EP0048802B1 - Process for controlling the quality of coke - Google Patents
Process for controlling the quality of coke Download PDFInfo
- Publication number
- EP0048802B1 EP0048802B1 EP81105965A EP81105965A EP0048802B1 EP 0048802 B1 EP0048802 B1 EP 0048802B1 EP 81105965 A EP81105965 A EP 81105965A EP 81105965 A EP81105965 A EP 81105965A EP 0048802 B1 EP0048802 B1 EP 0048802B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- coal
- coke
- temperature
- coking
- oven
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000000571 coke Substances 0.000 title claims description 35
- 238000000034 method Methods 0.000 title claims description 19
- 239000003245 coal Substances 0.000 claims description 50
- 238000004939 coking Methods 0.000 claims description 34
- 239000000203 mixture Substances 0.000 claims description 14
- 238000010438 heat treatment Methods 0.000 claims description 13
- 238000005259 measurement Methods 0.000 claims description 10
- 239000011230 binding agent Substances 0.000 claims description 7
- 238000006243 chemical reaction Methods 0.000 description 12
- 239000007789 gas Substances 0.000 description 11
- 238000010411 cooking Methods 0.000 description 6
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 5
- 238000009529 body temperature measurement Methods 0.000 description 5
- 229910052799 carbon Inorganic materials 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 239000002245 particle Substances 0.000 description 4
- 230000007704 transition Effects 0.000 description 4
- 230000008602 contraction Effects 0.000 description 3
- 238000000354 decomposition reaction Methods 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 239000012071 phase Substances 0.000 description 3
- 230000001681 protective effect Effects 0.000 description 3
- 230000002829 reductive effect Effects 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 230000003247 decreasing effect Effects 0.000 description 2
- 238000007872 degassing Methods 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 230000008961 swelling Effects 0.000 description 2
- 238000010998 test method Methods 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 206010000060 Abdominal distension Diseases 0.000 description 1
- 238000005299 abrasion Methods 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 239000010426 asphalt Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 208000024330 bloating Diseases 0.000 description 1
- 210000002421 cell wall Anatomy 0.000 description 1
- 239000003610 charcoal Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 230000010339 dilation Effects 0.000 description 1
- 238000004049 embossing Methods 0.000 description 1
- 230000007717 exclusion Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000013213 extrapolation Methods 0.000 description 1
- 239000007792 gaseous phase Substances 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 238000011545 laboratory measurement Methods 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 238000000197 pyrolysis Methods 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 239000007790 solid phase Substances 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10B—DESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
- C10B57/00—Other carbonising or coking processes; Features of destructive distillation processes in general
- C10B57/04—Other carbonising or coking processes; Features of destructive distillation processes in general using charges of special composition
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10B—DESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
- C10B47/00—Destructive distillation of solid carbonaceous materials with indirect heating, e.g. by external combustion
- C10B47/02—Destructive distillation of solid carbonaceous materials with indirect heating, e.g. by external combustion with stationary charge
- C10B47/10—Destructive distillation of solid carbonaceous materials with indirect heating, e.g. by external combustion with stationary charge in coke ovens of the chamber type
Definitions
- the invention relates to a method for controlling the quality of coke from coal feed mixtures which are coked in the coke oven by indirect heating with the exclusion of air, the coal feed mixture undergoing plasticization during the coking process when passing through the temperature range of 320-550 ° C., which increases with the cooking time shifted from the furnace wall to the center of the furnace.
- Mixtures are usually used for coking. I.e.
- the coking coals are first ground in order to achieve certain different grain sizes.
- the different grain sizes give a grain spectrum that significantly influences the bulk density of the coking coals in the coke oven. It has been shown that optimal grain spectra can usually only be achieved by mixing different ground grain sizes.
- Baking capacity is also of major importance. Baking ability is understood to mean the ability of the coal to change to a plastic state when heated in a vessel which allows the coal to expand freely and to form a baked, lumpy coke when heated further. Coal with good baking power not only provides baked, but even melted coke.
- the baking capacity defined in this way is measured either by the swelling index or by the Roga baking number.
- a coal with a good baking capacity can still produce a less high-quality coke under the operational coking conditions than a poorly baking coal. Therefore, the coking capacity has to be considered in a special way.
- the coking capacity of a coal is assessed either by the dilatometer test or by determining the Grayking coke type. To determine the course of dilation, the change in length of a conical carbon compact is measured at a heating rate of 0.05 ° C / sec.
- the plastic behavior is understood as the ability of the coal to change into a plastic state within the temperature range between about 350 and 550 ° C.
- Modified rotary viscometers are used in the usual methods for measuring plasticity.
- the result of the measurement is not the viscosities of the softened coal mass in the physical sense, but quantities influenced by the apparatus, which are composed of the internal friction of the solid, liquid and gaseous phases and the elasticity variables of these three phases.
- Such measurements are usually laboratory measurements. This also applies to measurements of the degassing behavior, the driving pressure and the shrinkage, which are also used to determine the quality of the coal used.
- the large number of test methods commonly used here, which are commonly used in practice, for determining the amount of coal used and for determining the quality of coke shows that previously, targeted control of the quality of coking coal as the basis for high-quality coke was only possible with multiple measurements and particular difficulties.
- the object of the invention is therefore to simplify the control of the required quality of the input material.
- the invention is based on the consideration that essential parameters for the coke quality have a common effect in a partial area of the coking process. This is the plastic area in further knowledge, which becomes clear when considering the coking process of hard coal in indirectly heated horizontal chamber furnaces.
- Coking produces heating gases that are burned in the heating trains adjacent to the ovens.
- the heat is transferred from the neighboring heating trains through the furnace walls to the furnace lining, i.e. the insert coal mixture, transferred.
- Due to the indirect heating on both sides temperature fields arise with a decreasing temperature level towards the center of the trim.
- the temperature fields are usually symmetrical to the center of the furnace, where the lowest temperature prevails.
- With increasing cooking time the temperature front progresses from the walls to the middle of the oven, accompanied by a steep temperature gradient during the transition from the already coked to the unchanged charcoal.
- This transition area in which all temperatures of 100-1000 ° C are run through, is locally limited and at the beginning of the coking process (pyrolysis) only extends over a few mm in the mainly 450 mm wide furnace chamber.
- the gradual coking of the home carbon takes place, whereby two essential temperature ranges can be distinguished.
- One temperature range extends from about 320-480 ° C. In the temperature range, the coal softens and forms a quasi-plastic state. When through When the temperature range is exceeded, a large number of decomposition and polymerization reactions take place, creating the conditions for integrating inert components and pre-embossing the coke quality.
- the other area is above the reconsolidation of the furnace stock with a contraction maximum around 600 ° C.
- the coke structure is formed with further flavoring of the stock.
- the reactions taking place in both areas are dependent on the type of coal used and the grain size of the feed components, but the invention is based on the fact that the type of coal and grain size are largely predetermined in normal coking plant operation and, for the respective coke quality, rather the dependence of the coking on the operating conditions and The focus is on the pretreatment of the feed or the use of coking agents. I.e. According to the invention, the extent and the uniformity of the reactions taking place in these critical transition areas is of crucial importance.
- the temperature gradient is decisive for the course of these reactions.
- a high temperature gradient means a high local heating rate at which the reactions taking place can only develop inadequately or, depending on their kinetics, are even overflowed. This leads to great inhomogeneity in the reaction process and results in an inhomogeneous coke structure.
- the duration of the plasticity which correlates clearly with the heating rate i.e. decreasing with increasing heating rate is too short.
- the diffusion paths for the released gases increase with increasing width of the plastic zone.
- the gas pressure is maintained over a longer period of time, which can lead to greater homogeneity in the gas bubble distribution as in the previous generation and further reactions of gaseous decomposition products.
- FR-A 752 468 refers to the plastic zone, but the temperature range of 650-750 ° C has been selected. This is the area of reconsolidation with a contraction maximum around 600 ° C. In this area, the coke structure is formed with further flavoring of the stock.
- the reactions taking place in the plastic zone and in the post-plastic area are dependent on the type of coal used and the grain size of the feed components, but the invention is based on the fact that the type of coal and grain size are largely predetermined in normal coking plant operation and rather the dependence on the respective coke quality Coking of the operating conditions and the pretreatment of the input material or the use of coking-active auxiliaries is the main reason. At the same time, the invention is based on the fact that the reactions in the plastic zone largely predetermine the phase of the reconsolidation, but the reverse is not ensured.
- the quality of the coke is therefore controlled in that the distance of the plastic zone from the furnace wall is measured at predetermined time intervals, compared with a setpoint and the deviation from the setpoint by adding preheated coal and / or carbo and / or petrostatic coal binder is balanced.
- the width of the plastic zone is the decisive factor influencing the coke quality.
- Your measurement enables a precise prediction of the coke quality that is set and is therefore to be used as a central control variable for the provision of the components used, the course of the coking process and for the resulting coke quality as a target variable.
- carbo- and / or petro-derived binders reduces the softening temperature of the furnace stock, but hardly changes its reconsolidation temperature. A larger temperature range is created for the plastic zone. This results in a spatial expansion of the plastic zone, so that the essential effects explained above in the duration of the plasticity, in the course of the reactions, in the gas bubble size and the homogeneity of the gas bubble distribution.
- preheated coal according to the invention also results in a reduction in the temperature gradient.
- this causes the plastic area to widen as a function of the distance from the chamber wall, this effect gaining in size and importance with increasing cooking time.
- the lower heating rate associated with the lower temperature gradient is also of great importance for the post-plastic area (contraction maximum at about 600 ° C).
- the mechanical stresses are reduced. This reduces the tendency to crack.
- the output on blast furnace coke increases as a success.
- the abrasion resistance (MIO) and the piece strength (M 4o ) increase according to ISO.
- the average pore diameter of the coke is significantly reduced.
- the average wall thickness of the cell walls of the coke structure increases, which increases the structural strength of the coke.
- the width of the plastic area is measured using the temperature distribution in the furnace stock. I.e. Temperature measurements are carried out at closely spaced intervals from the chamber wall to the center of the chamber. The resulting temperature values are compared with the temperature setpoints that determine the minimum width of the plastic area. If the temperature falls below the specified target temperature, coal binders and / or preheated coal are added to the feed mixture in subsequent furnace batches until the desired target temperatures (minimum temperatures) are reached in the furnace. Corresponding to the plastic area that changes during the coking process, the target temperatures corresponding to the limit values of the plastic area must be observed at different points in the cross-section of the furnace in each coking phase.
- the setpoint temperature can remain constant and assume one of the values between 320 and 480 ° C. A value at the lower temperature limit is preferably selected.
- the spatial distances can be taken into account by a number of temperature measuring devices distributed over the width of the furnace chamber or by a single temperature measuring device that can be moved back and forth across the width of the furnace chamber.
- Thermocouples can be used as temperature measuring devices, which are preferably provided with protective tubes and inserted into the furnace stock before the coking begins. With a suitable choice of material for the protective tubes, longer service lives can be achieved.
- thermocouples can be placed in an electrical comparison circuit with setpoint devices, e.g. Potentiometer, bring.
- setpoint devices e.g. Potentiometer
- the differential voltage can then be taken as a measure of the necessary addition of preheated coal and / or advantageous coal binder.
- Exceeding the target values specified according to the invention is harmless, since with the addition of preheated coal and advantageous coal binders, only a limited enlargement of the plastic zone can be achieved.
- the limit for the admixture of preheated coal results from the maximum preheat temperature of 250 ° C, the limit for the coal binder from the maximum admixable amount, which should not exceed a certain ratio of carbon substance to the amount of plasticizing additives, taking into account the coke quality.
- the temperature changes in the furnace batch run symmetrically towards the center of the coke oven. It is therefore sufficient to measure the area between a chamber wall and the center of the furnace.
- protective tubes are installed in the oven at intervals of 20 mm, which protrude from above into the furnace bed when the furnace is full and during the coking process allow the introduction of thermocouples and temperature measurements in the furnace stock up to half of the furnace batch.
- the temperature is measured at the prepared measuring points every hour.
- the resulting actual values are compared with the target values belonging to the hourly measurement. It is also possible to choose other time intervals for the temperature measurement. At time intervals that lie between the predetermined half-hourly and hourly measurements, a linear extrapolation is carried out between the predetermined target values of the neighboring half-hourly or hourly temperature measurements.
- the target temperature is a temperature between 320 and 480 ° C. In other words, depending on the progress of the coking process, after one, two, four, etc. hours, there is a place in the furnace half covered by the temperature measurement, at which the temperature of the charge should be at least 320 ° C. Exceeding this temperature is harmless. On the other hand, if the temperature falls below the target temperature, there is no guarantee that high-quality blast furnace coke will be produced.
- the target temperature always indicates the target position at the boundary of the plastic zone facing the center of the chamber.
- the control variable in the exemplary embodiment is the boundary of the plastic zone facing the center of the chamber. In some cases, the other boundary of the plastic zone can also be selected as the control variable.
- the target temperature is 480 ° C and the minimum distance from the chamber wall is equal to the minimum distance for a target temperature of 320 ° C minus the minimum width specified according to the invention for the plastic zone.
- the following minimum distances from the chamber wall result after four, six, eight and ten hours of cooking time for the target temperature 320 ° C.
- the difference between the minimum distances and the desired distances is reduced, for example, by adding Carbopech and / or preheated coal.
- Carbopech brings a maximum 0.5-0.8 mm reduction in the difference per percent of Carbopech admixture.
- An upper limit of around 15% Carbopech can be assumed.
- the coke quality changes back to negative because the amount of plastic components in relation to the remaining carbon structure becomes too large (depending on the type of coal).
- the following approximations to the specified minimum distances of the 320 ° C limit value could be measured by adding 15% Carbopech at the cooking intervals of four, six, eight and ten hours selected here: 69 mm instead of 60 mm after four hours, instead of 104 mm after six Hours 114mm, instead of 145 mm after eight hours 156 mm and instead of 184 mm after ten hours 190 mm.
- preheated coal The differences to the minimum distance required to achieve the specified target values after the carbopech was added could be eliminated by adding preheated coal to the moist feed.
- preheated coal instead of Carbopech, only the addition of preheated coal is used.
- the addition of preheated coal brings about 4 mm approximation per 10% addition of preheated coal of 220 ° C preheating temperature. This generally applies to all preheating temperatures above 200 ° C.
- the target values specified according to the invention apply not only to the insert coal selected in the exemplary embodiment but also to other insert coal or insert mixtures, since the influence of the thermal conductivity of the insert material on the course of the temperature fields is small.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Organic Chemistry (AREA)
- Combustion & Propulsion (AREA)
- Coke Industry (AREA)
Description
Die Erfindung betrifft ein Verfahren zur Steuerung der Qualität von Koks aus Kohleeinsatzmischungen, die im Koksofen durch indirekte Beheizung unter Luftabschluss verkokt werden, wobei die Kohleeinsatzmischung während des Verkokungsvorganges beim Durchlaufen des Temperaturbereiches von 320-550°C eine Plastifizierung erfährt, die sich mit zunehmender Garungszeit von der Ofenwandung zur Ofenmitte verlagert.The invention relates to a method for controlling the quality of coke from coal feed mixtures which are coked in the coke oven by indirect heating with the exclusion of air, the coal feed mixture undergoing plasticization during the coking process when passing through the temperature range of 320-550 ° C., which increases with the cooking time shifted from the furnace wall to the center of the furnace.
Üblicherweise werden Einsatzmischungen bei der Verkokung eingesetzt. D.h. die Kokskohlen werden zunächst aufgemahlen, um bestimmte, unterschiedliche Korngrössen zu erreichen. Die unterschiedlichen Korngrössen geben in Mischung ein Kornspektrum, das die Schüttdichte der Kokskohlen im Koksofen massgeblich beeinflusst. Dabei hat sich gezeigt, dass optimale Kornspektren zumeist nur durch Mischung verschiedener aufgemahlener Korngrössen erreicht werden können.Mixtures are usually used for coking. I.e. The coking coals are first ground in order to achieve certain different grain sizes. When mixed, the different grain sizes give a grain spectrum that significantly influences the bulk density of the coking coals in the coke oven. It has been shown that optimal grain spectra can usually only be achieved by mixing different ground grain sizes.
Noch grösseren Einfluss als die Schüttdichte hat die Beschaffenheit der für die Einsatzmischungen verwendeten Kokskohle auf die Koksqualität. Daher sind verschiedene Prüfmethoden mit dem Ziel entwickelt worden, das Verkokungsverhalten der Kohlen im voraus zu beurteilen. Wesentliche Eigenschaften ergeben sich aus dem petrografischen Aufbau der Kohle (Kohlenarten, Streifenarten) ihrer chemischen Zusammensetzung (Elementarzusammensetzung, Aschegehalt, Gehalt an flüchtigen Bestandteilen, Bitumengehalt, Oxydationszustand) und ihren physikalischen/chemischen Eigenschaften (Erweichungsverhalten, Blähen, Schwinden, Treiben, Entgasungsverhalten).The quality of the coking coal used for the feed mixtures has an even greater influence on the coke quality than the bulk density. Therefore, various test methods have been developed with the aim of assessing the coking behavior of the coal in advance. Significant properties result from the petrographic structure of coal (types of coal, strips) of their chemical composition (elemental composition, ash content, volatile constituents, bitumen content, state of oxidation) and their physical / chemical properties (softening behavior, bloating, shrinking, driving, degassing behavior).
Wesentliche Bedeutung wird ferner dem Backvermögen beigemessen. Unter der Backfähigkeit wird die Fähigkeit der Kohle verstanden, beim Erhitzen in einem Gefäss, das eine freie Ausdehnung der Kohle zulässt, in einen plastischen Zustand überzugehen und beim weiteren Erwärmen einen gebackenen, stückigen Koks zu bilden. Eine Kohle mit gutem Backvermögen liefert einen nicht nur gebackenen, sondern sogar geschmolzenen Koks. Das so definierte Backvermögen wird wahlweise gemessen durch die Blähzahl (Swelling-Index) oder durch die Backzahl nach Roga.Baking capacity is also of major importance. Baking ability is understood to mean the ability of the coal to change to a plastic state when heated in a vessel which allows the coal to expand freely and to form a baked, lumpy coke when heated further. Coal with good baking power not only provides baked, but even melted coke. The baking capacity defined in this way is measured either by the swelling index or by the Roga baking number.
Eine Kohle mit gutem Backvermögen kann unter den betrieblich gegebenen Verkokungsbedingungen dennoch einen weniger hochwertigen Koks ergeben als eine schlechter backende Kohle. Deshalb ist das Kokungsvermögen in besonderer Weise zu berücksichtigen. Das Kokungsvermögen einer Kohle wird wahlweise durch den Dilatometertest oder durch Bestimmen des Grayking-Kokstyps beurteilt. Zur Bestimmung des Dilatationsverlaufes wird die Längenänderung eines konischen Kohlepresslings bei einer Erhitzungsgeschwindigkeit von 0,05°C/sec gemessen.A coal with a good baking capacity can still produce a less high-quality coke under the operational coking conditions than a poorly baking coal. Therefore, the coking capacity has to be considered in a special way. The coking capacity of a coal is assessed either by the dilatometer test or by determining the Grayking coke type. To determine the course of dilation, the change in length of a conical carbon compact is measured at a heating rate of 0.05 ° C / sec.
Schliesslich besitzt die Messung des plastischen Verhaltens bisher noch eine gewisse Bedeutung. Unter dem plastischen Verhalten wird die Fähigkeit der Einsatzkohle verstanden, innerhalb des Temperaturbereiches zwischen etwa 350 und 550°C in einen plastischen Zustand überzugehen.After all, measuring plastic behavior has so far been of some importance. The plastic behavior is understood as the ability of the coal to change into a plastic state within the temperature range between about 350 and 550 ° C.
Bei den gebräuchlichen Methoden zur Mesung der Plastizität werden modifizierte Rotationsviskosimeter benutzt. Als Messergebnis erhält man hier jedoch nicht Viskositäten der erweichten Kohlemasse im physikalischen Sinne, sondern apparativ beeinflusste Grössen, die sich aus der inneren Reibung der festen, flüssigen und gasförmigen Phase und den Elastizitätsgrössen dieser drei Phasen zusammensetzen. Derartige Messungen sind in der Regel Labormessungen. Das gilt auch für Messungen des Entgasungsverhaltens, des Treibdrucks und des Schwindens, die gleichfalls zur Bestimmung der Einsatzkohlenqualität herangezogen werden. Die Vielzahl der hier teilweise aufgeführten, in der Praxis gebräuchlichen Prüfmethoden zur Bestimmung der Einsatzkohle bzw. zur Vorbestimmung der Koksqualität zeigt, dass bisher eine gezielte Steuerung der Kokskohlenqualität als Basis für einen hochwertigen Koks nur unter Vielfachmessung und besonderen Erschwernissen möglich war.Modified rotary viscometers are used in the usual methods for measuring plasticity. The result of the measurement, however, is not the viscosities of the softened coal mass in the physical sense, but quantities influenced by the apparatus, which are composed of the internal friction of the solid, liquid and gaseous phases and the elasticity variables of these three phases. Such measurements are usually laboratory measurements. This also applies to measurements of the degassing behavior, the driving pressure and the shrinkage, which are also used to determine the quality of the coal used. The large number of test methods commonly used here, which are commonly used in practice, for determining the amount of coal used and for determining the quality of coke shows that previously, targeted control of the quality of coking coal as the basis for high-quality coke was only possible with multiple measurements and particular difficulties.
Der Erfindung liegt daher die Aufgabe zugrunde, die Steuerung der erforderlichen Qualität des Einsatzgutes zu vereinfachen. Dabei geht die Erfindung von der Überlegung aus, dass wesentliche Bestimmungsgrössen für die Koksqualität in einem Teilbereich des Verkokungsvorganges eine gemeinsame Wirkung entfalten. Das ist in weitergehender Erkenntnis der plastische Bereich, was bei einer Betrachtung des Verkokungsvorganges von Steinkohle in indirekt beheizten Horizontalkammer-Öfen deutlich wird.The object of the invention is therefore to simplify the control of the required quality of the input material. The invention is based on the consideration that essential parameters for the coke quality have a common effect in a partial area of the coking process. This is the plastic area in further knowledge, which becomes clear when considering the coking process of hard coal in indirectly heated horizontal chamber furnaces.
Bei der Verkokung entstehen Heizgase, die in den den Öfen benachbarten Heizzügen verbrannt werden. Von den benachbarten Heizzügen aus wird die Wärme durch die Ofenwände auf den Ofenbesatz, d.h. die Einsatzkohlenmischung, übertragen. Bedingt durch die zweiseitig indirekte Beheizung entstehen Temperaturfelder mit zur Besatzmitte hin abnehmendem Temperatur-Niveau. Die Temperaturfelder verlaufen in der Regel symmetrisch zur Ofenmitte, wo die jeweils niedrigste Temperatur herrscht. Mit zunehmender Garungszeit schreitet die Temperaturfront von den Wänden zur Ofenmitte hin fort, begleitet von einem steilen Temperaturgradienten beim Übergang von der bereits verkokten zur unveränderten Einsatzkohle. Dieser Übergangsbereich, in dem alle Temperaturen von 100-1000°C durchlaufen werden, ist lokal eng begrenzt und erstreckt sich zum Beginn des Verkokungsvorganges (Pyrolyse) nur über wenige mm in der insgesamt vorwiegend 450 mm breiten Ofenkammer.Coking produces heating gases that are burned in the heating trains adjacent to the ovens. The heat is transferred from the neighboring heating trains through the furnace walls to the furnace lining, i.e. the insert coal mixture, transferred. Due to the indirect heating on both sides, temperature fields arise with a decreasing temperature level towards the center of the trim. The temperature fields are usually symmetrical to the center of the furnace, where the lowest temperature prevails. With increasing cooking time, the temperature front progresses from the walls to the middle of the oven, accompanied by a steep temperature gradient during the transition from the already coked to the unchanged charcoal. This transition area, in which all temperatures of 100-1000 ° C are run through, is locally limited and at the beginning of the coking process (pyrolysis) only extends over a few mm in the mainly 450 mm wide furnace chamber.
In dem kritischen Übergangsbereich erfolgt die schrittweise Verkokung der Heimkohle, wobei zwei wesentliche Temperaturbereiche zu unterscheiden sind. Der eine Temperaturbereich erstreckt sich von etwa 320-480°C. In dem Temperaturbereich erweicht die Kohle und bildet sich ein quasi plastischer Zustand aus. Bei Durchschreiten des Temperaturbereiches laufen eine Vielzahl von Zersetzungs- und PolymerisationsReaktionen ab, wobei die Voraussetzungen für die Einbindung inerter Bestandteile geschaffen werden und die Koksqualität vorgeprägt wird.In the critical transition area, the gradual coking of the home carbon takes place, whereby two essential temperature ranges can be distinguished. One temperature range extends from about 320-480 ° C. In the temperature range, the coal softens and forms a quasi-plastic state. When through When the temperature range is exceeded, a large number of decomposition and polymerization reactions take place, creating the conditions for integrating inert components and pre-embossing the coke quality.
Der andere Bereich liegt oberhalb der Wiederverfestigung des Ofenbesatzes mit einem Kontraktionsmaximum um 600°C. In diesem Bereich bildet sich die Koksstruktur unter weiterer Aromatisierung des Besatzes aus.The other area is above the reconsolidation of the furnace stock with a contraction maximum around 600 ° C. In this area, the coke structure is formed with further flavoring of the stock.
Die in beiden Bereichen ablaufenden Reaktionen sind zwar von der eingesetzten Kohlenart und der Körnung der Einsatzkomponenten abhängig, die Erfindung geht jedoch davon aus, dass Kohlenart und Körnung bei üblichem Kokereibetrieb weitgehend vorbestimmt sind und für die jeweilige Koksqualität vielmehr der Abhängigkeit der Verkokung von den Betriebsbedingungen und der Vorbehandlung des Einsatzgutes bzw. der Verwendung verkokungsaktiver Hilfsstoffe im Vordergrund steht. D.h. nach der Erfindung wird dem Ausmass und der Gleichmässigkeit der in diesen kritischen Übergangsbereichen ablaufenden Reaktionen entscheidende Bedeutung beigemessen.The reactions taking place in both areas are dependent on the type of coal used and the grain size of the feed components, but the invention is based on the fact that the type of coal and grain size are largely predetermined in normal coking plant operation and, for the respective coke quality, rather the dependence of the coking on the operating conditions and The focus is on the pretreatment of the feed or the use of coking agents. I.e. According to the invention, the extent and the uniformity of the reactions taking place in these critical transition areas is of crucial importance.
Massgebend für den Ablauf dieser Reaktionen ist der Temperaturgradient. Ein hoher Temperaturgradient bedeutet eine hohe lokale Aufheizungsgeschwindigkeit, bei der sich die ablaufenden Reaktionen nur unzureichend ausbilden können oder je nach ihrer Kinetik sogar überlaufen werden. Das führt zu grosser Inhomogenität im Reaktionsgeschehen und hat ein inhomogenes Koksgefüge zur Folge. Ausserdem besteht unter derartigen Bedingungen nicht genügend Zeit, plastische Masse in ausreichender Menge für die Einbindung der inerten Partikel freizusetzen und für den Massentransport mit dem Ziel der Einhüllung dieser Partikel zu sorgen. Die Dauer der Plastizität, die deutlich mit der Aufheizrate korreliert d.h. mit steigender Aufheizrate abnimmt, ist zu kurz.The temperature gradient is decisive for the course of these reactions. A high temperature gradient means a high local heating rate at which the reactions taking place can only develop inadequately or, depending on their kinetics, are even overflowed. This leads to great inhomogeneity in the reaction process and results in an inhomogeneous coke structure. In addition, under such conditions there is not enough time to release plastic mass in sufficient quantity for the incorporation of the inert particles and to ensure mass transport with the aim of enveloping these particles. The duration of the plasticity, which correlates clearly with the heating rate i.e. decreasing with increasing heating rate is too short.
Im nachplastischen Bereich treten durch einen hohen Temperaturgradienten verstärkt mechanische Spannungen auf, die zu erhöhter Rissbildung führen und dadurch den unerwünschten Kleinkoksanteil erhöhen.In the post-plastic area, a high temperature gradient leads to increased mechanical stresses, which lead to increased crack formation and thereby increase the undesirable portion of small coke.
Eine Verminderung des Temperaturgradienten führt dagegen zu einer breiteren plastischen Zone mit lokal geringerer Aufheizgeschwindigkeit. Das verlängert die Dauer der Plastizität, wodurch vor allem auch die für die Kokserzeugung wichtige Verkittung der einzelnen Partikel gefördert wird. Die in der Kohle vorgeprägten Reaktionen haben mehr Zeit wirksam zu werden und quasi Gleichgewichtszustände entsprechend ihrer Reaktionskinetik auszubilden.In contrast, a reduction in the temperature gradient leads to a wider plastic zone with a locally lower heating rate. This extends the duration of the plasticity, which above all promotes the cementing of the individual particles, which is important for coke production. The reactions pre-embossed in the coal have more time to take effect and to develop quasi equilibrium states according to their reaction kinetics.
Mit zunehmender Breite der plastischen Zone und dadurch verstärktem Ablauf der Reaktionen wird die Gasmenge in der Blase den plastischen Zone grösser; der Gasdruck steigt an. Zwischen der Gasblasengrösse und dem Druck wird bei gleicher Körnung der Einsatzkohle in erster Näherung ein etwa umgekehrt proportionaler Zusammenhang gesehen. Zunehmender Druck bewirkt kleinere Gasblasen, was einen kleineren Porendurchmesser zur Folge haben kann. Dieses Verhalten der gasförmigen Zersetzungsprodukte überlagert den Einfluss der Korngrösse auf das Blähverhalten der Körper und das daraus resultierende Verschweissen der umgebenden Partikel entscheidend.As the width of the plastic zone increases and the reaction proceeds more intensely, the amount of gas in the bubble in the plastic zone increases; the gas pressure rises. At first approximation, an approximately inversely proportional relationship is seen between the gas bubble size and the pressure with the same grain size of the insert coal. Increasing pressure causes smaller gas bubbles, which can result in a smaller pore diameter. This behavior of the gaseous decomposition products decisively overlaps the influence of the grain size on the swelling behavior of the bodies and the resulting welding of the surrounding particles.
Ausserdem steigen mit zunehmender Breite der plastischen Zone die Diffusionswege für die freigesetzten Gase. Infolgedessen wird der Gasdruck über eine längere Zeit aufrechterhalten, was zu einer grösseren Homogenität in der Gasblasenverteilung wie in der vorangegangenen Entstehung und weiteren Reaktionen gasförmiger Zersetzungsprodukte führen kann.In addition, the diffusion paths for the released gases increase with increasing width of the plastic zone. As a result, the gas pressure is maintained over a longer period of time, which can lead to greater homogeneity in the gas bubble distribution as in the previous generation and further reactions of gaseous decomposition products.
In der FR-A 752 468 wird zwar auf die plastische Zone hingewiesen, dort ist jedoch auf den Temperaturbereich von 650-750°C abgestellt worden. Das ist der Bereich der Wiederverfestigung mit einem Kontraktionsmaximum um 600°C. In diesem Bereich bildet sich die Koksstruktur unter weiterer Aromatisierung des Besatzes aus. Die in der plastischen Zone und im nachplastischen Bereich ablaufenden Reaktionen sind zwar von der eingesetzten Kohlenart und der Körnung der Einsatzkomponenten abhängig, die Erfindung geht jedoch davon aus, dass Kohlenart und Körnung bei üblichem Kokereibetrieb weitgehend vorbestimmt sind und für die jeweilige Koksqualität vielmehr die Abhängigkeit der Verkokung von den Betriebsbedingungen und der Vorbehandlung des Einsatzgutes bzw. der Verwendung verkokungsaktiver Hilfsstoffe im Fordergrund steht. Zugleich geht die Erfindung davon aus, dass die Reaktionen in der plastischen Zone massgeblich die Phase der Wiederverfestigung vorbestimmen, dies jedoch umgekehrt nicht gesichert ist.FR-A 752 468 refers to the plastic zone, but the temperature range of 650-750 ° C has been selected. This is the area of reconsolidation with a contraction maximum around 600 ° C. In this area, the coke structure is formed with further flavoring of the stock. The reactions taking place in the plastic zone and in the post-plastic area are dependent on the type of coal used and the grain size of the feed components, but the invention is based on the fact that the type of coal and grain size are largely predetermined in normal coking plant operation and rather the dependence on the respective coke quality Coking of the operating conditions and the pretreatment of the input material or the use of coking-active auxiliaries is the main reason. At the same time, the invention is based on the fact that the reactions in the plastic zone largely predetermine the phase of the reconsolidation, but the reverse is not ensured.
Nach der Erfindung wird deshalb die Qualität des Kokses dadurch gesteuert, dass in vorgegebenen Zeitabständen der Abstand der plastischen Zone von der Ofenwand gemessen, mit einem Sollwert verglichen und die Abweichung vom Sollwert durch Zugabe von vorerhitzter Kohle und/oder carbo- und/oder petrostämmiger Kohlebinder ausgeglichen wird.According to the invention, the quality of the coke is therefore controlled in that the distance of the plastic zone from the furnace wall is measured at predetermined time intervals, compared with a setpoint and the deviation from the setpoint by adding preheated coal and / or carbo and / or petrostatic coal binder is balanced.
Erfindungsgemäss ist die Breite der plastischen Zone die entscheidende Einflussgrösse auf die Koksqualität. Ihre Messung ermöglicht eine genaue Voraussage der sich einstellenden Koksqualität und ist daher als zentrale Steuergrösse für die Bereitstellung der Einsatzkomponenten, den Ablauf des Verkokungsprozesses und für die daraus resultierende Koksqualität als Zielgrösse einzusetzen.According to the invention, the width of the plastic zone is the decisive factor influencing the coke quality. Your measurement enables a precise prediction of the coke quality that is set and is therefore to be used as a central control variable for the provision of the components used, the course of the coking process and for the resulting coke quality as a target variable.
Durch die erfindungsgemässe Beimengung carbo- und/oder petrostämmiger Binder wird die Erweichungstemperatur des Ofenbesatzes vermindert, dessen Wiederverfestigungstemperatur jedoch kaum verändert. Es entsteht für die plastische Zone ein grösserer Temperaturbereich. Das hat eine räumliche Ausdehnung der plastischen Zone zur Folge, so dass die oben erläuterten wesentlichen Effekte in der Dauer der Plastizität, im Ablauf der Reaktionen, in der Gasblasengrösse und der Homogenität der Gasblasenverteilunq wirksam werden.The addition of carbo- and / or petro-derived binders according to the invention reduces the softening temperature of the furnace stock, but hardly changes its reconsolidation temperature. A larger temperature range is created for the plastic zone. This results in a spatial expansion of the plastic zone, so that the essential effects explained above in the duration of the plasticity, in the course of the reactions, in the gas bubble size and the homogeneity of the gas bubble distribution.
Die erfindungsgemässe Beimengung vorerhitzter Kohle hat gleichfalls eine Verringerung des Temperaturgradienten zur Folge. Wie bereits ausgeführt, bewirkt das eine Verbreiterung des plastischen Bereiches in Abhängigkeit vom Abstand von der Kammerwand, wobei dieser Effekt mit zunehmender Garungszeit an Grösse und Bedeutung gewinnt. Auch für den nachplastischen Bereich (Kontraktionsmaximum bei etwa 600°C) ist die mit dem niedrigeren Temperaturgradienten verbundene geringere Aufheizgeschwindigkeit von grosser Bedeutung. Die mechanischen Spannungen werden verringert. Damit nimmt die Tendenz zur Rissbildung ab. Als Erfolg steigt das Ausbringen an Hochofenkoks. Ferner steigen die Abriebfestigkeit (MIO) und die Stückfestigkeit (M4o) nach ISO. Der mittlere Porendurchmesser der Kokse verringert sich deutlich. Gleichzeitig steigt die mittlere Wandstärke der Zellwände des Koksgerüstes an, die Strukturfestigkeit der Kokse nimmt somit zu.The addition of preheated coal according to the invention also results in a reduction in the temperature gradient. As already stated, this causes the plastic area to widen as a function of the distance from the chamber wall, this effect gaining in size and importance with increasing cooking time. The lower heating rate associated with the lower temperature gradient is also of great importance for the post-plastic area (contraction maximum at about 600 ° C). The mechanical stresses are reduced. This reduces the tendency to crack. The output on blast furnace coke increases as a success. Furthermore, the abrasion resistance (MIO) and the piece strength (M 4o ) increase according to ISO. The average pore diameter of the coke is significantly reduced. At the same time, the average wall thickness of the cell walls of the coke structure increases, which increases the structural strength of the coke.
In weiterer Ausbildung der Erfindung wird die Breite des plastischen Bereiches anhand der Temperaturverteilung im Ofenbesatz gemessen. D.h. in dicht aufeinanderfolgenden Abständen von der Kammerwand bis zur Kammermitte werden Temperaturmessungen durchgeführt. Die sich dabei ergebenden Temperaturwerte werden mit den Temperatursollwerten verglichen, die die Mindestbreite des plastischen Bereiches festlegen. Bei Unterschreiten der vorgegebenen Soll- temperatur wird bei nachfolgenden Ofenchargen solange Kohlebinder und/oder vorerhitzte Kohle der Einsatzmischung beigemengt, bis sich im Ofen die gewünschten Solltemperaturen (Mindestemperaturen) einstellen. Entsprechend des sich während des Verkokungsvorganges verändernden plastischen Bereiches sind die den Grenzwerten des plastischen Bereiches entsprechenden Solltemperaturen in jeder Verkokungsphase an anderen Stellen des Ofenbesatzquerschnittes einzuhalten. Die Solltemperatur kann dabei konstant bleiben und einen der Werte zwischen 320 und 480°C annehmen. Vorzugsweise wird ein Wert an der unteren Temperaturgrenze gewählt.In a further embodiment of the invention, the width of the plastic area is measured using the temperature distribution in the furnace stock. I.e. Temperature measurements are carried out at closely spaced intervals from the chamber wall to the center of the chamber. The resulting temperature values are compared with the temperature setpoints that determine the minimum width of the plastic area. If the temperature falls below the specified target temperature, coal binders and / or preheated coal are added to the feed mixture in subsequent furnace batches until the desired target temperatures (minimum temperatures) are reached in the furnace. Corresponding to the plastic area that changes during the coking process, the target temperatures corresponding to the limit values of the plastic area must be observed at different points in the cross-section of the furnace in each coking phase. The setpoint temperature can remain constant and assume one of the values between 320 and 480 ° C. A value at the lower temperature limit is preferably selected.
Den räumlichen Abständen kann durch eine Anzahl über der Ofenkammerbreite verteilt angeordneter Temperaturmessgeräte oder durch ein einziges, über der Ofenkammerbreite hin-und herbewegbares Temperaturmessgerät Rechnung getragen werden. Als Temperaturmessgeräte können Thermoelemente eingesetzt werden, die vorzugsweise mit Schutzrohren versehen vor Beginn der Verkokung in den Ofenbesatz eingeführt werden. Bei geeigneter Materialauswahl der Schutzrohre können längere Standzeiten erzielt werden.The spatial distances can be taken into account by a number of temperature measuring devices distributed over the width of the furnace chamber or by a single temperature measuring device that can be moved back and forth across the width of the furnace chamber. Thermocouples can be used as temperature measuring devices, which are preferably provided with protective tubes and inserted into the furnace stock before the coking begins. With a suitable choice of material for the protective tubes, longer service lives can be achieved.
Die Thermoelemente lassen sich in eine elektrische Vergleichsschaltung mit Sollwertgebern, z.B. Potentiometer, bringen. Die Differenzspannung kann dann als Mass für die notwendige Zugabe vorerhitzter Kohle und/oder vorteilhafter Kohlebinder genommen werden.The thermocouples can be placed in an electrical comparison circuit with setpoint devices, e.g. Potentiometer, bring. The differential voltage can then be taken as a measure of the necessary addition of preheated coal and / or advantageous coal binder.
Ein Überschreiten der nach der Erfindung vorgegebenen Sollwerte ist unschädlich, da mit der Beimischung vorerhitzter Kohle und vorteilhaften Kohlebindern nur eine begrenzte Vergrösserung der plastischen Zone erreichbar ist. Die Begrenzung bei der Beimischung vorerhitzter Kohle ergibt sich aus der maximalen Vorerhitzungstemperatur von 250°C, die Begrenzung bei den Kohlebindern aus der maximal beimischbaren Menge, die unter Berücksichtigung der Koksqualität ein bestimmtes Verhältnis Kohlesubstanz zur Menge plastifizierender Hilfsstoffe nicht überschreiten sollte.Exceeding the target values specified according to the invention is harmless, since with the addition of preheated coal and advantageous coal binders, only a limited enlargement of the plastic zone can be achieved. The limit for the admixture of preheated coal results from the maximum preheat temperature of 250 ° C, the limit for the coal binder from the maximum admixable amount, which should not exceed a certain ratio of carbon substance to the amount of plasticizing additives, taking into account the coke quality.
Üblicherweise wird jede neue Einsatzmischung vor dem grosstechnischen Einsatz in Versuchs- öfen erprobt. Im Ausführungsbeispiel werden mit einer Einsatzmischung bestehend aus 67% Gasflammkohle (36% FB waf) und 33% Esskohle (16% FB waf) vor Einsatz in den Betriebsöfen der Kokereien Verkokungsexperimente in 350 kg Versuchs- öfen durchgeführt (FB = flüchtige Betandteile).Typically, every new feed mixture is tested in trial furnaces before it is used on an industrial scale. In the exemplary embodiment, coking experiments are carried out in 350 kg test furnaces (FB = volatile components) with an insert mixture consisting of 67% gas flame coal (36% FB waf) and 33% table carbon (16% FB waf) before being used in the operating ovens of the coking plants.
Während des Verkokungsvorganges verlaufen die Temperaturänderungen in der Ofencharge symmetrisch zur Koksofenkammermitte hin. Es ist daher ausreichend, den Bereich zwischen einer Kammerwand und der Ofenmitte zu messen. Im Ausführungsbeispiel sind in Abständen von 20 mm Schutzrohre im Ofen angebracht, die bei gefülltem Ofen von oben in die Ofenschüttung hineinragen und während des Verkokungsvorganges das Einführen von Thermoelementen und Temperaturmessungen im Ofenbesatz bis zur Hälfte der Ofencharge erlauben.During the coking process, the temperature changes in the furnace batch run symmetrically towards the center of the coke oven. It is therefore sufficient to measure the area between a chamber wall and the center of the furnace. In the exemplary embodiment, protective tubes are installed in the oven at intervals of 20 mm, which protrude from above into the furnace bed when the furnace is full and during the coking process allow the introduction of thermocouples and temperature measurements in the furnace stock up to half of the furnace batch.
Innerhalb der ersten zehn Stunden des Verkokungsvorganges wird in stündlichem Abstand die Temperatur an den vorbereiteten Messstellen gemessen. Die sich dabei ergebenden Ist-Werte werden mit den zu stündlicher Messung gehörenden Soll-Werten verglichen. Es ist möglich, auch andere Zeitintervalle für die Temperaturmessung zu wählen. Bei Zeitintervallen, die zwischen den vorgegebenen halbstündlichen und stündlichen Messungen liegen, wird zwischen den vorgegebenen Sollwerten der benachbarten halbstündlichen bzw. stündlichen Temperaturmessungen linearextrapoliert.Within the first ten hours of the coking process, the temperature is measured at the prepared measuring points every hour. The resulting actual values are compared with the target values belonging to the hourly measurement. It is also possible to choose other time intervals for the temperature measurement. At time intervals that lie between the predetermined half-hourly and hourly measurements, a linear extrapolation is carried out between the predetermined target values of the neighboring half-hourly or hourly temperature measurements.
Die Soll-Temperatur ist eine Temperatur zwischen 320 und 480°C. D.h., abhängig vom Fortgang des Verkokungsprozesses ergibt sich nach ein, zwei, vier usw. Stunden eine Stelle in der von der Temperaturmessung erfassten Ofenhälfte, an der die Temperatur der Einsatzcharge im Minimum 320°C betragen soll. Ein Überschreiten dieser Temperatur ist unschädlich. Dagegen ist bei einem Unterschreiten der Solltemperatur nicht gewährleistet, dass ein qualitätsgerechter Hochofenkoks erzeugt wird.The target temperature is a temperature between 320 and 480 ° C. In other words, depending on the progress of the coking process, after one, two, four, etc. hours, there is a place in the furnace half covered by the temperature measurement, at which the temperature of the charge should be at least 320 ° C. Exceeding this temperature is harmless. On the other hand, if the temperature falls below the target temperature, there is no guarantee that high-quality blast furnace coke will be produced.
Es wird von der Vorstellung ausgegangen, dass mit Beginn des Verkokungsvorganges zwei plastische Zonen entstehen, die an den Ofenwänden ihren Ausgang nehmen und sich mit fortschreitender Verkokung aufeinander zubewegen und zum Ende der Garungszeit sich in der Kammermitte vereinigen. Im Ausführungsbeispiel kennzeichnet die Solltemperatur immer die Sollage an der der Kammermitte zugewandten Grenze der plastischen Zone. An der der Kammerwand zugewandten Grenze der plastischen Zone herrscht infolge der indirekten Beheizung und des Temperaturabfalls zur Kammermitte hin naturgemäss eine höhere Temperatur. Steuergrösse ist nach der Erfindung im Ausführungsbeispiel die der Kammermitte zugewandte Grenze der plastischen Zone. Teilweise kann auch die andere Grenze der plastischen Zone als Steuergrösse gewählt werden. Dann ist die Solltemperatur 480°C und der Mindestabstand von der Kammerwand gleich dem Mindestabstand für eine Soll- temperatur von 320°C minus der nach der Erfindung vorgegebenen Mindestbreite für die plastische Zone.It is assumed that at the beginning of the coking process two plastic zones are created, which start on the furnace walls and scream away Tender coking move towards each other and combine in the middle of the chamber at the end of the cooking time. In the exemplary embodiment, the target temperature always indicates the target position at the boundary of the plastic zone facing the center of the chamber. At the boundary of the plastic zone facing the chamber wall, there is naturally a higher temperature as a result of the indirect heating and the temperature drop towards the center of the chamber. According to the invention, the control variable in the exemplary embodiment is the boundary of the plastic zone facing the center of the chamber. In some cases, the other boundary of the plastic zone can also be selected as the control variable. Then the target temperature is 480 ° C and the minimum distance from the chamber wall is equal to the minimum distance for a target temperature of 320 ° C minus the minimum width specified according to the invention for the plastic zone.
Im Ausführungsbeispiel ergeben sich nach vier, sechs, acht und zehn Stunden Garungszeit für die Soll-Temperatur 320°C folgende Mindestabstände von der Kammerwand:
Im Ausführungsbeispiel weichen die gemessenen Abstände bei Verwendung feuchter Einsatzmischung von den Mindestabständen obiger Tabelle wie folgt ab:
- Statt 84mm nach vier Stunden nur 60mm, statt 130 mm nach sechs Stunden nur 104 mm, statt 167 mm nach acht Stunden nur 145 mm und statt 206 mm nach 10 Stunden nur 184 mm.
- Instead of 84mm after four hours only 60mm, instead of 130mm after six hours only 104mm, instead of 167mm after eight hours only 145mm and instead of 206mm after 10 hours only 184mm.
Nach der Erfindung wird die Differenz zwischen den Mindestabständen und den Sollabständen beispielhaft durch Zugabe von Carbopech und/oder vorerhitzter Kohle verringert. Die Zugabe von Carbopech bringt maximal 0,5-0,8 mm Verringerung der Differenz pro Prozent Carbopech-Beimengung. Dabei kann von einer Obergrenze von etwa 15% Carbopech ausgegangen werden. Oberhalb von 15% verändert sich die Koksqualität wieder zum Negativen hin, weil die Menge plastischer Komponenten im Verhältnis zum Rest-Kohlenstoffgerüst zu gross wird (abhängig von der Kohlenart).According to the invention, the difference between the minimum distances and the desired distances is reduced, for example, by adding Carbopech and / or preheated coal. The addition of Carbopech brings a maximum 0.5-0.8 mm reduction in the difference per percent of Carbopech admixture. An upper limit of around 15% Carbopech can be assumed. Above 15%, the coke quality changes back to negative because the amount of plastic components in relation to the remaining carbon structure becomes too large (depending on the type of coal).
Im Ausführungsbeispiel konnten bei den hier ausgewählten Garungsintervallen von vier, sechs, acht und zehn Stunden folgende Annäherungen an die vorgegebenen Mindestabstände des 320°C-Grenzwertes durch Zusatz von 15% Carbopech gemessen werden: statt 60 mm nach vier Stunden 69mm, statt 104mm nach sechs Stunden 114mm, statt 145 mm nach acht Stunden 156 mm und statt 184 mm nach zehn Stunden 190 mm.In the exemplary embodiment, the following approximations to the specified minimum distances of the 320 ° C limit value could be measured by adding 15% Carbopech at the cooking intervals of four, six, eight and ten hours selected here: 69 mm instead of 60 mm after four hours, instead of 104 mm after six Hours 114mm, instead of 145 mm after eight hours 156 mm and instead of 184 mm after ten hours 190 mm.
Die zum Erreichen der vorgegebenen Sollwerte nach Beimengung des Carbopechs noch fehlenden Differenzen zum Mindestabstand könnten durch Beimengung vorerhitzter Kohle zum feuchten Einsatzgut aufgehoben werden. Im Ausführungsbeispiel wird aus wirtschaftlichen Überlegungen anstelle von Carbopech ausschliesslich auf die Beimengung vorerhitzter Kohle abgestellt. Dabei bringt die Beimengung vorerhitzter Kohle im Mittel etwa 4 mm Annäherung pro 10% Beimengung vorerhitzter Kohle von 220°C Vorerhitzungs-Temperatur. Das gilt generell für alle Vorerhitzungs-Temperaturen oberhalb 200°C.The differences to the minimum distance required to achieve the specified target values after the carbopech was added could be eliminated by adding preheated coal to the moist feed. In the exemplary embodiment, for economic reasons, instead of Carbopech, only the addition of preheated coal is used. The addition of preheated coal brings about 4 mm approximation per 10% addition of preheated coal of 220 ° C preheating temperature. This generally applies to all preheating temperatures above 200 ° C.
Unter 200°C ergeben sich geringfügige Abweichungen, bedingt durch die dann stärkere Abhängigkeit der Schüttdichte von der Vorerhitzungstemperatur.There are slight deviations below 200 ° C due to the greater dependence of the bulk density on the preheating temperature.
Die erfindungsgemäss vorgegebenen SollWerte gelten nicht nur für die im Ausführungsbeispiel gewählte Einsatzkohle sondern auch für andere Einsatzkohlen bzw. Einsatzmischungen, da der Einfluss der Wärmeleitfähigkeit des Einsatzgutes auf den Verlauf der Temperaturfelder gering ist.The target values specified according to the invention apply not only to the insert coal selected in the exemplary embodiment but also to other insert coal or insert mixtures, since the influence of the thermal conductivity of the insert material on the course of the temperature fields is small.
Claims (4)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE3040331 | 1980-10-25 | ||
DE19803040331 DE3040331A1 (en) | 1980-10-25 | 1980-10-25 | METHOD FOR CONTROLLING COOK QUALITY |
Publications (3)
Publication Number | Publication Date |
---|---|
EP0048802A2 EP0048802A2 (en) | 1982-04-07 |
EP0048802A3 EP0048802A3 (en) | 1982-10-06 |
EP0048802B1 true EP0048802B1 (en) | 1985-06-12 |
Family
ID=6115198
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP81105965A Expired EP0048802B1 (en) | 1980-09-26 | 1981-07-29 | Process for controlling the quality of coke |
Country Status (4)
Country | Link |
---|---|
US (1) | US4421604A (en) |
EP (1) | EP0048802B1 (en) |
JP (1) | JPS57100182A (en) |
DE (1) | DE3040331A1 (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2149421B (en) * | 1983-11-07 | 1986-08-20 | Mitsubishi Chem Ind | Method of regulating fuel for a coke oven |
ES8801355A1 (en) * | 1985-05-06 | 1988-01-01 | Didier Eng | Method for the production of coke |
TWI453382B (en) * | 2012-12-28 | 2014-09-21 | China Steel Corp | Coke temperature measurement system |
RU2637965C1 (en) * | 2016-11-02 | 2017-12-08 | Общество С Ограниченной Ответственностью "Промышленные Инновационные Технологии Национальной Коксохимической Ассоциации" (Ооо "Проминтех Нка") | Oil coking additive |
CN107038529B (en) * | 2017-04-07 | 2023-09-12 | 天地科技股份有限公司 | Evaluation method for stability of strip filling body |
CN110739029B (en) * | 2019-09-20 | 2022-06-07 | 武汉钢铁有限公司 | Coal quality evaluation method and device |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
BE564101A (en) * | ||||
FR752468A (en) * | 1932-03-14 | 1933-09-23 | Mij Voor Keramische En Chemisc | Medium Temperature Coke Making Improvements |
GB779218A (en) * | 1954-09-21 | 1957-07-17 | Charbonnages De France | An improved method of producing metallurgical coke |
DE1771688B1 (en) * | 1968-06-26 | 1972-02-03 | Koppers Gmbh Heinrich | Method for controlling the heating of coking ovens |
US3970523A (en) * | 1972-11-24 | 1976-07-20 | Bergwerksverband Gmbh | Processes of producing cokes of large lump size and improved strength from bituminous coals |
DE2257668B1 (en) * | 1972-11-24 | 1973-09-06 | Bergwerksverband Gmbh, 4300 Essen | PROCESS FOR PRODUCING COAL COAL WITH INCREASED PIECE SIZE AND IMPROVED PIECE STRENGTH IN A HIGH PERFORMANCE HORIZONTAL FURNACE |
JPS5156801A (en) * | 1974-11-14 | 1976-05-18 | Sumitomo Metal Ind | YAKINYOKOOKUSUSEIZONIKYOSURU KAISHITSUTANNO SEIZOHOHO |
ZA753956B (en) * | 1975-06-20 | 1977-07-27 | H Hahn | Improvements in carbonaceous material |
CA1114765A (en) * | 1978-04-28 | 1981-12-22 | Keith Belinko | Production of metallurgical coke from poor coking coals using residue from processed tar sand bitumen |
DE2819232C2 (en) * | 1978-05-02 | 1985-01-17 | Carl Still Gmbh & Co Kg, 4350 Recklinghausen | Process for preheating and immediately subsequent coking of coal |
FR2464984A1 (en) * | 1979-09-10 | 1981-03-20 | Charbonnages De France | PROCESS FOR DRYING AND / OR PREHEATING COKEFIN CHARCOAL AND INSTALLATION FOR CARRYING OUT THE PROCESS |
-
1980
- 1980-10-25 DE DE19803040331 patent/DE3040331A1/en active Granted
-
1981
- 1981-07-29 EP EP81105965A patent/EP0048802B1/en not_active Expired
- 1981-10-23 JP JP56168879A patent/JPS57100182A/en active Pending
- 1981-10-23 US US06/314,259 patent/US4421604A/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
DE3040331C2 (en) | 1988-12-15 |
EP0048802A2 (en) | 1982-04-07 |
DE3040331A1 (en) | 1982-05-27 |
US4421604A (en) | 1983-12-20 |
JPS57100182A (en) | 1982-06-22 |
EP0048802A3 (en) | 1982-10-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE2736607C2 (en) | Method and device for the thermal treatment of fine-grained material with hot gases | |
DE2804368A1 (en) | PROCESS FOR THERMAL CRACKING OF HEAVY PETROLEUM | |
DE1167317B (en) | Method and device for drying and firing moldings consisting of rock phosphates | |
EP0048802B1 (en) | Process for controlling the quality of coke | |
DE2364650A1 (en) | METHOD FOR HEAT TREATMENT OF CORNY AND / OR LITTLE MATERIAL, IN PARTICULAR FOR BURNING LIME, DOLOMITE, MAGNESITE OR THE SAME AND MANHOLE FURNACES FOR PERFORMING THE PROCESS | |
DE3724541C2 (en) | ||
DE2931475A1 (en) | IMPROVED MULTI-STAGE METHOD FOR CALCINATING GRUENKOKS | |
DE3335484C2 (en) | ||
DE2204103A1 (en) | Process to slow down the formation of dust with porous coke in briquette form (reactive coke) | |
DE2225782A1 (en) | Method of burning lime | |
DE2030125A1 (en) | Tower-like furnace for expanding particles made of expandable material and method for regulating the same | |
DE2637097B2 (en) | PROCESS FOR MANUFACTURING SHAPED COCK FOR METALLURGICAL PURPOSES | |
DE1571646C3 (en) | Process for making metallurgical coke | |
DE2425232B1 (en) | Process for graphitizing molded bodies made of hard burnt charcoal | |
DE3727464C2 (en) | ||
DE491210C (en) | Method for producing coke by coking hard coal briquettes | |
DE573792C (en) | Modification of the process for the discontinuous production of high quality semi or whole coke from fuels of any kind | |
DE3001776C2 (en) | ||
DE2647894B2 (en) | Process for the production of high-strength metallurgical coke moldings | |
CH701702B1 (en) | Calcination of briquettes. | |
DE2407780A1 (en) | Low-smoke coal briquettes - made with high-vacuum bitumen as binder | |
DE974080C (en) | Process for the briquetting of baking hard coals or mixtures of these coals and other solid substances | |
DE593421C (en) | Process and device for the pressure dissociation of heavy hydrocarbon oils | |
DE690581C (en) | Method and device for distilling coal, lignites and the like. like | |
DE603636C (en) | Process for heat regulation in reaction zones, especially for the heat treatment of hydrocarbon oils |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Designated state(s): BE FR GB IT NL |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Designated state(s): BE FR GB IT NL |
|
17P | Request for examination filed |
Effective date: 19820823 |
|
ITF | It: translation for a ep patent filed | ||
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Designated state(s): BE FR GB IT NL |
|
ET | Fr: translation filed | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 19870731 Year of fee payment: 7 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Effective date: 19880731 |
|
BERE | Be: lapsed |
Owner name: RUHRKOHLE A.G. Effective date: 19880731 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Effective date: 19890201 |
|
NLV4 | Nl: lapsed or anulled due to non-payment of the annual fee | ||
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19890331 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 19900718 Year of fee payment: 10 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Effective date: 19910729 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |