is rather determined by simple hardness measurements on the quenched specimen, an average of the heat flow density Q on the surface of the specimen during the quenching process in the relevant temperature range.

Daß es möglich ist, durch eine solche Härtemessung eine für den Abkühlungsverlauf eindeutig kennzeichnende Wärmestromdichte Q bestimmen, ist keineswegs selbstverständlich. Bei sehr kleinen Probekörpern (V/A < 2 mm) ist nämlich die Kühlgeschwindigkeit, wie sich herausgestellt hat, beim Abschrecken in Flüssigkeiten für genaue Messungen wesentlich zu hoch. Auch hängt der Wärmeübergang von den Probekörperabmessungen ab. Schon beim Umsetzen vom Ofen in das Abschreckbad entsteht ein wesentlich zu hoher Temperaturverlust, wobei das Meßergebnis obendrein noch durch Verzunderung und Entköhlung wesentlich beeinträchtigt und verfälscht würde. Andererseits wird aber bei größeren Probekörpern (V/A > 2 mm) der Temperaturverlauf über den Querschnitt des Probekörpers gesehen, durch die schlechte Wärmeleitfähigkeit des Stahls zunehmend verzerrt. Man konnte daher derartige Probekörper bisher nur zur relativen Kennzeichnung der Abschreckwirkung benutzen, nicht dagegen zur absoluten Bestimmung des Wärmeübergangs. Wegen des verzerrten Temperaturverlaufes stehen die an einzelnen Meßstellen gewonnenen Meßwerte für die Härte in keinem einfachen Zusammenhang mit dem Wärmeübergang an der Oberfläche.It is by no means a matter of course that such a hardness measurement can determine a heat flow density Q that is clearly characteristic of the cooling process. In the case of very small test specimens (V / A <2 mm), the cooling rate, as has been found, is significantly too high for quenching in liquids for precise measurements. The heat transfer also depends on the specimen dimensions. Already when moving from the furnace into the quenching bath, the temperature loss is much too high, and the measurement result would also be significantly impaired and falsified by scaling and decarburization. On the other hand, in the case of larger test specimens (V / A> 2 mm), the temperature profile across the cross-section of the test specimen is seen due to the poor thermal conductivity of the steel increasingly distorted. So far, such test specimens could only be used for the relative identification of the quenching effect, but not for the absolute determination of the heat transfer. Because of the distorted temperature profile, the measured values for hardness obtained at individual measuring points have no simple connection with the heat transfer on the surface.

Die Erfindung hat nun erkannt, daß überraschenderweise es in einem solchen verhältnismäßig großen Probekörper einen Ort (je nach der Gestalt des Körpers eine Fläche, eine Linie oder ein Punkt) gibt, der sich selbst unter den extremen Wärmeübertragungsbedingungen beim Abschrecken in Wasser oder öl nur wenig verlagert, wenn von einer kurzen Anlaufphase abgesehen wird, die härtetechnisch unbedeutend ist und wenn außerdem das Verhältnis Volumen/ Oberfläche (V/A) des Probekörpers in dem Bereich zwischen V/A von 2 bis 12 mm liegt. Dieser unterhalb der Oberfläche des Probekörpers liegende Ort ist dadurch bestimmt, daß an ihm beim Abschrecken die Abkühlungsgeschwindigkeit angenähert proportional zu der Wärmestromdichte an der Oberfläche ist. Es handelt sich deshalb um den Ort der sogenannten integralen mittleren Temperatur, der mittels der Theorie der instationären Wärmeleitvorgänge berechnet werden kann.The invention has now recognized that, surprisingly, in such a relatively large test specimen there is a location (depending on the shape of the body, a surface, a line or a point) which, even under the extreme heat transfer conditions, does little when quenched in water or oil relocated if a short start-up phase is neglected, which is insignificant in terms of hardening technology and if the volume / surface area (V / A) ratio of the test specimen is in the range between V / A of 2 to 12 mm. This location below the surface of the test specimen is determined by the fact that when it is quenched, the cooling rate is approximately proportional to the heat flow density at the surface. It is therefore the location of the so-called integral mean temperature, which can be calculated using the theory of unsteady heat conduction processes.

Da der Temperaturverlauf an diesem Ort der integralen mittleren Temperatur wie bei einer Silber- oder sehr dünnen Stahlprobe nicht verzerrt ist, und lediglich die Abkühlung langsamer als an der Oberfläche verläuft, ergibt eine Härtemessung an diesem Ort einen genauen indirekten Meßwert für die Wärmestromdichte an der Oberfläche.Since the temperature profile at this location of the integral mean temperature is not distorted, as in the case of a silver or very thin steel sample, and only the cooling is slower than at the surface, a hardness measurement at this location gives an exact indirect measurement of the heat flow density at the surface .

Es hat sich als vorteilhaft herausgestellt, wenn ein Probekörper aus einem unlegierten oder schwach legierten Stahl mit ca. 0,4% C verwendet wird, wobei in der Praxis eine größere Anzahl von solchen Probekörpern aus einem einheitlichen Material, d.h. aus einer Schmelze hergestellt werden. Einige dieser Probekörper können dann als Eichkörper verwendet werden. Zu diesem Zweck wird derart vorgegangen, daß der Zusammenhang zwischen der gemessenen Härte und der Abkühlungsgeschwindigkeit des Probekörpers an dem Ort der integralen mittleren Temperatur dadurch bestimmt wird, daß bei einem aus dem gleichen Material bestehenden Eichkörper an dem Ort der integralen mittleren Temperatur zunächst unmittelbar die Abkühlungsgeschwindigkeit Δϑ/Δt während des Abschreckvorganges und sodann die Härte gemessen werden. Zweckmäßig ist es, wenn mittels mehrerer Eichkörper die Eichung bei verschiedenen Härtetemperaturen und gegebenenfalls über unterschiedliche Haltezeiten vorgenommen und daraus ein funktioneller Zusammenhang (Eichkurve) zwischen der Härte und der Abkühlungsgeschwindigkeit Z\9 Δt in einem vorbestimmten Bereiche hergestellt wird.It has proven to be advantageous if a test specimen made of an unalloyed or weakly alloyed steel with approx. 0.4% C is used, whereby in the In practice, a larger number of such test specimens can be produced from a uniform material, ie from a melt. Some of these test pieces can then be used as calibration pieces. For this purpose, the procedure is such that the relationship between the measured hardness and the rate of cooling of the test specimen at the location of the integral mean temperature is determined in that, in the case of a calibration body made of the same material, the rate of cooling is initially immediately at the location of the integral mean temperature Δϑ / Δt during the quenching process and then the hardness are measured. It is expedient if, using a plurality of calibration bodies, the calibration is carried out at different hardness temperatures and, if appropriate, over different holding times, and a functional relationship (calibration curve) is established between the hardness and the cooling rate Z \ 9 Δt in a predetermined range.

Bei geringeren Ansprüchen an die Genauigkeit kann auf diese Eichung verzichtet werden, wenn die Härtbarkeit des Probekörperwerkstoffes (Härte R = f(Δϑ/Δt) z.B. aus dem sogenannten Jominy-Versuch oder aus Zeit-Temperatur-Umwandlungs-Schaubildern genügend genau bekannt ist.If the demands on accuracy are lower, this calibration can be dispensed with if the hardenability of the test specimen material (hardness R = f (Δϑ / Δt) e.g. from the so-called Jominy test or from time-temperature conversion diagrams is known sufficiently precisely.

Besonders einfache Verhältnisse ergeben sich, wenn für die Eichung Abschreckmedien verwendet werden, bei denen in dem für die Abschreckung jeweils wesentlichen Temperaturbereich die Wärmestromdichte Q im wesentlichen konstant ist.Particularly simple ratios result if quenching media are used for the calibration, in which the heat flow density Q is essentially constant in the temperature range which is essential for the quenching.

Da bei der indirekten Messung über die Härte an dem Ort der integralen mittleren Temperatur lediglich ein Mittelwert der Wärmestromdichte Q und damit des Wärmeüberganges während des für die Abschreckung jeweils wesentlichen Temperaturbereiches des Werkstoffes des Probekörpers bestimmt wird, kann es zweckmäßig sein, an dem abgeschreckten Probe- und/oder Eichkörper zusätzlich die Randhärte und/oder die Kernhärte (in der Probenmitte) zu bestimmen.. Daraus ergeben sich Rückschlüsse auf Veränderungen der Wärmestromdichte, beispielsweise beim Ubergang von der Film- zu der Siedephase.Since in the indirect measurement of the hardness at the location of the integral mean temperature, it is only a means value of the heat flow density Q and thus the heat transfer is determined during the temperature range of the material of the test specimen which is essential for the quenching, it may be expedient to add the edge hardness and / or the core hardness (in the middle of the specimen) to the quenched specimen and / or calibration specimen. to determine .. This leads to conclusions on changes in the heat flow density, for example during the transition from the film to the boiling phase.

Für die praktische Durchführung des Verfahrens hat es sich als vorteilhaft erwiesen, daß ein scheibenförmiger Probekörper mit einer Dicke S von 6 bis 24 mm und eher Breite L von L > 6.S verwendet wird, wobei die Härte auf einer im Abstand X von 0,21 S unter einer Stirnfläche liegenden, entsprechend freigelegten ebenen Querschnittsfläche gemessen wird. Diese Querschnittsfläche bildet den für diesen geometrisch einfachen Probekörper berechneten Ort der integralen mittleren Temperatur. Zur Erleichterung der Handhabung kann dabei ein scheibenförmiger Probekörper von polygonaler Gestalt verwendet werden.For the practical implementation of the method, it has proven to be advantageous to use a disk-shaped test specimen with a thickness S of 6 to 24 mm and rather a width L of L> 6.S, the hardness being at a distance X of 0, 21 S is measured under an end face, correspondingly exposed flat cross-sectional area. This cross-sectional area forms the location of the integral mean temperature calculated for this geometrically simple specimen. A disk-shaped specimen of polygonal shape can be used to facilitate handling.

Zur Durchführung des Verfahrens kann aber auch ein zylindrischer Probekörper mit einem Durchmesser D von 8 bis 48 mm und einer Länge L von L>3D benutzt werden, wobei die Härte dann auf einer im Abstand X von 0,15D unter der Umfangsfläche liegenden, entsprechend freigelegten Zylinderfläche gemessen wird, die den vorausberechneten Ort der integralen mittleren Temperatur bildet.To carry out the method, however, a cylindrical test specimen with a diameter D of 8 to 48 mm and a length L of L> 3D can also be used, the hardness then being appropriately exposed at a distance X of 0.15D below the peripheral surface Cylinder surface is measured, which forms the pre-calculated location of the integral mean temperature.

In ähnlicher Weise kann schließlich auch ein kugelförmiger Probekörper mit einem Durchmesser D von 12 bis 72 mm Verwendung finden, bei dem die Härte auf einer im Abstand X von 0,11D unter der Oberfläche liegenden entsprechend freigelegten Kugelfläche gemessen wird, die hier den Ort der integralen mittleren Temperatur bildet.In a similar way, a spherical test specimen with a diameter D of 12 to 72 mm can finally be used, in which the hardness is at a distance X of 0.11D below the surface correspondingly exposed spherical surface is measured, which here forms the location of the integral mean temperature.

Gegenstand der Erfindung ist neben dem geschilderten Verfahren auch ein Probekörper zur Durchführung dieses Verfahrens, der aus unlegiertem oder schwach legiertem Stahl besteht und bei dem das Verhältnis V/A zwischen 2 und 12 mm liegt (V = Volumen, A = Oberfläche). Dieser Probekörper kann in verschiedener Ausführungsform entweder eine scheibenförmige, zylindrische oder kugelförmige Gestalt aufweisen, wie dies Gegenstand von Unteransprüchen ist.In addition to the described method, the invention also relates to a test specimen for carrying out this method, which consists of unalloyed or weakly alloyed steel and in which the ratio V / A is between 2 and 12 mm (V = volume, A = surface). In various embodiments, this test specimen can have either a disk-shaped, cylindrical or spherical shape, as is the subject of subclaims.

In der Zeichnung sind das erfindungsgemäße Verfahren und ein Eichkörper zur Durchführung dieses Verfahrens veranschaulicht. Es zeigen:

  • Fig. 1 einen scheibenförmigen Eichkörper in der Draufsicht,
  • Fig. 2 den Eichkörper nach Fig. 1, geschnitten längs der Linie II - II der Fig. 1, in einer Seitenansicht,
  • Fig. 3 ein Diagramm zur Veranschaulichung der Abkühlungsgeschwindigkeit an dem Ort der integralen mittleren Temperatur bei einem dem Eichkörper nach Fig. 1 entsprechenden Probekörper, und
  • Fig. 4 ein Diagramm zur Veranschaulichung des Zusammenhanges zwischen der an dem Ort der integralen mittleren Temperatur bei einem dem Eichkörper nach Fig. 1 entsprechenden Probekörper gemessenen Härte und der mittleren Wärmestromdichte Q an der Oberfläche des Probekörpers.
The drawing shows the method according to the invention and a calibration body for carrying out this method. Show it:
  • 1 is a disc-shaped calibration body in plan view,
  • 2, the calibration body according to FIG. 1, cut along the line II - II of FIG. 1, in a side view,
  • FIG. 3 shows a diagram to illustrate the cooling rate at the location of the integral mean temperature in a specimen corresponding to the calibration body according to FIG. 1, and
  • 4 shows a diagram to illustrate the relationship between the hardness measured at the location of the integral mean temperature for a test specimen corresponding to the calibration specimen according to FIG. 1 and the mean heat flow density Q on the surface of the specimen.

Zur Bestimmung der Abschreckwirkung, beispielsweise eines Wasser- oder Ölbades, wird eine größere Anzahl von Probekörpern aus einheitlichem Werkstoff, und zwar unlegiertem bis schwach legiertem Stahl mit ca. 0,4% C, aus einer Schmelze hergestellt. Einige dieser Proben werden als Eichkörper benutzt, auf jeweilige Härtetemperatur erwärmt und in Abschreckbädern unterschiedlicher Abschreckwirkung gehärtet. Diese Eichkörper 1 sind in der aus den Fig. 1 und 2 ersichtlichen Weise - ebenso wie die entsprechenden Probekörper - in Gestalt dünner sechseckiger Scheiben ausgebildet, für die die Stärke S zwischen 4 und 24 mm und die Breite (oder der Durchmesser) L > 6.S sind. In die Eichkörper 1 ist in einem Abstand X = 0,21 S unterhalb einer Stirnfläche seitlich wenigstens eine Bohrung 2 eingearbeitet, die etwa bis zum Mittelpunkt der Scheibe ragt und in die ein Thermoelement 3 eingesteckt ist.To determine the quenching effect, for example of a water or oil bath, a larger number of test specimens are made from a single material, namely unalloyed to weakly alloyed steel with approx. 0.4% C, from a melt. Some of these samples are used as calibration bodies, heated to the respective hardening temperature and hardened in quenching baths with different quenching effects. These calibration bodies 1 are formed in the manner shown in FIGS. 1 and 2 - just like the corresponding test bodies - in the form of thin hexagonal disks for which the thickness S is between 4 and 24 mm and the width (or diameter) L> 6 .S are. At least one bore 2 is laterally machined into the calibration body 1 at a distance X = 0.21 S below an end face, which extends approximately to the center of the disk and into which a thermocouple 3 is inserted.

Beim Abschrecken des auf die jeweilige Härtetemperatur erwärmten Eichkörpers 1 wird mittels des Thermoelementes 3 der Temperaturverlauf an einer Stelle gemessen, die in dem erwähnten Abstand von 0,21 S von der oberen Stirnfläche des Eichkörpers liegt und sich damit auf einer Querschnittsfläche befindet, die. als der sogenannte Ort der integralen mittleren Temperatur bezeichnet ist und sich dadurch auszeichnet, daß auf ihr die Abkühlungsgeschwindig- keit angenähert proportional zu der Wärmestromdichte Q an der Oberfläche während der für die Abschreckwirkung wesentlichen Zeitspanne ist. Dieser gemessene Temperaturverlauf während des Abschreckvorganges in dem härtetechnisch kritischen Temperaturbereich ist in Fig. 3 dargestellt. Das Diagramm zeigt, daß während der Kühlzeit Δt für den härtetechnisch kritischen Temperaturbereich A ϑ ein im wesentlichen linearer Zusammenhang zwischen der Kühlzeit t und derTemperatur ϑ besteht, während der Temperaturverlauf auf der Oberfläche (am Rand) und in der Scheibenmitte (im Kern) von dieser linearen Abhängigkeit wesentlich abweicht.When the calibrated body 1, which has been heated to the respective hardening temperature, is quenched, the temperature curve is measured by means of the thermocouple 3 at a point which is at the aforementioned distance of 0.21 S from the upper end face of the calibrated body and is therefore on a cross-sectional area which. is referred to as the so-called place of the integral average temperature and thus is characterized in that on it the A is bkühlungsgeschwindig- ness is approximately proportional to the heat flow density Q at the surface during quenching are essential for the period of time. This measured temperature profile during the quenching process in the hardness critical Temperature range is shown in Fig. 3. The diagram shows that there is an essentially linear relationship between the cooling time t and the temperature während during the cooling time Δt for the thermally critical temperature range A ϑ, while the temperature profile on the surface (at the edge) and in the center (in the core) of this linear dependence differs significantly.

Aus der Kühlzeit A t für den härtetechnisch kritischen Temperaturbereich Δϑ, den Stoffwerten und den Abmessungen des Probekörpers kann der Mittelwert der Wärmestromdichte Q nach der Beziehung Q = K.Δϑ/Δt unmittelbar abgeleitet werden.The mean value of the heat flow density Q can be derived directly from the cooling time A t for the thermally critical temperature range Δ krit, the material values and the dimensions of the test specimen according to the relationship Q = K.Δϑ / Δt.

Außerdem wird bei dem Eichkörper 1 nach der Abschreckung in der Mitte eine Ausfräsung 4 bis auf die Tiefe des Ortes der integralen mittleren Temperatur, d.h. bei dem Eichkörper nach Fig. 1 einer Tiefe von 0,21 S hergestellt, worauf auf dem Grund der Vertiefung die Härte R gemessen wird.In addition, after the quenching in the middle of the calibration body 1, a milling 4 is carried out to the depth of the location of the integral mean temperature, i.e. 1 with a depth of 0.21 S, whereupon the hardness R is measured on the base of the depression.

Aus den so gewonnenen korrespondierenden Q- und R-Werten wird die in Fig. 4 dargestellte Eichkurve aufgestellt.The calibration curve shown in FIG. 4 is set up from the corresponding Q and R values obtained in this way.

Zur betriebsmäßigen Bestimmung der Abschreckwirkung eines bestimmten Abschreckbades oder allgemeinen Abschreckmediums werden nun die eingangs genannten, aus dem gleichen Material wie die Eichkörper bestehenden Probekörper verwendet. Dazu wird jeweils ein Probekörper auf die Härtetemperatur erwärmt und sodann mittels des Abschreckmediums abgeschreckt. Anschließend wird die Vertiefung 4 angebracht und damit der Ort der integralen mittleren Temperatur freigelegt. Aus der an diesem Ort gemessenen Härte R wird über die Eichkurve nach Fig. 4 unmittelbar der entsprechende Wert der mittleren Wärmestromdichte Q für das jeweilige Abschreckmedium abgelesen.For the operational determination of the quenching effect of a specific quench bath or general quenching medium, the test specimens mentioned at the outset, which consist of the same material as the calibration bodies, are now used. For this purpose, a test specimen is heated to the hardening temperature and then quenched using the quenching medium. Then the recess 4 is attached and so that the location of the integral mean temperature is exposed. From the hardness R measured at this location, the corresponding value of the average heat flow density Q for the respective quenching medium is read off directly via the calibration curve according to FIG. 4.

Der Wert der mittleren Wärmestromdichte Q ist eine unmittelbare Kenngröße für die zu erzielende Abschreckwirkung. Für Werkstücke unterschiedlicher Gestalt kann zusammen mit den für das Werkstück .kennzeichnenden Größen (Oberfläche, Gestalt, Wärmeleitfähigkeit etc.) die an dem Werkstück zu erwartende Abschreckwirkung verhältnismäßig genau in an sich bekannter Weise vorausberechnet werden.The value of the average heat flow density Q is a direct parameter for the quenching effect to be achieved. For workpieces of different shapes, the quenching effect to be expected on the workpiece, together with the quantities (surface, shape, thermal conductivity, etc.) which characterize the workpiece, can be predicted relatively precisely in a manner known per se.

Bei geringeren Ansprüchen an die Genauigkeit kann auf die geschilderte Eichung verzichtet werden, wenn die Härtbarkeit des Probenkörperwerkstoffes (Härte R = f (Δϑ/Δt)), z.B. aus dem Jominy-Versuch oder aus Zeit-Temperatur-Umwandlungs-Schaubildern genau genug bekannt ist. Dann wird bei der Bestimmung .der Abschreckwirkung eines , Abschreckmediums derart vorgegangen, daß wiederum in der geschilderten Weise bei dem abgeschreckten Probekörper die Härte R an dem Ort der integralen mittleren Temperatur gemessen und daraus zunächst die Abkühlungsgeschwindigkeit Δϑ/Δt an diesem Ort bestimmt wird. Diese kann sodann ihrerseits nach der Beziehung Q = K.Δϑ/Δt in den entsprechenden Q-Wert umgerechnet werden.If the accuracy requirements are lower, the calibration described can be dispensed with if the hardenability of the specimen material (hardness R = f (Δϑ / Δt)), e.g. is well known from the Jominy experiment or from time-temperature conversion diagrams. The quenching effect of a quenching medium is then determined in such a way that the hardness R at the location of the integral mean temperature is again measured in the manner described for the quenched test specimen and the cooling rate Δϑ / Δt at this location is first determined therefrom. This in turn can then be converted into the corresponding Q value according to the relationship Q = K.Δϑ / Δt.

AusführungsbeispielEmbodiment

Probe- und Eichkörperform: Scheibe, sechseckig, wegen der Handhabung Abmessungen: S = 12,5 mm; L = 75 mm Meßfläche: X = 2,6 mm unter der Oberfläche in Proben- bzw. EichkörpermitteSpecimen and calibration body shape: disk, hexagonal, due to handling Dimensions: S = 12.5 mm; L = 75 mm measuring surface: X = 2.6 mm below the surface in the middle of the sample or calibration body

Werkstoff: 37 Mn Si 5 (0,37 % C, 1,2 % Mn, 1,2 % Si) spez. Wärmekapazität (650 oC, unterkühlter Austenit) :

Figure imgb0002
Dichte: δ = 7 800 kg/m3 Volumen/Oberfläche (ohne Kanten): V/A = S/2 = 0,00625 m Probenfaktor: k = 10-6.cδ. V/A = 0,034 Härtetemperatur: 850°C / 30 MinutenMaterial: 37 Mn Si 5 (0.37% C, 1.2% Mn, 1.2% Si) spec. Heat capacity (650 oC, supercooled austenite):
Figure imgb0002
Density: δ = 7,800 kg / m 3 volume / surface (without edges): V / A = S / 2 = 0.00625 m Sample factor: k = 10 -6 .cδ. V / A = 0.034 hardening temperature: 850 ° C / 30 minutes

Eichversuch 1 (Öl mit geringer Bewegung)

Figure imgb0003
Figure imgb0004
Figure imgb0005
Eichversuch 2 (Öl mit starker Umwälzung) Δϑ/Δt (850→600 °C) = 25 K/s Q2 = 0,039.25 = 0,85 MW/m 2 R2 = 48 HRC Eichversuch 3 (Wasser)
Figure imgb0006
Figure imgb0007
Figure imgb0008
Mit diesen drei Meßwertpaaren (gegf. auch mehr) wurde die Eichkurve für die gesamte Probenmenge nach Fig. 4 ermittelt.Calibration test 1 (oil with little movement)
Figure imgb0003
Figure imgb0004
Figure imgb0005
Calibration test 2 (oil with strong circulation) Δϑ / Δt (850 → 600 ° C) = 25 K / s Q 2 = 0.039.25 = 0.85 MW / m 2 R 2 = 48 HRC calibration test 3 (water)
Figure imgb0006
Figure imgb0007
Figure imgb0008
The calibration curve for the entire sample quantity according to FIG. 4 was determined using these three pairs of measured values (if necessary also more).

Die Unsicherheit des Q-Wertes als Folge einer eventuellen Verlagerung des Ortes der integralen mittleren Temperatur (ΔX = + 0,4 mm) sowie anderer Fehler beträgt etwa + 10 %, was ein praktisch völlig ausreichendes Ergebnis darstellt. Mit dem Verfahren kann die Abschreckwirkung mit einer objektiven und absoluten Meßgröße vorgegeben und im Betrieb kontrolliert werden. Die Härtestreuung kann vermindert und in bestimmten Fällen der Legierungsanteil im Stahl abgesenkt werden.The uncertainty of the Q value as a result of a possible shift in the location of the integral mean temperature (ΔX = + 0.4 mm) and other errors is about + 10%, which is a practically completely sufficient result. With the method, the quenching effect can be specified with an objective and absolute measured variable and checked during operation. The spread of hardness can be reduced and in certain cases the alloy content in the steel can be reduced.

Ein Eichversuch ist ausreichend, wenn Probekörper aus einheitlichem Material, aber unterschiedlicher Stärke, gleichzeitig in einem Abschreckmedium abgeschreckt werden.A calibration test is sufficient if test specimens made of uniform material but of different thickness are quenched in a quenching medium at the same time.

Als Probe- und Eichkörper können grundsätzlich auch andere geometrisch einfach gestaltete Körper verwendet werden, die ohne Schwierigkeit eine Vorausberechnung der Lage des Ortes der integralen mittleren Temperatur gestatten. Bevorzugt werden Zylinder und Kugeln, wobei bei dem zylindrischen Probekörper der Durchmesser D zwischen 8 und 48 mm und die Länge L größer als 3.D sein müssen, während der Ort der integralen mittleren Temperatur auf einer Zylinderfläche im Abstand X = 0,15 D von der Außenumfangsfläche liegt. Bei einem kugelförmigen Probekörper kommt ein Durchmesserbereich von D = 12 bis 72 mm infrage. Der Ort der integralen mittleren Temperatur ist eine Kugelfläche , die im Abstand X = 0,11 D von der Oberfläche liegt.Basically, other geometrically simple bodies can also be used as test and calibration bodies, which allow the location of the location of the integral mean temperature to be calculated without difficulty. Cylinders and balls are preferred, the diameter D between 8 and 48 mm and the length L being greater than 3. D for the cylindrical test specimen, while the location of the integral mean temperature on a cylinder surface at a distance X = 0.15 D from the outer peripheral surface. In the case of a spherical test specimen, a diameter range of D = 12 to 72 mm can be used. The location of the integral mean temperature is a spherical surface that is at a distance X = 0.11 D from the surface.

Bei einem scheiben- und zylinderförmigen Probekörper kann der Wärmefluß durch die Umfangsfläche bzw. die Stirnfläche vernachlässigt werden, wenn die angegebenen Mindestmaße für den Wert L eingehalten werden. Der Abstand X des Ortes der integralen mittleren Temperatur verschiebt sich dabei unter praktischen Bedingungen um maximal + 15%. Mit der Scheibenform für den Probekörper wird wegen des geringsten Querschnittes die höchste Genauigkeit erreicht, jedoch kommen aus praktischen Erwägungen auch die anderen Probekörperformen in Frage.In the case of a disk-shaped and cylindrical test specimen, the heat flow through the peripheral surface or the end surface can be neglected if the specified minimum dimensions for the value L are observed. The distance X of the location of the integral mean temperature shifts under practical conditions by a maximum of + 15%. With the disk shape for the test specimen, the highest accuracy is achieved due to the smallest cross-section, but for practical reasons the other test specimen shapes are also possible.

Um den Kanteneinfluß bei Probekörpern mit kleinerem L zu vermindern, kann bei einem scheibenförmigen Probekörper die Umfangsfläche wärmeisoliert werden, was in gleichem Maße auch für die Stirnfläche eines zylindrischen Probekörpers gilt. Diese Wärmeisolation muß insoweit wärmebeständig sein, daß sie dem Abschreckvorgang standhält. Sie kann beispielsweise aus einer Keramikschicht,aus Asbest- oder Glasfasergewebe und dergl. bestehen.In order to reduce the edge influence on test specimens with a smaller L, the circumferential surface of a disk-shaped test specimen can be thermally insulated, which also applies to the end face of a cylindrical test specimen. This heat insulation must be heat-resistant to the extent that it can withstand the quenching process. It can consist, for example, of a ceramic layer, of asbestos or glass fiber fabric and the like.

Claims (16)

1. Verfahren zur Bestimmung der Abschreckwirkung eines eine schroffe Abkühlung von stählernen Werkstücken bewirkenden Abschreckmediums, insbesondere beim Härten von Stahl, bei dem ein aus Stahl bestehender Probekörper mittels des Abschreckmediums abgeschreckt wird und sodann an dem abgeschreckten Probekörper Härtemessungen vorgenommen werden, aus denen eine für die Abschreckwirkung charakteristische Kenngröße abgeleitet wird, dadurch gekennzeichnet, daß a) ein Probekörper verwendet wird, bei dem das Verhältnis V/A zwischen 2 und 12 mm liegt (V = Volumen, A - Oberfläche), b) nach dem Abschrecken die Härte des Probekörpers an wenigstens einer Stelle an dem unterhalb der Oberfläche des Probekörpers liegenden Ort bestimmt wird, an dem Abschrecken die Abkühlungsgeschwindigkeit angenähert proportional zu der Wärmestromdichte an der Oberlfäche ist (Ort der integralen mittleren Temperatur, c) aus den Härtemeßergebnissen mittels der Werkstoffeigenschaften des Proberkörpers die zugehörige Abkühlungsgeschwindigkeit Δϑ/Δt in dem für die Abschreckung jeweils wesentlichen Temperaturbereich Δϑ bestimmt wird und d) daraus nach der Formel Q = k.Δϑ/Δt der Mittelwert der Wärmestromdichte Q auf der Oberfläche des Probekörpers berechnet und diese sodann als Kenngröße für die Abschreckwirkung verwendet wird (k = Materialkonstante für den Probekörper). 1.Procedure for determining the quenching effect of a quenching medium which brings about a sudden cooling of steel workpieces, in particular when hardening steel, in which a test specimen made of steel is quenched by means of the quenching medium and then hardness measurements are carried out on the quenched specimen, from which one is carried out for the Quenching characteristic characteristic is derived, characterized in that a) a test specimen is used in which the ratio V / A is between 2 and 12 mm (V = volume, A - surface), b) after quenching, the hardness of the test specimen is determined at at least one location at the location below the surface of the specimen, at which quenching the cooling rate is approximately proportional to the heat flow density at the surface (location of the integral mean temperature, c) the associated cooling rate Δϑ / Δt is determined from the hardness measurement results by means of the material properties of the test body in the temperature range Δϑ which is essential for the quenching and d) the mean value of the heat flow density Q on the surface of the test specimen is calculated therefrom according to the formula Q = k.Δϑ / Δt and this is then used as a parameter for the quenching effect (k = material constant for the test specimen). 2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß ein Probekörper aus einem unlegierten oder schwach legierten Stahl mit ca. 0,4% C verwendet wird.2. The method according to claim 1, characterized in that a test specimen made of an unalloyed or weakly alloyed steel with approximately 0.4% C is used. 3. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß ein scheibenförmiger Probekörper mit einer Dicke S von 6 bis 24 mm und einer Breite L von L > 6.S verwendet wird und daß die Härte auf einer im Abstand X = 0,21 S unter einer Stirnfläche liegenden, entsprechend freigelegten ebenen Querschnittsfläche gemessen wird.3. The method according to any one of the preceding claims, characterized in that a disc-shaped test specimen with a thickness S of 6 to 24 mm and a width L of L> 6.S is used and that the hardness on a distance X = 0.21 S is measured under an end face, correspondingly exposed flat cross-sectional area. 4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, daß ein scheibenförmiger Probekörper von polygonaler Gestalt verwendet wird.4. The method according to claim 3, characterized in that a disk-shaped specimen of polygonal shape is used. 5. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß ein zylindrischer Probekörper mit einem Durchmesser D von 8 bis 48 mm und einer Länge L von L > 3 D verwendet wird und daß die Härte auf einer im Abstand X = 0,15 D unter der Umfangsfläche liegenden entsprechend freigelegten Zylinderfläche gemessen wird.5. The method according to claim 1 or 2, characterized in that a cylindrical test specimen with a diameter D of 8 to 48 mm and a length L of L> 3 D is used and that the hardness at a distance X = 0.15 D. correspondingly exposed cylinder surface lying under the circumferential surface is measured. 6. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß ein kugelförmiger Probekörper mit einem Durchmesser D von 12 bis 72 mm verwendet wird und die Härte auf einer im Abstand X = 0,11 D unter der Oberfläche liegenden entsprechend freigelegten Kugelfläche gemessen wird.6. The method according to claim 1 or 2, characterized in that a spherical test specimen with a diameter D of 12 to 72 mm is used and the hardness is measured on a correspondingly exposed spherical surface at a distance X = 0.11 D below the surface. 7. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß der Zusammenhang zwischen der gemessenen Härte und der Abkühlungsgeschwindigkeit des Probekörpers an dem Ort der integralen mittleren Temperatur dadurch bestimmt wird, daß bei einem aus gleichem Material bestehenden Eichkörper an dem Ort der integralen mittleren Temperatur zunächst unmittelbar die Abkühlungsgeschwindigkeit Δϑ/Δt während des Abschreckvorganges und sodann die Härte gemessen werden.7. The method according to any one of the preceding claims, characterized in that the relationship between the measured hardness and the cooling rate of the test specimen at the location of the integral mean temperature is determined by the fact that with a calibration body made of the same material at the location of the integral mean temperature first the cooling rate Δϑ / Δt during the quenching process and then the hardness are measured. 8. Verfahren nach Anspruch 7, dadurch gekennzeichnet, daß mittels mehrerer Eichkörper die Eichung bei verschiedenen Härtetemperaturen und gegebenenfalls über unterschiedliche Haltezeiten vorgenommen und daraus ein funktioneller Zusammenhang (Eichkurve) zwischen der Härte und der Abkühlungsgeschwindigkeit Δϑ/Δt in einem vorbestimmten Bereich hergestellt wird.8. The method according to claim 7, characterized in that by means of several calibration bodies, the calibration is carried out at different hardening temperatures and, if appropriate, over different holding times, and a functional relationship (calibration curve) between the hardness and the cooling rate Δϑ / Δt is produced in a predetermined range. 9. Verfahren nach Anspruch 7 oder 8, dadurch gekennzeichnet, daß für die Eichung Abschreckmedien verwendet werden, bei denen in dem für die Abschreckung jeweils wesentlichen Temperaturbereich Δϑ die Wärmestromdichte Q im wesentlichen konstant ist.9. The method according to claim 7 or 8, characterized in that quenching media are used for the calibration, in which the heat flux density Q is substantially constant in the respective temperature range Δ jeweils for the quenching. 10. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß an dem abgeschreckten Probe- und/oder Eichkörper zusätzlich die Randhärte und/oder die Kernhärte (in der Probenmitte) bestimmt werden.10. The method according to any one of the preceding claims, characterized in that the edge hardness and / or the core hardness (in the middle of the sample) are additionally determined on the quenched test and / or calibration body. 11. Probekörper zur Durchführung des Verfahrens nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß er aus unlegiertem oder schwach legiertem Stahl besteht und ein Verhältnis V/A zwischen 2 und 12 mm aufweist (V = Volumen, A = Oberfläche).11. test specimen for performing the method according to any one of the preceding claims, characterized in that it consists of unalloyed or weakly alloyed steel and a ratio V / A between 2 and 12 mm has (V = volume, A = surface). 12. Probekörper nach Anspruch 11, dadurch gekennzeichnet, daß er aus einem schwach legierten Stahl mit etwa 0,4% C besteht.12. Test specimen according to claim 11, characterized in that it consists of a weakly alloyed steel with about 0.4% C. 13. Probekörper nach Anspruch 11 oder 12, dadurch gekennzeichnet, daß er eine scheibenförmige Gestalt mit einer Stärke S von 4 bis 24 mm und einer Breite (Durchmesser L) > 6.S aufweist.13. Test specimen according to claim 11 or 12, characterized in that it has a disk-shaped shape with a thickness S of 4 to 24 mm and a width (diameter L)> 6.S. 14. Probekörper nach Anspruch 11 oder 12, dadurch gekennzeichnet, daß er eine zylinderförmige Gestalt mit einem Durchmesser von 8 bis 48 mm und einer Länge L > 3D aufweist.14. Test specimen according to claim 11 or 12, characterized in that it has a cylindrical shape with a diameter of 8 to 48 mm and a length L> 3D. 15. Probekörper nach Anspruch 11 oder 12, dadurch gekennzeichnet, daß er eine kugelförmige Gestalt mit einem Durchmesser D von 12 bis 72 mm aufweist.15. Test specimen according to claim 11 or 12, characterized in that it has a spherical shape with a diameter D of 12 to 72 mm. 16. Probekörper nach Anspruch 13 oder 14, dadurch gekennzeichnet, daß er im Bereiche der Umfangsfläche bzw. der Stirnfläche eine Wärmeisolation aufweist.16. Test specimen according to claim 13 or 14, characterized in that it has thermal insulation in the region of the peripheral surface or the end face.
EP81105887A 1980-10-04 1981-07-25 Method of determining the cooling power of a quenching medium, especially when quenching steel Withdrawn EP0049340A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3037638 1980-10-04
DE19803037638 DE3037638A1 (en) 1980-10-04 1980-10-04 METHOD FOR DETERMINING THE QUARKING EFFECT OF A QUARKING MEDIUM, IN PARTICULAR WHEN TREATING STEEL

Publications (1)

Publication Number Publication Date
EP0049340A1 true EP0049340A1 (en) 1982-04-14

Family

ID=6113669

Family Applications (1)

Application Number Title Priority Date Filing Date
EP81105887A Withdrawn EP0049340A1 (en) 1980-10-04 1981-07-25 Method of determining the cooling power of a quenching medium, especially when quenching steel

Country Status (3)

Country Link
EP (1) EP0049340A1 (en)
DE (1) DE3037638A1 (en)
WO (1) WO1982001193A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1167548A2 (en) * 2000-06-19 2002-01-02 ALD Vacuum Technologies AG Process and device for determining the cooling effect of a circulating gas atmosphere on workpieces
CZ305469B6 (en) * 2014-03-26 2015-10-14 Technická univerzita v Liberci, Katedra strojírenské technologie Method of determining cooling ability of a medium for particular processed materials including possibility to simulate heat treatment of dimensional parts

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB702378A (en) * 1951-09-20 1954-01-13 Riv Officine Di Villar Perosa Apparatus for determining the cooling power of quenching baths
FR2080270A5 (en) * 1970-02-27 1971-11-12 Mobil Oil France
DE2454400A1 (en) * 1974-11-16 1976-05-20 Kugelfischer G Schaefer & Co End quench tests for through-hardening alloy steels - in which test-piece is inserted in heat insulating jacket

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB702378A (en) * 1951-09-20 1954-01-13 Riv Officine Di Villar Perosa Apparatus for determining the cooling power of quenching baths
FR2080270A5 (en) * 1970-02-27 1971-11-12 Mobil Oil France
DE2454400A1 (en) * 1974-11-16 1976-05-20 Kugelfischer G Schaefer & Co End quench tests for through-hardening alloy steels - in which test-piece is inserted in heat insulating jacket

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Hartereitechnische Mitteilungen, Band 33, Heft 4, 1978, Juli/August Munchen (DE) B. LISCIC: "Der Temperaturgradient auf der Oberflache als Kenngrosse fur de Reale Abschreckintensitat beim Harten", seiten 179-191 *
Hartereitechnische Mitteilungen, Band 6, Heft. 2, 1953 Munchen (DE) U. WYSS: "Auswertungsmoglichkeiten der Hartbarkeitsprufung Nach der Stirnabschreckmethode", seiten 9-40 *
V.D.I. Zeitschrift, Band 118, Heft 8, April 1976 Dusseldorf (DE) T. PELCZYNSKI: "Impol-1-ein Modernes Kuhlmittel fur das Volumetrische Harten von Werkstucken" seiten P9-P12 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1167548A2 (en) * 2000-06-19 2002-01-02 ALD Vacuum Technologies AG Process and device for determining the cooling effect of a circulating gas atmosphere on workpieces
EP1167548A3 (en) * 2000-06-19 2004-01-02 ALD Vacuum Technologies AG Process and device for determining the cooling effect of a circulating gas atmosphere on workpieces
CZ305469B6 (en) * 2014-03-26 2015-10-14 Technická univerzita v Liberci, Katedra strojírenské technologie Method of determining cooling ability of a medium for particular processed materials including possibility to simulate heat treatment of dimensional parts

Also Published As

Publication number Publication date
DE3037638A1 (en) 1982-05-13
WO1982001193A1 (en) 1982-04-15

Similar Documents

Publication Publication Date Title
DE3206359A1 (en) MEASURING ARRANGEMENT FOR A MICROCALORIMETER
DE2515281A1 (en) DEVICE FOR MEASURING POLLUTION OF METAL SURFACES
EP0623818B1 (en) Bomb calorimeter
DE1573486A1 (en) Device for measuring and recording various conversion characteristics of metals
EP0049340A1 (en) Method of determining the cooling power of a quenching medium, especially when quenching steel
DE4135313C2 (en)
DE2315739B2 (en) Concentration chain for rapid quantitative analysis of the content of metallic aluminum in molten Al-containing alloys
DE1598469C2 (en) Device for taking enamel samples
CH627846A5 (en) Method for differential thermal analysis.
DE10030046C1 (en) Determining cooling action of a flowing gas atmosphere on a workpiece comprises using a measuring body arranged in a fixed position outside of the workpiece and heated to a prescribed starting temperature using a heater
EP0232477B1 (en) Process for zone-annealing of metal workpieces
EP2302343B1 (en) Device and method for temperature measurement
DE2329164A1 (en) DEVICE FOR MEASURING LOW THERMAL FLOWS FROM WALLS
EP0130320A1 (en) Method and apparatus for measuring the quenching intensity of liquid quenching baths
DE815706C (en) Heating bench for the thermal investigation of substances
DE3524167C2 (en)
DE2033574B2 (en) Method and device for the rapid determination of the oxygen and carbon content of metal, in particular molten steel
DE2454400C3 (en) Device for investigating the hardenability of well hardening steels
DE3707819C2 (en)
DE2545162C3 (en) Method and apparatus for regulating electroslag remelting of metals
DE2507728A1 (en) METHOD AND DEVICE FOR DETERMINING THE TEMPERATURE WHICH A PHYSICAL APPEARANCE OR CONVERSION TAKES INTO A MATERIAL TO BE TESTED
AT362949B (en) DEVICE FOR GRADIENT HEATING OF WIRE
DE1648682C3 (en) Strain measuring arrangement for continuous measurement and recording as well as for the automatic registration of strain measurements
DE2104835C3 (en) Cylindrical test specimen for a forehead quenching test
DD301024A7 (en) METHOD AND DEVICE FOR DETERMINING THE HEAT-RELATED MATERIAL OF MATERIALS

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT CH FR GB IT NL SE

17P Request for examination filed

Effective date: 19821012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 19840604